Give the number of lone pairs around the central atom and the molecular geometry of SCl2. Multiple Choice 3 lone pairs, linear 1 lone pair, bent 3 lone pairs, bent 0 lone pairs, linear 2 lone pairs, bent
Answer:
2 lone pairs, bent
Explanation:
According to the Valence Shell Electron Pair Repulsion Theory, the number of electron pairs on the valence shell of the central atom in a molecule influences the shape of the molecule.
The presence of lone pairs on the valence shell of the central atom causes the observed molecular geometry to deviate from the ideal geometry predicted on the basis of the valence shell electron pair repulsion theory.
SCl2 has four regions of electron density. This means that its electron domain geometry is tetrahedral. However, there are two lone pairs on the valence shell of the central atom hence the observed molecular geometry is bent.
Answer True or False for each of the following statements. (a) The carburization surface was maintained at slightly less than 0.25 wt% carbon for each specimen. (b) Comparing the finished specimens at a depth of 0.20 mm, specimen A features the lowest carbon concentration. (c) Comparing the finished specimens as a whole, specimen D features the lowest overall amount of carbon.
Answer:
verdadero/a
falso/b
verdadero/c
Explanation:
The chemical formula is different from the empirical formula in
Answer:be careful and relax
Explanation:
Answer:
Hahaha be careful and relax
When sodium chloride, NaCl , dissolves in water, the solution contains ___________________ in addition to the water solvent. The partial charges in water help dissolve the compound as the hydrogen end of water is attracted to the ____________ and the oxygen end is attracted to the _______________
Answer:
sodium ions and chloride ions
chloride ion
sodium ion
Explanation:
Ionic substances are composed of ions. When you dissolve an Ionic substance in water, the ions that compose the substance together with water molecules are present in solution.
Hence, when sodium chloride is dissolved in water, sodium ions and chloride ions are released in solution.
Water has a dipole moment. Hence, the chloride ions are attracted to hydrogen (the positive end of the dipole) while sodium ions are attracted to oxygen (the negative end of the dipole).
This is how the solid is dissolved in water.
When sodium chloride, NaCl , dissolves in water, the solution contains sodium and chloride ions in addition to the water solvent. The partial charges in water help dissolve the compound as the hydrogen end of water is attracted to the chloride ions and the oxygen end is attracted to the sodium ions.
What molecules are soluble in water?Those molecules in which positive ion as well as negative ion is present, will show solubility in water.
Sodium chloride (NaCl) is an ionic compound, which dissociates into sodium ion and chloride ion in the water. As in the water H⁺ ions are present which get attracted towards the chloride ions (Cl⁻) and hydroxide ion (OH⁻ ion) get attracted towards the sodium ions (Na⁺) and show complete dissolution.
Hence correct answers are sodium and chloride ions, chloride ion and sodium ion.
To know more about solubility in water, visit the below link:
https://brainly.com/question/16903071
A cylinder contains 3.1 L of oxygen at 300 K and 2.7 atm. The gas is heated, causing a piston in the cylinder to move outward. The heating causes the temperature to rise to 610 K and the volume of the cylinder to increase to 9.4 L.
How many moles of gas are in the cylinder?
Express your answer using two significant figures.
Answer: The moles of gas present in the cylinder is 0.34 moles.
Explanation:
Given: [tex]P_{1}[/tex] = 2.7 atm, [tex]V_{1}[/tex] = 3.1 L, [tex]T_{1}[/tex] = 300 K
[tex]P_{2}[/tex] = ?, [tex]V_{2}[/tex] = 9.4 L, [tex]T_{2}[/tex] = 610 K
Formula used to calculate the final temperature is as follows.
[tex]\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}[/tex]
Substitute the values into above formula as follows.
[tex]\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}\\\frac{2.7 atm \times 3.1 L}{300 K} = \frac{P_{2} \times 9.4 L}{610 K}\\P_{2} = \frac{5105.7}{2820} atm\\= 1.81 atm[/tex]
Now, moles present upon heating the cylinder are as follows.
[tex]P_{2}V_{2} = n_{2}RT_{2}\\1.81 atm \times 9.4 L = n_{2} \times 0.0821 L atm/mol K \times 610 K\\n_{2} = \frac{17.014}{50.081} mol\\= 0.34 mol[/tex]
Thus, we can conclude that moles of gas present in the cylinder is 0.34 moles.
A piece of solid tin is submerged in silver nitrate solution a reaction occurs producing tin(IV) nitrate solution and solid silver
Write a word equation write a skeleton equation write a balanced chemical equation
Answer:
Tin + silver trioxonitrate V -------->Tin IV nitrate + silver
Explanation:
The term word equation refers to an equation in which the reactants and products are written in words rather than chemical symbols.
