Explanation:
In the formula of [tex]CaCl_2[/tex] we can see that there are 2mol Cl in 1 molecule of CaCl2. So, now we can do some math to find out how many mol of Cl there are in 1.9mol CaCl2!
[tex]1.9molCaCl_2*\frac{2molCl}{1molCaCl_2}[/tex]
So, there are 3.8mol Cl
How many moles of carbon dioxide at STP will fit in a 50 liter container?
Answer:
n = 2.23 moles
Explanation:
Given the following data;
Standard temperature = 273 K
Standard pressure = 101.325 kPa
Volume = 50 liter
R = 8.314 J/mol·K
To find the number of moles, we would use the ideal gas law formula;
PV = nRT
Where;
P is the pressure.V is the volume.n is the number of moles of substance.R is the ideal gas constant.T is the temperature.Making n the subject of formula, we have;
[tex] n = \frac {PV}{RT} [/tex]
Substituting into the formula, we have;
[tex] n = \frac {101.325*50}{8.314*273} [/tex]
[tex] n = \frac {5066.25}{2269.722} [/tex]
n = 2.23 moles
Therefore, 2.23 moles of carbon dioxide at STP will fit in a 50 liter container.
Predict the products of below reaction, and whether the solution at equilibrium will be acidic, basic, or neutral.
N2O5 + 3H2O → __________
Answer: The product of the given reaction is [tex]HNO_{3}[/tex] and the solution at equilibrium will be acidic.
Explanation:
When two or more chemical substances react together then it forms new substances and these new substances are called products.
For example, [tex]3N_{2}O_{5} + 3H_{2}O \rightarrow 6HNO_{3}[/tex]
This shows that nitric acid [tex](HNO_{3})[/tex] is the product formed and it is an acidic substance.
Hence, the solution at equilibrium will be acidic in nature.
Thus, we can conclude that the product of the given reaction is [tex]HNO_{3}[/tex] and the solution at equilibrium will be acidic.
Methyl orange can change color by transitioning from one chromophore to another. When added to a clear solution and the solution turns red, it is determined to be a(n) __________ in its __________ stable form.
Answer:
acidic titration in its stable form
Explanation:
Methyl orange can change its color in titration solution. The yellow color is towards alkaline solution and red color is towards acidic solution. The Ph value of solution will change during this chemical process.
g in the following three compounds(1,2,3) arrange their relative reactivity towards the reagent CH3Cl / AlCl3. Justify your order
Answer:
3 > 2> 1
Explanation:
Aromatic compounds undergo electrophilic substitution reaction with several electrophiles.
Some substituted benzenes are more reactive towards electrophilic aromatic substitution than unsubstituted benzene.
Certain groups of substituents increase the ease with which an aromatic compound undergoes aromatic substitution.
If we look at the compounds closely, we will notice that only toluene leads to easy reaction with CH3Cl / AlCl3. Thus is due to the +I inductive effect of -CH3 which stabilizes the negatively charged intermediate produced in the reaction.
The data shows the number of years that 30 employees worked for an insurance company before retirement. is the population mean for the number of years worked, and % of the employees worked for the company for at least 10 years. (Round off your answers to the nearest integer.)
Answer:
14
73%
Explanation:
The mean Number of years worked :
. (sum of service years) / employees in the
(8+13+15+3+13+28+4+12+4+26+29+3+10+3+17+13+15+15+23+13+12+1+14+14+17+16+7+27+18+24) /
(417 / 30)
= 13.9 years
= 14 years
The percentage of employees who have worked for atleast 10 years :
Number of employees with service years ≥ 10 years = 22 employees
Total number of employees
Percentage (%) = (22 / 30= * 100% = 0.7333 * 100% = 73.33% = 73%
What is the formula of the compound Pentasilicon trioxide ?
Answer: the molecular formula of trioxide is ClOClO3 or Cl2O4
hope its helps you.
keep smiling be happy stay safe
Question 16(Multiple Choice Worth 5 points)
(04.01 LC) Which statement is true about the total mass of the reactants during a chemical change?
