Answer:
Explanation:
2-octene is a structural isomer of octene. Octene is an unsaturated hydrocarbon (alkene) with 8 carbon atoms. The structural formula of 2-octene is seen below
H H H H H H
I I I I I I
H- C - C = C - C - C - C - C - C - H
I I I I I I I I
H H H H H H H H
The structural formula of 2-octene is different from that of octene in the sense that, it's double bond is found in between the second and the third carbon (on the second bond position).
calculate the pressure in atm of .68 mol of H at 298K and occupying 4.5 L
Answer:
3.7 atm
General Formulas and Concepts:
Atomic Structure
MolesGas Laws
Ideal Gas Law: PV = nRT
P is pressureV is volumen is number of molesR is gas constantT is temperatureExplanation:
Step 1: Define
Identify variables
[Given] n = 0.68 mol H
[Given] T = 298 K
[Given] V = 4.5 L
[Given] R = 0.0821 L · atm · mol⁻¹ · K⁻¹
[Solve] P
Step 2: Find Pressure
Substitute in variables [Ideal Gas Law]: P(4.5 L) = (0.68 mol)(0.0821 L · atm · mol⁻¹ · K⁻¹)(298 K)Multiply [Cancel out units]: P(4.5 L) = (0.055828 L · atm · K⁻¹)(298 K)Multiply [Cancel out units]: P(4.5 L) = 16.6367 L · atmIsolate P [Cancel out units]: P = 3.69705 atmStep 3: Check
Follow sig fig rules and round. We are given 2 sig figs as our lowest.
3.69705 atm ≈ 3.7 atm
If you add 25.0 mL of water to 125 mL of a 0.150 M LiOH solution, what will be the molarity of the resulting diluted solution? 0.0450 M LiOH 0.0647 M LiOH 0.125 M LiOH 0.134 M LiOH
Answer:
solute in a fixed volume of solution
Concentration(c) = number of moles of solute(n) / volume of solution (v)
25.0 mL of water is added to 125 mL of a 0.150 M LiOH solution and solution becomes more diluted.
original solution molarity - 0.150 M
number of moles of LiOH in 1 L - 0.150 mol
number of LiOH moles in 0.125 L - 0.150 mol/ L x 0.125 L = 0.01875 mol
when 25.0 mL is added the number of moles of LiOH will remain constant but volume of the solution increases
new volume - 125 mL + 25 mL = 150 mL
therefore new molarity is
c = 0.01875 mol / 0.150 L = 0.125 M
answer is 0.125 M
Explanation:
did this answer got right
Answer:
0.125
Explanation:
Just completed the test and got it correct.
Using the periodic table, choose the more reactive nonmetal.
Br or As
Reactivity of non-metals depend on their ability to gain electrons. So, smaller is the size of a non-metal more readily it will attract electrons because then nucleus will be more closer to valence shell. ... Hence, Br is the non-metal which will be more reactive than At.
Answer:
br is more reactive than as
HELPPP 50 POINTS
How are the things people are
doing helpful to them and harmful to them?
helo in this please I'm so kunfused
OPTION C is the correct answer.
Identify the total number of moles involved in the reaction
2C4H10(g) + 13 O2(g) – 10 H2O(g) + 8 CO2(g)
Answer:
33 moles
Explanation:
The given chemical reaction is 2C₄H₁₀(g) + 13 O₂(g) → 10H₂O(g) + 8CO₂(g)
The number of moles of each reactant are as follows;
Butane, C₄H₁₀ = 2 moles of (g) + 13 (g) → 10H₂O(g) + 8CO₂(g)
Oxygen gas, O₂ = 13 moles
Water, H₂O = 10 moles
Carbon dioxide, CO₂ = 8 moles
The total number of moles, n = (2 + 13 + 10 + 8) = 33
∴ The total number of moles involved in the reaction, n = 33 moles.
can someone answer this please
calculate the mass m of 6.50 moles n of kbr m
Answer:
773.51495 grams
Explanation:
1 moles KBr to grams = 119.0023 grams
6.5*119.0023 = 773.51495 grams
1. What is the volume of 4.00g of aluminum at STP?
Answer:
22.4cm³
Explanation:
Avogadro's law shows that Avogadro's volume is 22.4
A chemist mixed two substances together: a blue powder with no smell and a colorless liquid with a strong smell. Their repeating groups of atoms are shown below on the left. After they were mixed, the chemist analyzed the results and found two substances. One ending substance had the repeating group of atoms shown below on the right. Is the ending substance the same substance as the blue powder? What happened to the atoms of the starting substances when the ending substances formed
Answer:
Vanished completely.