Note than tin is above silver in the electrochemical series hence silver will be displaced by tin as follows;
Tin + silver trioxonitrate V -------->Tin IV nitrate + silver
A chemist combines 33 g of methane with 289 g of oxygen to from 189 g of carbon dioxide and 30 g of water. Determine if the results of the following word problem adheres to the Law of Conservation of Mass.
Answer:
The correct answer is - no not adhere to the law of mass conservation.
Explanation:
According to the law of mass conservation in an isolated system, the mass can not be created or destroyed and in a chemical or physical change, the mass of products should be always equal to the mass of reactants.
On the basis of the law the mass of the chemical reaction-
Mass of products = mass of reactants
33 g of methane + 289g of oxygen = 189g of carbon dioxide + 30g of water
322g ≠ 219 g
which means this reaction does not adhere to the law of conservation.
Given the amount of camphor (200mg) we are using in this experiment, please determine how many mg of sodium borohydride to use in this reaction. We would like you to use 5.2 molar equivalents of this reagent. This means 5.2 times the mmol of camphor we are using. As an example: for 110.0 mg of camphor,142 mg of NaBH4 would be used (see if you can confirm this result). For complete credit, your work needs to be clearly drawn out!
Answer:
Explanation:
From the given information:
Camphor may be reduced as readily in the presence of sodium borohydride(NaHB4). The resulting compound which is stereoselective requires 1 mole of sodium borohydride (NaHB4) to reduce 1 mole of camphor in this reaction. The reaction is shown below.
Through the reduction process of camphor, the reducing agent can reach the carbonyl face with a one-carbon linkage. The product stereoisomer is known as borneol.
If the molecular weight of camphor = 152.24 g/mol
and it mass = 200 mg
The its no of moles = 200 mg/ 152.24 g/mol
= 1.3137 mmol
Now the amount of the required mmol for NaBH4 to be consumed in the reaction = 5.2 × 1.3137 mmol
= 6.831 mmol
since the molar mass of NaBH4 = 37.83 g/mol
Then, using the same formula:
No of moles = mass/molar mass
mass = No of moles × molar mass
mass = 6.831 mmol × 37.83 g/mol
mass of NaBH4 used = 258.42 mg
Write an equilibrium expression for each chemical equation involving one or more solid or liquid reactants or products.
Answer:
a.
[tex]Keq=\frac{[HCO_3^-][OH^-]}{[CO_3^{2-}]}[/tex]
b.
[tex]Keq=[O_2]^3[/tex]
c.
[tex]Keq=\frac{[H_3O^+][F^-]}{[HF]}[/tex]
d.
[tex]Keq=\frac{[NH_4^+][OH^-]}{[NH_3]}[/tex]
Explanation:
Hello there!
In this case, for the attached reactions, it turns out possible for us to write the equilibrium expressions by knowing any liquid or solid would be not-included in the equilibrium expression as shown below, with the general form products/reactants:
a.
[tex]Keq=\frac{[HCO_3^-][OH^-]}{[CO_3^{2-}]}[/tex]
b.
[tex]Keq=[O_2]^3[/tex]
c.
[tex]Keq=\frac{[H_3O^+][F^-]}{[HF]}[/tex]
d.
[tex]Keq=\frac{[NH_4^+][OH^-]}{[NH_3]}[/tex]
Regards!
Which of the following was NOT explained by Dalton's atomic theory?
ANSWER:
A. the Law of Multiple Proportions
B. the difference between elements and compounds
C.?the difference between isotopes of an element
D. the Law of Conservation of Mass
Answer:
A. the Law of Multiple Properties
Answer:
A. the law of multiple proportions
If mercury barometer is replaced by water barometer, height of water column
i. will be less than that of Hg Column
ii. will be greater than that of Hg column iii. will be equal to that of Hg column
iv. will be none of these
Answer:
answer is first one 1 will be less then that of hg coloumn
The products obtained from hydroboration-oxidation of cis-2-butene are identical to the products obtained from hydroboration-oxidation of trans-2-butene. Draw the products and explain why the configuration of the starting alkene is not relevant in this case.
Answer:
a) Attached below
b) The presence of racemic mixture found as product in both cases shows that products are identical ( i.e. they have same configuration
Explanation:
Diagrams of the products obtained from hydroboration-oxidation of cis-2-butene , hydroboration-oxidation of trans-2-butene.
attached below
The presence of racemic mixture found as product in both cases shows that products are identical ( i.e. they have same configuration )
The speed limit on parts of the German autobahn was once set at 286 kilometers per hour (km/h). Calculate the speed limit in miles per hour (mph).