O It is destroyed during chemical reaction.
O It is less than the total mass of the products. O It is equal to the total mass of the products.
O It is greater than the total mass of the products.
Answer:
It is equal to the total mass of the products.
Explanation:
Hope this helps :)
The length of a covalent bond depends upon the size of the atoms and the bond order.
a. True
b. False
Answer:
True
Explanation:
The length of covalent bond depends upon the size of atoms and the bond order.
Based on the equations below, which metal is the least active? Pb(NO3)2(aq) + Ni (s) --> Ni(NO3)2 (aq)+ Pb(s) Pb(NO3)2(aq) + Ag(s) --> No reaction Cu(
Answer:
Ni
Explanation:
An active metal is a highly reactive metal. Active metals are found high up in the activity series.
Active metals react with other metals that are lower than them in the activity thereby displacing the lower metals from a solution of their salts. This is what may have happened in the other two reactions.
Ni is the most active metal listed in the question since it can react a compounds with Pb(NO3)2(aq) to liberate Pb metal.
a 150 j of energy is added to a system that does 50 j of work is done.by how m uch will tyhe internal energy of system be raised?
The internal energy of system is raised by 3 times
A
(c) 2 C(s) + MnO2(s)
Mn(s) + 2 CO(g)
O combination reaction
O decomposition reaction
O combustion reaction
O single-displacement reaction
Answer: The reaction, [tex]2C(s) + MnO_{2}(s) \rightarrow Mn(s) + 2CO(g)[/tex] is a single-displacement reaction.
Explanation:
A chemical reaction in which one element of a compound is replaced by another element participating in the reaction.
For example, [tex]2C(s) + MnO_{2}(s) \rightarrow Mn(s) + 2CO(g)[/tex]
Here, the element manganese is replaced by carbon atom. As only one element gets replaced so, it is a single-displacement reaction.
Thus, we can conclude that [tex]2C(s) + MnO_{2}(s) \rightarrow Mn(s) + 2CO(g)[/tex] is a single-displacement reaction.
what is the mass of insoluble calcium phosphate produced from .555 grams of calcium chloride
Answer:
0.518 g
Explanation:
Step 1: Write the balanced equation
3 CaCl₂ + 2 H₃PO₄ ⇒ Ca₃(PO₄)₂ + 6 HCl
Step 2: Calculate the moles corresponding to 0.555 g of CaCl₂
The molar mass of CaCl₂ is 110.98 g/mol.
0.555 g × 1 mol/110.98 g = 5.00 × 10⁻³ mol
Step 3: Calculate the moles of Ca₃(PO₄)₂ produced
5.00 × 10⁻³ mol CaCl₂ × 1 mol Ca₃(PO₄)₂/3 mol CaCl₂ = 1.67 × 10⁻³ mol Ca₃(PO₄)₂
Step 4: Calculate the mass corresponding to 1.67 × 10⁻³ moles of Ca₃(PO₄)₂
The molar mass of Ca₃(PO₄)₂ is 310.18 g/mol.
1.67 × 10⁻³ mol × 310.18 g/mol = 0.518 g
What is the volume of a flask containing 0.199mol of Cl2at a temperature of 313K and a pressure of 1.19atm
Answer:
43.0 L
Explanation:
Step 1: Given and required data
Moles of chlorine gas (n): 0.199 molTemperature (T): 313 KPressure (P): 1.19 atmIdeal gas constant (R): 0.0821 atm.L/mol.KStep 2: Calculate the volume of the flask (V)
We will use the ideal gas equation.
P × V = n × R × T
V = n × R × T / P
V = 1.99 mol × (0.0821 atm.L/mol.K) × 313 K / 1.19 atm = 43.0 L
The answer is 4.30 L
Draw 2,3-dichloro octane
Answer:
Hi friend
I hope this image will help you if not I'm sorry
if this help you please mark me as brinalist or vote me.