Explanation:
The atoms of starting substances are transformed into the ending substances because the starting substances mixed with each other and turn into new substances. The starting substances i.e. reactants vanished completely when the ending substances means products are formed completely so we can say that the vanishing of ending substance happened when the ending substances are formed.
Question: (02.01 MC) Which state of matter does this image represent?
O Solid
O Liquid
O Gas
O Plasma
Porrrrrrffffffaaaaaavvvvvvooooorrrrrrr
Answer:
2.2)solido
2.3)Sólido cristalino
2.4)Sólido amorfo
what are examples of soluble salts (metal+acids)
Answer:
Chloride salts - made of HCI
Nitrate salts - made of HNO3
Sulfate salts - made of H2SO4
These are all the examples I could think of.
Please somone help me with a chemistry question brainliest to whoever answers correctly and 20 points
Answer:
Polar
Explanation:
Electronegativity Difference:
0.7 Non-Polar Covalent = 0 0 < Polar Covalent < 2 Ionic (Non-Covalent) ≥ 2
Need help for this answer
Answer:
animals that live in the desert hibernate in winter
am not sure
Which of these is correct?
Answer:
1.89 nol Cu(NO3)2
Explanation:
if you calculate it it will be 1.89
Fossil fuels are considered to be:
a.
irreplaceable resources
c.
renewable resources
b.
nonrenewable resources
d.
hazardous wastes
Please select the best answer from the choices provided
A
B
C
D
If you have 3 moles of a gas at a pressure of 2.5 atm and a volume of 8 liters, what is the temperature?
a. 57.86 K
b. 0.81 K
c. 25 K
d. 81.26 K
Answer:
d
Explanation:
pv=nrt
2.5×1.01×10^5×8×10^-3=3×8.31×T
T=
The value of the temperature can be determined by ideal gas law and the temperature will be 0.81 K.
What is temperature ?The average kinetic energy of particular atoms and molecules in a system is measured by the temperature.
What is ideal gas Law?
Ideal gas law explain the relationship between pressure. temperature and volume.
Ideal gas law can be expressed as, PV=nRT.
where, P is pressure. V is volume , n is number of moles ,R is gas constant and T is temperature. It is given that, n= 3 mole, P = 2.5 atm, V = 8 L, T=?, R = 8.31.
Calculation of temperature by using ideal gas law is shown as:
Now, put the values of given data in ideal gas law equation.
T = PV/nR
=2.5×8/3×8.32
= 0.81 K
Therefore, the temperature will be 0.81K.
To know more about ideal gas law and temperature click here.
https://brainly.com/question/13821925.
#SPJ2
Magnesium is added to dilute hydrochloric acid. This makes bubbles of hydrogen and a colorless solution of magnesium chloride. Write down the name of one of the products of this reaction.
Answer:
The products are already in the question Hydrogen gas and Magnesium Chloride
Explanation:
2Mg +2HCl₂ = 2MgCl₂ + H₂ balanced equation if you need it
When any metal react with acid then salt and hydrogen gas is formed. Hydrogen gas and Magnesium Chloride are formed when Magnesium is added to dilute hydrochloric acid.
What is chemical reaction?Chemical reaction is a process in which two or more than two molecules collide in right orientation and energy to form a new chemical compound. The mass of the overall reaction should be conserved. There are so many types of chemical reaction reaction like combination reaction, double displacement reaction.
The products are Hydrogen gas and Magnesium Chloride. The balanced equation can be written as
Mg +2HCl[tex]\rightarrow[/tex] MgCl₂ + H₂
This makes bubbles of hydrogen and a colorless solution of magnesium chloride.
Therefore Hydrogen gas and Magnesium Chloride are formed when Magnesium is added to dilute hydrochloric acid.
Learn more about the chemical reactions, here:
https://brainly.com/question/3461108
#SPJ2
what two factors affect the pressure in a solid
There are four main factors that can affect the reaction rate of a chemical reaction:
Reactant concentration. Increasing the concentration of one or more reactants will often increase the rate of reaction. ...
Physical state of the reactants and surface area. ...
Temperature. ...
Presence of a catalyst.
please make me brainlist answer
How many grams of silver nitrate will be needed to produce 8.6 g of silver?
