5 ÷ 1/2 => 5 x 2/1 => 10/1 => 10
Answer:
10
Step-by-step explanation:
In the pic, it shows ten half squares.
Which best explains whether a triangle with side lengths 2 in., 5 in., and 4 in. is an acute triangle?
The triangle is acute because 22 + 52 > 42.
The triangle is acute because 2 + 4 > 5.
The triangle is not acute because 22 + 42 < 52.
The triangle is not acute because 22 < 42 + 52.
9514 1404 393
Answer:
The triangle is not acute because 2² + 4² < 5²
Step-by-step explanation:
The square of the hypotenuse of a right triangle with the given short sides would be 2² +4² = 20. So, that hypotenuse would be √20, about 4.47. The long side of this triangle is longer than that, so the angle opposite is larger than 90°. The triangle with sides 2, 4, 5 is an obtuse triangle.
The triangle is not acute because 2² + 4² < 5²
The triangle is not acute because 22 + 42 < 52.
Option C is the correct answer.
What is a triangle?A triangle is a 2-D figure with three sides and three angles.
The sum of the angles is 180 degrees.
We can have an obtuse triangle, an acute triangle, or a right triangle.
We have,
To determine if a triangle is acute, we need to check whether all three angles of the triangle are acute angles (less than 90 degrees).
Pythagorean theorem,
- If the square of the length of the hypotenuse is greater than the sum of the squares of the other two sides, then the triangle is acute.
- If the square of the length of the hypotenuse is less than the sum of the squares of the other two sides, then the triangle is obtuse.
Now,
The triangle with side lengths 2 in., 5 in., and 4 in. is not a right triangle.
So we can't use the Pythagorean theorem directly.
Now,
We can check if the sum of the squares of the two shorter sides is greater than the square of the longest side.
2² + 4² = 4 + 16 = 20
5² = 25
Since 20 < 25, we know that the triangle is not acute.
Therefore,
The triangle is not acute because 22 + 42 < 52.
Learn more about triangles here:
https://brainly.com/question/25950519
#SPJ7
What is the area of the triangle formed from (0,-3), (0,4), and (4,-3)?
O A. 14 square units
O B. 6 square units
O c. 48 square units
O D. 24 square units
You roll a die with the sample space s=1,2,3,4,5,6. you define A as (1,2,4) B as (2,3,4,5,6) C as (3,4) and D as (2,4,5). Determine which of the following events are exhaustive and/or mutually exhaustive.
Exhaustive Mutually exclusive
A and B
A and C
A and D
Band C
Answer:
A and B are exhaustive.
Step-by-step explanation:
Given
[tex]A = \{1,2,4\}[/tex]
[tex]B = \{2,3,4,5,6\}[/tex]
[tex]C =\{3,4\}[/tex]
[tex]D = \{2,4,5\}[/tex]
Solving (a): The mutually exclusive events
These are events that have no common or mutual elements
Events A to D are not mutually exclusive because each of the events have at least 1 common element with one another.
Solving (b): Exhaustive events.
Two events X and Y are said to be exhaustive if:
[tex]S = P(X\ n\ Y)[/tex]
i.e. if the sample space equals the intersection of X and Y
For events A to D, we have:
[tex]A\ n\ B = \{1,2,3,4,5,6\}[/tex]
and the sample space is:
[tex]S = \{1,2,3,4,5,6\}[/tex]
By comparison;
[tex]A\ n\ B = S[/tex]
Hence, A and B are exhaustive.
Một người gửi tiết kiệm tại ngân hàng một số tiền là 120 triệu đồng vào đầu mỗi năm theo thể thức lãi kép kỳ hạn một năm với lãi suất cố định 6,5%/ năm.
a) Hỏi sau 3 năm, số tiền gốc cộng lãi mà người đó nhận được là bao nhiêu ?
b) Hỏi sau bao nhiêu năm thì tổng số tiền nhận được lần đầu vượt quá 1,1 tỷ đồng.