Thankyou
Please help me ASAP I’ll mark Brainly
Answer:
cell
chloroplast and cell wall
nucleus
life processes
cell membrane
shape and size
vacuole
Hope it helps
Question 1 Points 3 23 and Louis immerses his left hand in a beaker containing cold water and immerses his right hand in a beaker containing warm water. Then, he immerses both his hands on a beaker containing water at room temperature. Which of the following statements are true? 1. The hand that was in hot water would feel cold. 2. The hand that was in cold water would feel hot. 3. His two hands will feel the same hotness. Que O2 and 3 0 1 and 2 o 1 and 3 1.2, and 3
Answer:look down below
Explanation:
The statements that are true about hands that are immersed in the water are:
1. The hand that was in hot water would feel cold.
2. The hand that was in cold water would feel hot.
The correct option is B 1. and 2.
What is temperature?
Temperature is the measurement of the hotness or coldness of any object. It is measured in Celsius or kelvin. Our body has nerves that feel the different temperatures of any object. The high temperature is called hot and the low temperature is called cold.
When Louis put his hand in the warm water and one hand in the cold water. He feels the temperature of both glasses of water. Then he put both hands in the normal water.
So the hand that is warm would feel the water as cold and the hand with cold water would feel the water as hot.
Thus, the correct option is B. 1. and 2.
Learn more about temperature, here:
https://brainly.com/question/15267055
#SPJ5
A product of homolytic fission can never be
a - charged
b - nucleophile
c- both
d-none of these
Answer:
both
Explanation:
A homolytic fission is said to have occurred when the breakage of a bond between two atoms leaves each of the bonding atoms with equal number of electrons. Homolytic fission often results in the creation of radicals.
Since homolytic fission yields two species with equal number of electrons(usually odd number of electrons), the products of such process can not be charged. They can not be nucleophiles because nucleophiles need to possess two electrons which can be shared with another chemical specie.
g Consider two different liquids at atmospheric pressure: hexane and water. Hexane has a higher vapor pressure than water. As a result, the temperature at which hexane will boil will be [ Select ] water and its vapor pressure when it is boiling will be [ Select ] water when water is boiling.
Answer:
Lower than
Higher than
Explanation:
The vapour pressure and boiling point of liquids are inversely related. Thus, the higher the vapour pressure of a liquid, the lower it's boiling point. Lower vapour pressure implies that the liquid is easily converted into vapour phase.
If hexane has a higher vapour pressure than water then its boiling point is lower than that of water and its vapor pressure when it is boiling will be higher than water when water is boiling.
Calculate the moment of inertia of a CH³⁵CL₃ molecule around a rotational axis that contains the C-H bond. The C-Cl bond length is 177pm and the HCCl angle is 107⁰f
Answer:
The correct answer is "[tex]4.991\times 10^{-45} \ kg.m^2[/tex]".
Explanation:
According to the question,
[tex]R_{C-Cl} = 177 \ pm[/tex]
or,
[tex]=1.77\times 10^{-10} \ m[/tex]
[tex]\alpha = 107^{\circ}[/tex]
[tex]m_{Cl}=34.97 \ m.u[/tex]
or,
[tex]=34.97\times 1.66\times 10^{-27}[/tex]
[tex]=5.807\times 10^{-26} \ kg[/tex]
The moment of inertia around the rotational axis will be:
⇒ [tex]I=3\times m_{Cl}\times (R_{C-Cl})^2 \ Sin^2 \alpha[/tex]
By putting the values, we get
[tex]=3\times 5.807\times 10^{-26}\times (1.77\times 10^{-10})^2 \ Sin^2 (107)[/tex]
[tex]=3\times 5.807\times 10^{-26}\times (1.77\times 10^{-10})^2\times 0.91452[/tex]
[tex]=4.991\times 10^{-45} \ kg.m^2[/tex]
define saturated and unsaturated fats
Explanation:
Saturated fats are defined as the fat where fatty acid chains contain only single bonds.