Answer: 178mph
Explanation:
From the question given, we are informed that the speed limit on parts of the German autobahn was once set at 286 kilometers per hour (km/h). Based on the information, the speed limit in miles per hour will then be:
= 286km/h × 1000m/1km × 1mi/1609m
= 178miles per hour
Therefore, the speed limit is 178mph.
At 298 K, AHO = -1652 kJ/mol and ASO = 0.097 kJ/(K•mol). What is the Gibbs
free energy of the reaction?
Based on the calculations, the Gibbs's free energy for this chemical reaction is equal to -1,680.906 kJ/mol.
Given the following data:
Enthalpy of reaction (ΔH°) = -1652 kJ/mol.Temperature = 298 K.Entropy of reaction (ΔS°) = 0.097 kJ/mol.What is Gibbs's free energy?Gibbs's free energy simply refers to the quantity of energy that is associated with a particular chemical reaction.
Mathematically, the Gibbs's free energy for this chemical reaction can be calculated by using this formula:
ΔG° = ΔH° - ΔS°
Substituting the given parameters into the formula, we have;
ΔG° = -1652 × 10³ - (298 × 0.097)
ΔG° = -1652 × 10³ - 28.906
ΔG° = -1,680.906 kJ/mol.
Read more on Gibbs's free energy here: brainly.com/question/18752494
#SPJ1
ype the correct answer in the box.
Calculate the density of the substance.
A sample of a substance has a mass of 4.2 grams and a volume of 6 milliliters. The density of this substance is grams/milliliter.
Reset Next
Explanation:
here is your answer. Hope it helps
Calculate the volume in liters of a 1.60 mol/L sodium nitrate solution that contains of sodium nitrate . Round your answer to significant digits.
Answer:
1.5L of NaNO3 must be present
Explanation:
That contains 200g of sodium nitrate. Round to 2 significant digits
To solve this question we need to convert the mass of NaNO3 to moles using its molar mass (85g/mol). With the moles and the molar concentration we can find the volume in liters of the solution:
Moles NaNO3:
200g * (1mol / 85g) = 2.353 moles NaNO3
Volume:
2.353 moles NaNO3 * (1L / 1.60moles) =
1.5L of NaNO3 must be presentDetermine if the following statement is true or false, and why. “A hypothesis can be proven true.”
Answer:
True
Explanation:
A hypothesis can be proven true through experimentation. For example, if you hypothesize that a balloon with helium will float in the air, and then you test this and the balloon floats, you have just proven that your original hypothesis is true.
We can use bond-line formulas to represent alkenes in much the same way that we use them to represent alkanes. Consider the following alkene: h5ch5e4 How many carbon atoms are sp2−hybridized in this alkene?
Answer:
2
Explanation:
The number of carbon atoms that are sp²-hybridized in this alkene is 2
Because all the single bonded carbon atoms in the alkene are sp²-hybridized
There are three(3) single formed via sp² orbitals and one ( 1 ) PI bond formed via Pure-P-orbital
attached below is the some part of the solution
What should be done if a spectrophotometer reports an absorbance that is too high? Select one: Reposition the cuvette in the spectrophotometer. Pour out half the volume of the sample. Restart the spectrophotometer and try again. Dilute the sample. g
Answer:
The sample should be diluted
Explanation:
According to Beer Lambert's law, the absorbance of a sample depends on the concentration of the sample.
Hence, if the concentration of the sample is very high, the spectrophotometer will also report a very high value of absorbance.
When this is the case, the sample should simply be diluted and the readings are taken again using the spectrophotometer.
A mixture is -
A. a pure substance made through chemical processes
B. a pure substance made through physical processes
C.
an impure substance made through chemical processes
D.
an impure substance made through physical processes
Answer:
C
Explanation:
an impure substance made through chemical process
the ability of organism to sense changes in its body is an example of
Answer:
the ability of organism to sense changes in its body is an example of responsiveness.Hope it is helpful to you
The time required to pass one Faraday of electricity through a solution with a current of 0.3A is
Answer:
89.35 hour
Explanation:
Recall :
Charge on 1 electron = 1.6 × 10^-19 C
1 mole contains = 6.023 × 10^23
Therefore, the charge on 1 mole of electron will be :
Charge per electron × 1 mole :
(1.6 × 10^-19) * (6.023 * 10^23) = 96500 C = 1 Farad
1 Farad = 96500 C
Using the formula :
Q = Current(I) * time(t)
Q = I*t
t = Q/I
Current, I = 0.3 A
t = 96500 / 0.3
t = 321666.66 second
t = 321666.66 / 3600 = 89.35 hour
how many lone pair electrons are on the central oxygen atom in the Lewis structure for dinitrogen pentoxide 9
Answer:
Two
Explanation:
Lone pairs are electron pairs on an atom that resides only with one of the atoms in a molecule.