Answer: lil t j
Step-by-step explanation:
I’m not a goat but I fit the description we walk around with then bands in my pocket
A certain radioactive isotope is a by-product of some nuclear reactors. Due to an explosion, a nuclear reactor experiences a massive leak of this radioactive isotope. Fortunately, the isotope has a very short half-life of 13 days. Estimate the percentage of the original amount of the isotope released by the explosion that remains 6 days after the explosion.
Answer:
[tex]\frac{N}{N_o} = 0.726 = 72.6\%[/tex]
Step-by-step explanation:
The following formula can be utilized for this question:
[tex]N = N_o (\frac{1}{2})^{\frac{t}{t_{1/2}} } \\\\\frac{N}{N_o} = (\frac{1}{2})^{\frac{t}{t_{1/2}} } \\\\[/tex]
where,
[tex]\frac{N}{N_o}[/tex] = ratio of the remaining amount to the original amount = ?
t = tme passed = 6 days
[tex]t_{1/2}[/tex] = half-life = 13 days
Therefore,
[tex]\frac{N}{N_o} = (\frac{1}{2} )^{\frac{6\ days}{13\ days} }\\\\[/tex]
[tex]\frac{N}{N_o} = 0.726 = 72.6\%[/tex]
i need help w this pls
Answer and Step-by-step explanation:
The answer is the second answer choice. y = 2x + 1
By looking at the graph, we see that there is a y-intercept at (0, 1), and it has a positive slope of 2.
#teamtrees #PAW (Plant and Water)
In what time will #250 gain #120 at 2%
Answer: 24 years
Step-by-step explanation:
Based on the information given, we've been given,
Principal = #250
Interest = #120
Interest rate = 2%
Time = Unknown
Interest = PRT/100
120 = (250 × 2 × Time)
Cross multiply
120 × 100 = (250 × 2 × T)
12000 = 500T
Time = 12000/500
Time = 24
It will take 24 years.
If a star is 5,699,999,999,999,999 meters from earth, how long does it take light to travel from earth to the star?
Answer
19.013.153,42629466 giây
Step-by-step explanati
van toc ánh sán =299.792.458 m/s
s= v*t
t=s/v
t= 5.699.999.999.999.999/299.792.458= 19.013.153,42629466 giây
What is 2 3 of 99kg?
Step-by-step explanation:
[tex] \frac{2}{3} \times \frac{99}{1} = 66 \: kg[/tex]
The length of a rectangle should be 9 meters longer than 7 times the width. If the length must be
between 93 and 163 meters long, what are the restrictions for the width, p?
Write the solution set as an algebraic inequality solved for the variable.
Answer:
If we define W as the width:
12m ≤ W ≤ 22m
Step-by-step explanation:
We have a rectangle with length L and width W.
We know that:
"The length of a rectangle should be 9 meters longer than 7 times the width"
Then:
L = 9m + 7*W
We also know that the length must be between 93 and 163 meters long, so:
93m ≤ L ≤ 163m
Now we want to find the restrictions for the width W.
We start with:
93m ≤ L ≤ 163m
Now we know that L = 9m + 7*W, then we can replace that in the above inequality:
93m ≤ 9m + 7*W ≤ 163m
Now we need to isolate W.
First, we can subtract 9m in the 3 sides of the inequality
93m - 9m ≤ 9m + 7*W -9m ≤ 163m -9m
84m ≤ 7*W ≤ 154m
Now we can divide by 7 in the 3 sides, so we get:
84m/7 ≤ 7*W/7 ≤ 154m/7
12m ≤ W ≤ 22m
Then we can conclude that the width is between 12 and 22 meters long.
8x – 3y = 1
–2x + 3y = 11
Solve a Linear System by Elimination
A custodian has 5 and 1/2 gallons of paint each of the book cases she is painting requires 1/2 gallon of paint how many book cases will the custodian be able to paint with that amount of paint A.3 B.4 C.11 D.15
Answer:
Option C.
Step-by-step explanation:
Determine the equation of the circle shown in the graph.
Answer:
B.