For example, stearic acid, palmitic acid etc.
Unsaturated fats are defined as the fat where fatty acids contain one or more number of double bonds on the carbon atoms.
For example, oleic acid, palmitoleic acid etc.
define saturated and unsaturated fats
Saturated fatty acids lack double bonds between the individual carbon atoms, while in unsaturated fatty acids there is at least one double bond in the fatty acid chain. Saturated fats tend to be solid at room temperature and from animal sources, while unsaturated fats are usually liquid and from plant sources.
Answer:
hope it is helpful to you
☆☆☆☆☆☆☆☆☆
One main difference between the heating of gases on the one hand and solids or liquids on the other is that ___________________. One main difference between the heating of gases on the one hand and solids or liquids on the other is that ___________________. heating of gases depends not only on the temperature difference, but also on the process as well as the amount of gas present. heating of gases depends on temperature difference as well as the amount of gas present. specific heat is not defined for gases. heat cannot be exchanged with gases.
Answer:
heating of gases depends not only on the temperature difference, but also on the process as well as the amount of gas present.
Explanation:
The work done when a gas is heated does not only depends on the initial and final states of the gas but also on the process used to achieve the change of state of the gas.
Several processes can be applied in changing the state of a gas such as; adiabatic process, isobaric process, isochoric process and isothermal process.
Hence, the heating of a gas, depends not only on the temperature difference, as well as the amount of gas present according to the ideal gas laws but also on the process used to achieve the change of state.
I need help solving this!
For the reaction C + 2H2 → CH4, how many moles of hydrogen are needed to make 146.6 grams of methane, CH4 ?
Round your answer to the nearest tenth. If you answer is a whole number like 4, report the answer as 4.0
Use the following molar masses. If you do not use these masses, the computer will mark your answer incorrect.:
Element
Molar Mass
Hydrogen
1
Carbon
12
Answer: Moles of hydrogen required are 4.57 moles to make 146.6 grams of methane, [tex]CH_{4}[/tex].
Explanation:
Given: Mass of methane = 146.6 g
As moles is the mass of a substance divided by its molar mass. So, moles of methane (molar mass = 16.04 g/mol) are calculated as follows.
[tex]Moles = \frac{mass}{molar mass}\\= \frac{146.6 g}{16.04 g/mol}\\= 9.14 mol[/tex]
The given reaction equation is as follows.
[tex]C + 2H_{2} \rightarrow CH_{4}[/tex]
This shows that 2 moles of hydrogen gives 1 mole of methane. Hence, moles of hydrogen required to form 9.14 moles of methane is as follows.
[tex]Moles of H_{2} = \frac{9.14}{2}\\= 4.57 mol[/tex]
Thus, we can conclude that moles of hydrogen required are 4.57 moles to make 146.6 grams of methane, [tex]CH_{4}[/tex].
an emerald can be described as...
Answer:
green gemstone
Explanation:
hope this helps someone
How many liters of hydrogen can be produced at a pressure of 2 atm and a temperature of 298 K
Answer:
1.17 L of H₂
Explanation:
We'll begin by calculating the number of mole in 2.3 g of Mg. This can be obtained as follow:
Mass of Mg = 2.3 g
Molar mass of Mg = 24 g/mol
Mole of Mg =?
Mole = mass /molar mass
Mole of Mg = 2.3 / 24
Mole of Mg = 0.096 mole
Next, we shall determine the number of mole of H₂ produced by the reaction of 2.3 g (i.e 0.096 mole) of Mg. This can be obtained as follow:
Mg + 2HCl —> MgCl₂ + H₂
From the balanced equation above,
1 mole of Mg reacted to 1 mole of H₂.
Therefore, 0.096 mole of Mg will also react to produce 0.096 mole of H₂.
Finally, we shall determine volume of H₂ produced from the reaction. This can be obtained as follow:
Number of mole (n) of H₂ = 0.096 mole
Pressure (P) = 2 atm
Temperature (T) = 298 K
Gas constant (R) = 0.0821 atm.L/Kmol
Volume (V) of H₂ =?