Answer:
13.5g of AgNO3 will be needed
Explanation:
Silver nitrate, AgNO3 contains 1 mole of silver, Ag, per mole of nitrate. To solve this problem we need to convert the mass of Ag to moles. Thee moles = Moles of AgNO3 we need. With the molar mass of AgNO3 we can find the needed mass:
Moles Ag-Molar mass: 107.8682g/mol-
8.6g * (1mol / 107.8682g) = 0.0797 moles Ag = Moles AgNO3
Mass AgNO3 -Molar mass: 169.87g/mol-
0.0797 moles Ag * (169.87g/mol) =
13.5g of AgNO3 will be neededWhich represents a balanced nuclear equation?
1) 23/11Na ——>24/11Mg+1/1H
2) 24/11Na ——>24/12Mg+0/-1e
3) 24/13Al ——>24/12Mg+0/-1e
4) 23/12Mg ——>24/12Mg+1/0n
Answer:
The correct option is 2.
Explanation:
In a nuclear reaction balanced we have that:
1. The sum of the mass number (A) of the reactants (r) is equal to the sum of the mass number of the products (p) [tex] \Sigma A_{r} = \Sigma A_{p} [/tex]
2. The sum of the atomic number (Z) of the reactants is also equal to the sum of the atomic number of the products [tex]\Sigma Z_{r} = \Sigma A_{p}[/tex]
So, let's evaluate each option.
1) [tex]^{23}_{11}Na \rightarrow ^{24}_{11}Mg + ^{1}_{1}H[/tex]
The mass number of the reactant is:
[tex]A_{r} = 23 [/tex]
The sum of the mass number of the products is:
[tex] A_{p} = 24 + 1 = 25 [/tex]
This is not the correct option because it does not meet the first condition ([tex] \Sigma A_{r} = \Sigma A_{p}[/tex]).
2) [tex]^{24}_{11}Na \rightarrow ^{24}_{12}Mg + ^{0}_{-1}e[/tex]
The mass number of the reactant and the products is:
[tex]A_{r} = 24 [/tex]
[tex] A_{p} = 24 + 0 = 24 [/tex]
Now, the atomic number of the reactants and the products are:
[tex]Z_{r} = 11 [/tex]
[tex] Z_{p} = 12 + (-1) = 11 [/tex]
This nuclear reaction is balanced since it does meet the two conditions for a balanced nuclear equation, ([tex] \Sigma A_{r} = \Sigma A_{p}[/tex] and [tex] \Sigma Z_{r} = \Sigma Z_{p}[/tex]).
3) [tex]^{24}_{13}Al \rightarrow ^{24}_{12}Mg + ^{0}_{-1}e[/tex]
The mass number of the reactant and the products is:
[tex]A_{r} = 24 [/tex]
[tex] A_{p} = 24 + 0 = 24 [/tex]
Now, the atomic number of the reactants and the products are:
[tex]Z_{r} = 13 [/tex]
[tex] Z_{p} = 12 + (-1) = 11 [/tex]
This reaction does not meet the second condition ([tex] \Sigma Z_{r} = \Sigma Z_{p}[/tex]) so this is not a balanced nuclear equation.
4) [tex]^{23}_{12}Mg \rightarrow ^{24}_{12}Mg + ^{1}_{0}n[/tex]
The mass number of the reactant and the products is:
[tex]A_{r} = 23 [/tex]
[tex] A_{p} = 24 + 1 = 25 [/tex]
This reaction is not a balanced nuclear equation since it does not meet the first condition ([tex] \Sigma A_{r} = \Sigma A_{p}[/tex]).
Therefore, the correct option is 2.
I hope it helps you!
Given the translation (0,5), translate ordered pairs (9, 0) and (2,-4).
Answer:
(9,5) and (2,1)
Explanation:
Suppose that you want to make 12 g of lithium oxide.
What are the minimum masses of lithium and oxygen you will need?
A. Li= 5.6 g O2= 6.4 g
B. Li 6.5 g O2= 4.6 g
C. Li= 0.6 g O2 46.4 g
D. Li= 15.6 g O2 6.4 g
Answer:
A. Li= 5.6 g O2= 6.4 g
Explanation:
Lithium oxide, Li2O, is an oxide that contains 2 moles of Li and 1 mole of O per mole of oxide. To solve this question we must find the mass of each atom in the molecule as follows:
2Li = 2*6.941g/mol = 13.882g/mol
O = 1*16g/mol = 16g/mol
Molar mass Li2O:
16+13.882 = 29.882g/mol
The mass of lithium is:
12g * (13.882g/mol / 29.882g/mol) = 5.6g Li
And the mass of oxygen:
12g * (16g/mol / 29.882g/mol) = 6.4g O
Right answer is:
A. Li= 5.6 g O2= 6.4 gA circuit is set up with two parallel resistors, each of a resistance of 250Ω.
b. If another resistor of resistance 300Ω is added in series with these two parallel resistors, what is the total
resistance?
c. If a voltage of 120V is put across the circuit in b, what will the current be in the circuit?