Step-by-step explanation:
The equation of a circle with center at (h, k) and radius r is
[tex] (x - h)^2 + (y - k)^2 = r^2 [/tex]
We have center at (-5, 0). That makes h = -5, and k = 0.
The radius is 3, so r = 3.
[tex] (x - (-5))^2 + (y - 0)^2 = 3^2 [/tex]
[tex] (x + 5)^2 + y^2 = 9 [/tex]
Answer: B.
Answer:
B
Step-by-step explanation:
The equation of a circle has the form:
[tex](x-h)^2+(y-k)^2=r^2[/tex]
Where (h, k) is the center of the circle and r is the radius.
From the graph, we can see that the center of the circle is at (-5, 0). So, (h, k) is (-5, 0), where h = -5 and k = 0.
And by counting, we can determine that the radius of the circle is three units. Hence, r = 3.
Substitute the information into the equation:
[tex](x-(-5))^2+(y-(0))^2=(3)^2[/tex]
Simplify. Therefore, our equation is:
[tex](x+5)^2+y^2=9[/tex]
Our answer is B.
Find the volume of the frog queen building in Graz, Austria. The building is 18 meters long, 17 meters tall, and 18 meters wide
Answer: 5,508 m3
Step-by-step explanation: V= 18 x 17 x 18 = 5,508 m3
Answer:5, 508
Step-by-step explanation:
V 18×18×17=5,508
Consider all four-digit numbers that can be made from the digits 0-8 (assume that numbers cannot start with 0). What is the probability of choosing a random number from this group that is less than or equal to 4000
Answer:
The probability is:
P = 0.375
Step-by-step explanation:
First, we need to find the total number of four-digit numbers that can be made with the digits 0-8, such that the first digit can not be zero.
To do this, we first need to find the number of selections that we have, in this case, there are 4, one for each digit in our 4-digit number.
Now let's count the number of options that we have for each one of these selections:
first digit: we have 8 options (because the 0 can not be here)
second digit: we have 9 options (because now the zero can be taken)
third digit: we have 9 options
fourth digit: we have 9 options.
The total number of combinations is equal to the product of all the numbers of options, this is:
C = 8*9*9*9 = 5,832
Now we need to find how many of these are less or equal than 4000.
So now let's count the options again:
first digit: 3 options {1, 2, 3}
second digit: 9 options
third digit: 9 option
fourth digit: 9 options
Total number of combinations:
C' = 3*9*9*9 = 2,187
Here we should also count the combination for the number 4000 itself, as it was not counted in our previous calculation, then we have:
C' = 2,187 + 1 = 2,188 combinations.
The probability of randomly choosing a number that is smaller than or equal to 4000 will be equal to the quotient between the number of combinations that are smaller than or equal to 4000 (2,188 combinations) and the total number of combinations (5,832)
this is:
P = 2,188/5,832 = 0.375
A company manufactures two products. Market research and available resources require the following
constraints:
• The number of units of product A manufactured, 2, is at most 500 units more than twice the number
of units of product B. y.
• The square of the company's profit is equal to the sum of 35 times the number of product A units
sold and 50 times the number of product B units sold.
If the company expects weekly profits to exceed $22,500, which pair of inequalities represents these
constraints?
will give brainliest + 50 points :)
The inequalities that represent these constraints are x ≤ 500 + 2y and 35x + 50y > 22500²
What is an equation?An equation is an expression that shows the relationship between two or more numbers and variables.
Let x represent the number of product A and y represent the number of product B, hence:
x ≤ 500 + 2y (1)
Also:
35x + 50y > 22500² (2)
The inequalities that represent these constraints are x ≤ 500 + 2y and 35x + 50y > 22500²
Find out more on equation at: https://brainly.com/question/2972832
#SPJ2
1a. If an escape room party
has 16 participants and 4
escape puzzles:
• How many staff are
needed?
• Write an expression to
solve how many staff
are needed.