PV = nRT
2 × V = 0.096 × 0.0821 × 298
Divide both side by 2
V = (0.096 × 0.0821 × 298) /2
V = 1.17 L
Therefore, 1.17 L of H₂ were obtained from the reaction.
Match the description with the type of precipitation being described.
1. Its formation requires very strong updrafts
2. Its formation requires falling through a layer of above freezing air
3. Precipitation from cumuliform clouds is typically of this nature
4. Precipitation from stratus clouds is typically of this nature
Options:
a. Hail
b. Drizzle
c. Shower
d. Freezing Rain
Answer:
1. Its formation requires very strong updrafts = a. Hail
2. Its formation requires falling through a layer of above-freezing air = d. Freezing Rain
3. Precipitation from cumuliform clouds is typically of this nature = c. Shower
4. Precipitation from stratus clouds is typically of this nature = Drizzle
Explanation:
Hail formation requires very strong updrafts, these updrafts are the upward moving air created in a thunderstorm. This period of noticeable thunderstorms creates hails.
Freezing rain requires the presence of warm air, it requires falling through a layer of above-freezing air to the colder air below to produce an ice coating on anything it drops on.
Showers are produced by cumuliform clouds which look like cotton balls. Since cumuliform clouds precipitate too, these clouds can have fluctuating rain in a day in the form of showers.
Drizzle which raises low visibility is considered a type of liquid precipitation since it also falls from a cloud. Drizzle which is obviously smaller in diameter when compared to that of raindrops, however, is common with stratus clouds.
viagnesiumi anu
If I have 100g of Magnesium, how much Magnesium Nitride will I theoretically create?
O 24.3g Mg3 N2
O 138.4g Mg3 N2
415.2g Mg3 N2
O 200g Mg3 N2
Answer:
Theoretical yield is 138.4 g
Explanation:
In the first step we determine the reaction:
3Mg + N₂ → Mg₃N₂
Mass of reactant is 100 g. We assume the nitrogen is in excess, so we work with Mg. We convert mass to moles:
100 g . 1mol/ 24.3g = 4.11 moles of Mg.
Ratio is 3:1. 3 moles of Mg can produce 1 mol of nitride
Our 4.11 moles, may produce (4.11 . 1)/3 = 1.37 moles of Mg₃N₂
We convert mass to moles, to find the theoretical yield:
1.37 mol . 100.9 g/mol = 138.2 g
What is the cell potential of an electrochemical cell that has the half-reactions shown below?
Ag⁺ + e⁻ → Ag
Fe → Fe³⁺ + 3e⁻
Answer:
E°(Ag⁺/Fe°) = 0.836 volt
Explanation:
3Ag⁺ + 3e⁻ => Ag°; E° = +0.800 volt
Fe° => Fe⁺³ + 3e⁻ ; E° = -0.036 volt
_________________________________
Fe°(s) + 3Ag⁺(aq) => Fe⁺³(aq) + 3Ag°(s) ...
E°(Ag⁺/Fe°) = E°(Ag⁺) - E°(Fe°) = 0.800v - ( -0.036v) = 0.836 volt
Classify each of the following as a strong acid or a weak acid and indicate how each should be written in aqueous solution. Classify ... In solution this acid should be written as: weak 1. hydrocyanic acid H3O CN- _______ 2. hydrobromic acid
Answer:
HCN, weak acid
H⁺, Br⁻, strong acid
Explanation:
Hydrocyanic acid is a weak acid, according to the following equation.
HCN(aq) ⇄ H⁺(aq) + CN⁻(aq)
Thus, it should be written in the undissociated form (HCN).
Hydrobromic acid is a strong acid, according to the following equation.
HBr(aq) ⇒ H⁺(aq) + Br⁻(aq)
Thus, it should be written in the ionic form (H⁺, Br⁻).
What is oxygen's half-equation?
answer; 1/ 20_2[2-] +2e - ->0.