Dinitrogen pentaoxide is shown in the image attached. There are five oxygen atoms and two nitrogen atoms in the molecule. The molecule has a total of 40 valence electrons.
There are two electrons present on the central oxygen atom in the Lewis structure of dinitrogen pentaoxide as shown in the image attached.
Methanal is the simplest aldehyde, with one carbon atom. Draw the structural model for methanal (using C and H).
[tex] {\bold{\red{\huge{\mathbb{QUESTION}}}}} [/tex]
Draw the structural model for methanal (using C and H and O).
[tex] \huge\mathbb{\red A \pink{N}\purple{S} \blue{W} \orange{ER}}[/tex]
First place the C and then make a double bonded O atom with it then fill H to complete all valence spaces
Which is used to measure conc. HCl for preparation of 0.1M HCl solution?
a. Volumetric flask c. Measuring cylinder
b. Pipette d. Wash bottle
Answer:
option a
hope helps you
have a great day
if a=1/2(a+b)h,express a in terms of A,b and h. pls solve with step by step
Answer:
[tex] a = \frac {2A - bh}{h} [/tex]
Explanation:
Given the following mathematical expression;
A = ½(a + b)h
To make a the subject of formula (express a in terms of A, b and h);
First of all, we would cross-multiply;
2A = (a + b)h
Opening the bracket, we have;
2A = ah + bh
Rearranging the mathematical expression, we have;
ah = 2A - bh
[tex] a = \frac {2A - bh}{h} [/tex]
the question is in the attachment
Answer:
About redox reaction which of the given statements are true?
Explanation:
Redox reaction is the one in which both oxidation and reduction reactions take place simultaneously.
For example:
[tex]C(s)+O_2(g)->CO_2(g)[/tex]
In this reaction, carbon undergoes oxidation and oxygen undergoes reduction simultaneously.
During this reaction, mutual exchange of electrosn take place between the oxidant and the reductant.
Among the given options,
Option B. electrons are transferred
and
option C.They include both oxidation and reduction takes place are the correct answers.
Pls pls pls help me
Classify each cation as a weak acid or pH neutral (neither acidic nor basic).
a. Na+
b. Ni2+
c. NH4+
Answer:
a. Na+ is pH neutral
b. Ni2+ = weak acid
c. NH4+ = Weak acid
Explanation:
To know the nature of the cation we need to find the nature of its conjugate base.
If the conjugate base of the ion is a strong base, the ion is neutral.
If the conjugate base is a weak base, the ion is a weak acid:
a. Conjugate base Na+ = NaOH
Sodium hydroxide is a strong base:
Na+ is pH neutral
b. Conjugate base Ni²⁺: Ni(OH)2 is a weak base because is not completely soluble in water. That means:
Ni2+ = weak acid
c. Conjugate base NH4+: NH4OH. Weak base:
NH4+ = Weak acid
Calculate the osmotic pressure of 5.0g of sucrose ssolution in 1L. Answer should be in Torr
Answer: The osmotic pressure of 5.0g of sucrose solution in 1 L is 271.32 torr.
Explanation:
Given: Mass = 5.0 g
Volume = 1 L
Molar mass of sucrose = 342.3 g/mol
Moles are the mass of a substance divided by its molar mass. So, moles of sucrose are calculated as follows.
[tex]Moles = \frac{mass}{molarmass}\\= \frac{5.0 g}{342.3 g/mol}\\= 0.0146 mol[/tex]
Hence, concentration of sucrose is calculated as follows.
[tex]Concentration = \frac{moles}{Volume (in L)}\\= \frac{0.0146 mol}{1 L}\\= 0.0146 M[/tex]
Formula used to calculate osmotic pressure is as follows.
[tex]\pi = CRT[/tex]
where,
[tex]\pi[/tex] = osmotic pressure
C = concentration
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the values into above formula as follows.
[tex]\pi = CRT\\= 0.0146 \times 0.0821 L atm/mol K \times 298 K\\= 0.357 atm (1 atm = 760 torr)\\= 271.32 torr[/tex]
Thus, we can conclude that the osmotic pressure of 5.0g of sucrose solution in 1 L is 271.32 torr.