Answer:
2 staff members
Step-by-step explanation:
Given
See attachment for missing details
Let
[tex]s \to staff\ member[/tex]
[tex]p \to participant[/tex]
[tex]e \to puzzle[/tex]
Required
Staff members for 18 participants
From the attachment, we have:
[tex]1s \to 8p[/tex] ---- 1 staff member to 8 participants
[tex]s \to 8p[/tex]
Multiply both sides by 1
[tex]s * 2 \to 8p * 2[/tex]
[tex]2s \to 16p[/tex]
This means that 2 staff members are required for 16 participants
To the nearest degree, find the measure of angle A.
Cosine(angle) = adjacent leg/ hypotenuse
Cosine( angle ) = 18/20
Angle = arccos(18/20)
Angle = 26 degrees
Answer:
26°
Step-by-step explanation:
For a right triangle, we can use trigonometry equations :-
In this case we need to use cosine equation .
cos A = adjacent side / hypotenuse
cos A = 18 / 20
A = cos × 18/20
A = arccos × 18/20
A = 26°
The shortest route from London to Edinburgh is 400 miles.
A lorry is expected to take 10 hours to travel this route.
The lorry actually travels by a different route which increases the distance by 15%, but it still arrives in 10 hours.
By how many more mph than the expected speed does the lorry travel?
Answer:
The lorry travels by 6 mph more than the expected speed.
Step-by-step explanation:
Velocity formula:
Velocity is distance divided by time, that is:
[tex]v = \frac{d}{t}[/tex]
Shortest route:
400 miles in 10 hours, which means that [tex]d = 400, v = 10[/tex]. So
[tex]v = \frac{d}{t} = \frac{400}{10} = 40[/tex]
In mph.
The lorry actually travels by a different route which increases the distance by 15%, but it still arrives in 10 hours.
Distance is multiplied by 100% + 15% = 115% = 1.15, so:
[tex]d = 1.15*400 = 460[/tex]
Then
[tex]v = \frac{d}{t} = \frac{460}{10} = 46[/tex]
46 mph
By how many more mph than the expected speed does the lorry travel?
46 - 40 = 6 mph
The lorry travels by 6 mph more than the expected speed.
2,45,250 students appeared for an entrance examination. If 94,750 students did not get admission, find how many students got admission.
can i please get the answer
Answer:
2.45.250- 94.750
= 92. 2975. this is the learners who got the admission
Answer:
1,50,500 students
Step-by-step explanation:
Hope this helps... vote as brainliest
In function notation, f(x) is another way of saying ______.
1.)y
2.)x
3.)or none of the above
Answer:
y
Step-by-step explanation:
In function notation, f(x) is another way of saying y. Then the correct option is A.
What is a function?A function is an assertion, concept, or principle that establishes an association between two variables. Functions may be found throughout mathematics and are essential for the development of significant links.
Tables, symbols, and graphs can all be used to represent functions. Every one of these interpretations has benefits. Tables provide the functional values of certain inputs in an explicit manner. How to compute direct proportionality is succinctly stated in symbolic representation.
The function is represented as,
y = f(x)
In function notation, f(x) is another way of saying y. Then the correct option is A.
More about the function link is given below.
https://brainly.com/question/5245372
#SPJ2
reflectiion across y=x
9514 1404 393
Answer:
see attached
Step-by-step explanation:
The reflection across y=-x swaps the coordinates and negates both of them. The first-quadrant figure becomes a third-quadrant figure.
(x, y) ⇒ (-y, -x)
Use algebra to solve 3x+4 = 1/x
The exact solutions are x=
Х
Answer:
Ignore the A before the ±, it wouldn't let me type it correctly.
[tex]x=\frac{2±\sqrt{7} }{3}[/tex]
Step-by-step explanation:
3x + 4 = 1 ÷ x
3x + 4 - 4 = 1 ÷ x - 4
3x = 1 ÷ x - 4
[tex]3x=\frac{1}{x} +\frac{x(-4)}{x}[/tex]
[tex]3x=\frac{1+x(-4)}{x}[/tex]
[tex]3x=\frac{1-4x}{x}[/tex]
[tex]x(3x)=x(\frac{1-4x}{x})[/tex]
x · 3x = - 4x + 1
3x² = - 4x + 1
3x² - (- 4x + 1) = 0
3x² + 4x - 1 = 0
Ignore the A before the ±, it wouldn't let me type it correctly.