Answer:
425 and 0.28A
Explanation:
Resistance for resistors in parallel
1/ R = 1/250 +1/250
=0.008
R = 1/ 0.008 = 125
Total resistance
R= 125+ 300
=425
...
V= IR
I= V/R
I = 120/425
= 0.28 A
PLEASE HELP
If 62.6 g of lead (II) chloride is produced, how many grams of lead (II) nitrate were reacted?
Answer: The mass of lead (II) nitrate required is 74.52 g
Explanation:
The number of moles is defined as the ratio of the mass of a substance to its molar mass.
The equation used is:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] ......(1)
Given mass of lead (II) chloride = 62.6 g
Molar mass of lead (II) chloride = 278.1 g/mol
Plugging values in equation 1:
[tex]\text{Moles of lead (II) chloride}=\frac{62.6g}{278.1g/mol}=0.225 mol[/tex]
The chemical equation for the reaction of lead (II) chloride and sodium nitrate follows:
[tex]Pb(NO_3)_2+2NaCl\rightarrow PbCl_2+2NaNO_3[/tex]
By the stoichiometry of the reaction:
1 mole of lead (II) chloride is produced from 1 mole of lead (II) nitrate
Then, 0.225 moles of lead (II) chloride will react with = [tex]\frac{1}{1}\times 0.225=0.225mol[/tex] of lead(II) nitrate
Molar mass of lead (II) nitrate = 331.2 g/mol
Plugging values in equation 1:
[tex]\text{Mass of lead (II) nitrate}=(0.225mol\times 331.2g/mol)=74.52g[/tex]
Hence, the mass of lead (II) nitrate required is 74.52 g
3 upper M n upper O subscript 2 (s) plus 4 upper A l (s) right arrow 2 upper A l subscript 2 upper O subscript 3 (g) plus 3 upper M n (s). What is the enthalpy of the reaction?
Answer: The enthalpy of the reaction is -1791.31 kJ.
Explanation:
Enthalpy change is the difference between the enthalpies of products and the enthalpies of reactants each multiplied by its stoichiometric coefficients. It is represented by the symbol [tex]Delta H^o_{rxn}[/tex]
[tex]\Delta H^o_{rxn}=\sum (n \times \Delta H^o_{products})-\sum (n \times \Delta H^o_{reactants})[/tex] .....(1)
For the given chemical reaction:
[tex]3MnO_2(s)+4Al(s)\rightarrow 2Al_2O_3(s)+3Mn(s)[/tex]
The expression for the enthalpy change of the reaction will be:
[tex]\Delta H^o_{rxn}=[(2 \times \Delta H^o_f_{(Al_2O_3(s))}) + (3 \times \Delta H^o_f_{(Mn(s))})] - [(3 \times \Delta H^o_f_{(MnO_2(s))}) + (4 \times \Delta H^o_f_{(Al(s))})][/tex]
Taking the standard heat of formation values:
[tex]\Delta H^o_f_{(Al_2O_3(s))}=-1675.7kJ/mol\\\Delta H^o_f_{(Al(s))}=0kJ/mol\\\Delta H^o_f_{(MnO_2(s))}=-520.03kJ/mol\\\Delta H^o_f_{(Mn(s))}=0kJ/mol[/tex]
Plugging values in the above expression:
[tex]\Delta H^o_{rxn}=[(2 \times (-1675.7))+(3 \times 0)] - [(3 \times (-520.03))+(4 \times 0)]\\\\\Delta H^o_{rxn}=-1791.31 kJ[/tex]
Hence, the enthalpy of the reaction is -1791.31 kJ.
will give brainliest. In the Solubility lab, sugar was the and water was the solute / solution O solution / solute solute / solvent solvent/solute
Answer:
Sugar was the solute and water was the solvent.
Vinegar, which contains acetic acid, is used in foods and has few safety concerns. Hydrochloric acid is used in chemistry labs and requires the use of safety goggles and gloves. Why do the safety concerns for these two acids differ? 2 ... Acetic acid is a weak acid, and hydrochloric acid is a strong acid.
Answer:
acid
Explanation:
The table shows the specific heat of four substances—brick, dry soil, paper, and water. If all four substances were exposed to sunlight for the same amount of time, which substance would heat up the fastest?
Answer:
Brick
Explanation:
.................