[tex]x=\frac{-b±\sqrt{b^{2}-4ac } }{2a}[/tex]
a = 3
b = 4
c = - 1
[tex]x=\frac{-4±\sqrt{4^{2}-4((3)(-1)) } }{2(3)}[/tex]
[tex]x=\frac{-4±\sqrt{16-4((3)(-1)) } }{2(3)}[/tex]
[tex]x=\frac{-4±\sqrt{16+12 } }{2(3)}[/tex]
[tex]x=\frac{-4±\sqrt{28 } }{2(3)}[/tex]
[tex]x=\frac{-4±\sqrt{(2)(14) } }{2(3)}[/tex]
[tex]x=\frac{-4±\sqrt{(2)(2)(7) } }{2(3)}[/tex]
[tex]x=\frac{-4±\sqrt{2 } \sqrt{2}\sqrt{7} }{2(3)}[/tex]
[tex]x=\frac{-4±2\sqrt{7} }{2(3)}[/tex]
[tex]x=\frac{-4±2\sqrt{7} }{6}[/tex]
Two separate equations
[tex]x=\frac{-4+2\sqrt{7} }{6}[/tex]
[tex]x=\frac{2+\sqrt{7} }{3}[/tex]
[tex]x=\frac{-4-2\sqrt{7} }{6}[/tex]
[tex]x=\frac{2-\sqrt{7} }{3}[/tex]
5 x 10 - 2 = ??
HALP MOIIIIIIIIIIIIIIIIIIIIII
Answer:
48
Step-by-step explanation:
the answer is 48 I got this answer by multiplying 5 by 10 and subtracting is from 2 which gives me 50 - 2 which is 48
Answer:
48
Step-by-step explanation:
5×10-2=50-2
=48
hope it helps!!
How would I solve this?
Answer:
20°
Step-by-step explanation:
perpendicular from the center on a chord of a circle always bisects the chord.
AR=BR
∴m arcAC=m arc BC=20°
What is the solution to the inequality x(x – 3) > 0?
Answer:
The solution to the inequality is [tex](-\infty, 0) \cup (3, \infty)[/tex]
Step-by-step explanation:
We have a product, which is positive if both terms is positive or if both is negative.
Both positive:
[tex]x > 0[/tex]
[tex]x - 3 > 0 \rightarrow x > 3[/tex]
Then the intersection of these two is: [tex]x > 3[/tex]
Both negative:
[tex]x < 0[/tex]
[tex]x - 3 < 0 \rightarrow x < 3[/tex]
Then the intersection of those two is: [tex]x < 0[/tex]
Then:
Union of two solutions:
[tex]x < 0[/tex] or [tex]x > 3[/tex]
Then
[tex](-\infty, 0) \cup (3, \infty)[/tex]
HELP ME PLSSSSSS
if f(x) = 2x-3/5 , which of the following is the inverse of f(x)?
Dannette and Alphonso work for a computer repair company. They must include the time it takes to complete each repair in their repair log book. The dot plots show the number of hours each of their last 12 repairs took. Part a. Calculate the median, mean, IQR, and standard deviation of each data set. Part b. Which measure of central tendency and spread should you use to compare the two data sets? Explain your reasoning. Part c. Determine whether there are any outliers in either data set. Dannette's Repair Times х х X X X X Х Х + 9 + 1 0 Relations 2 3 4 8 10 12 5 6 7 Repair Time (hours) Geometry Alphonso's Repair Times Groups X Trigonometry X Х X X X х X х Statistics 7 X + 3 10 9 0 4 12 Series 8 1 2 5 7 Repair Time (hours) Greek
PLZ HELP
Answer:
(a):
Dannette Alphonso
[tex]\bar x_D = 4.33[/tex] [tex]\bar x_A = 5.17[/tex]
[tex]M_D = 2.5[/tex] [tex]M_A = 5[/tex]
[tex]\sigma_D = 3.350[/tex] [tex]\sigma_A = 1.951[/tex]
[tex]IQR_D = 7[/tex] [tex]IQR_A = 1.5[/tex]
(b):
Measure of center: Median
Measure of spread: Interquartile range
(c):
There are no outliers in Dannette's dataset
There are outliers in Alphonso's dataset
Step-by-step explanation:
Given
See attachment for the appropriate data presentation
Solving (a): Mean, Median, Standard deviation and IQR of each
From the attached plots, we have:
IQR_A = 1.5 ---- Dannette
[tex]A = \{3,4,4,4,4,5,5,5,5,6,6,11\}[/tex] ---- Alphonso
n = 12 --- number of dataset
Mean
The mean is calculated
[tex]\bar x = \frac{\sum x}{n}[/tex]
So, we have:
[tex]\bar x_D = \frac{1+1+1+1+2+2+3+7+8+8+9+9}{12}[/tex]
[tex]\bar x_D = \frac{52}{12}[/tex]
[tex]\bar x_D = 4.33[/tex] --- Dannette
[tex]\bar x_A = \frac{3+4+4+4+4+5+5+5+5+6+6+11}{12}[/tex]
[tex]\bar x_A = \frac{62}{12}[/tex]
[tex]\bar x_A = 5.17[/tex] --- Alphonso
Median
The median is calculated as:
[tex]M = \frac{n + 1}{2}th[/tex]
[tex]M = \frac{12 + 1}{2}th[/tex]
[tex]M = \frac{13}{2}th[/tex]
[tex]M = 6.5th[/tex]
This implies that the median is the mean of the 6th and the 7th item.
So, we have:
[tex]M_D = \frac{2+3}{2}[/tex]
[tex]M_D = \frac{5}{2}[/tex]
[tex]M_D = 2.5[/tex] ---- Dannette
[tex]M_A = \frac{5+5}{2}[/tex]
[tex]M_A = \frac{10}{2}[/tex]
[tex]M_A = 5[/tex] ---- Alphonso
Standard Deviation
This is calculated as:
[tex]\sigma = \sqrt{\frac{\sum(x - \bar x)^2}{n}}[/tex]
So, we have:
[tex]\sigma_D = \sqrt{\frac{(1 - 4.33)^2 +.............+(9- 4.33)^2}{12}}[/tex]
[tex]\sigma_D = \sqrt{\frac{134.6668}{12}}[/tex]
[tex]\sigma_D = 3.350[/tex] ---- Dannette
[tex]\sigma_A = \sqrt{\frac{(3-5.17)^2+............+(11-5.17)^2}{12}}[/tex]
[tex]\sigma_A = \sqrt{\frac{45.6668}{12}}[/tex]
[tex]\sigma_A = 1.951[/tex] --- Alphonso
The Interquartile Range (IQR)
This is calculated as:
[tex]IQR =Q_3 - Q_1[/tex]
Where
[tex]Q_3 \to[/tex] Upper Quartile and [tex]Q_1 \to[/tex] Lower Quartile
[tex]Q_3[/tex] is calculated as:
[tex]Q_3 = \frac{3}{4}*({n + 1})th[/tex]
[tex]Q_3 = \frac{3}{4}*(12 + 1})th[/tex]
[tex]Q_3 = \frac{3}{4}*13th[/tex]
[tex]Q_3 = 9.75th[/tex]
This means that [tex]Q_3[/tex] is the mean of the 9th and 7th item. So, we have:
[tex]Q_3 = \frac{1}{2} * (8+8) = \frac{1}{2} * 16[/tex] [tex]Q_3 = \frac{1}{2} * (5+6) = \frac{1}{2} * 11[/tex]
[tex]Q_3 = 8[/tex] ---- Dannette [tex]Q_3 = 5.5[/tex] --- Alphonso
[tex]Q_1[/tex] is calculated as:
[tex]Q_1 = \frac{1}{4}*({n + 1})th[/tex]
[tex]Q_1 = \frac{1}{4}*({12 + 1})th[/tex]
[tex]Q_1 = \frac{1}{4}*13th[/tex]
[tex]Q_1 = 3.25th[/tex]
This means that [tex]Q_1[/tex] is the mean of the 3rd and 4th item. So, we have:
[tex]Q_1 = \frac{1}{2}(1+1) = \frac{1}{2} * 2[/tex] [tex]Q_1 = \frac{1}{2}(4+4) = \frac{1}{2} * 8[/tex]
[tex]Q_1 = 1[/tex] --- Dannette [tex]Q_1 = 4[/tex] ---- Alphonso
So, the IQR is:
[tex]IQR = Q_3 - Q_1[/tex]
[tex]IQR_D = 8 - 1[/tex] [tex]IQR_A = 5.5 - 4[/tex]
[tex]IQR_D = 7[/tex] --- Dannette [tex]IQR_A = 1.5[/tex] --- Alphonso
Solving (b): The measures to compare
Measure of center
By observation, we can see that there are outliers is the plot of Alphonso (because 11 is far from the other dataset) while there are no outliers in Dannette plot (as all data are close).
Since, the above is the case; we simply compare the median of both because it is not affected by outliers
Measure of spread
Compare the interquartile range of both, as it is arguably the best measure of spread, because it is also not affected by outliers.
Solving (c): Check for outlier
To check for outlier, we make use of the following formulas:
[tex]Lower =Q_1 - 1.5 * IQR[/tex]
[tex]Upper =Q_3 + 1.5 * IQR[/tex]
For Dannette:
[tex]Lower = 1 - 1.5 * 7 = -9.5[/tex]
[tex]Upper = 8 + 1.5 * 7 = 18.5[/tex]
Since, the dataset are all positive, we change the lower outlier to 0.
So, the valid data range are:
[tex]Valid = 0 \to 18.5[/tex]
From the question, the range of Dannette's dataset is: 1 to 9. Hence, there are no outliers in Dannette's dataset
For Alphonso:
[tex]Lower = 4 - 1.5 * 1.5 =1.75[/tex]
[tex]Upper = 5.5 + 1.5 * 1.5 =7.75[/tex]
So, the valid data range are:
[tex]Valid = 1.75\to 7.75[/tex]
From the question, the range of Alphonso's dataset is: 3 to 11. Hence, there are outliers in Alphonso's dataset
Type the correct answer in each box. Functions h and K are inverse functions, and both are defined for all real numbers Using this relationship, what is the value of each function composition?
(h o k) (3)=
(k o h)(-4b) =
Answer:
(h o k) (3) = 3
(k o h) (-4b) = -4b
Step-by-step explanation:
An inverse function is the opposite of a function. An easy way to find inverse functions is to treat the evaluator like another variable, then solve for the input variable in terms of the evaluator. One property of inverse functions is that when one finds the composition of inverse functions, the result is the input value, no matter the order in which one uses the functions in the combination. This is because all terms in a function and their inverse cancel each other and the result is the input. Thus, when one multiplies two functions that are inverse of each other, no matter the input, the output will always be the input value.
This holds true in this case, it is given that (h) and (k) are inverses. While one is not given the actual function, one knows that the composition of the functions (h) and (k) will result in the input variable. Therefore, even though different numbers are being evaluated in the composition, the output will always be the input.
Given the functions:
g(n) = 3n - 5
f(n) = n2 + 50
Find:
(g+f)(8)
Answer:
[tex](g + f)(8) =133[/tex]
Step-by-step explanation:
Given
[tex]g(n) = 3n - 5[/tex]
[tex]f(n) = n^2 + 50[/tex]
Required
[tex](g + f)(8)[/tex]
This is calculated as:
[tex](g + f)(n) =g(n) + f(n)[/tex]
So, we have:
[tex](g + f)(n) =3n - 5 + n^2 +50[/tex]
[tex]Substitute[/tex] 8 for n
[tex](g + f)(8) =3*8 - 5 + 8^2 +50[/tex]
[tex](g + f)(8) =24 - 5 + 64 +50[/tex]
[tex](g + f)(8) =133[/tex]