From the discriminant of the give quadratic equation, the temperature of the machine will part after 50 minutes of operation.
Will the temperature of the part ever reach or exceed 135°F?The given equation that models the temperature of the machine is;
T = -0.005x² + 0.45x + 125
Let check if there's a value that exists for T = 135
Putting T = 135 in the given equation,
135 = -0.005x² + 0.45x + 125
We can simplify this to;
0.005x² - 0.45x + 10 = 0
From the general form of quadratic equation which is ax² + bx + c = 0, where a = 0.005, b = -0.45, and c = 10.
The discriminant of this quadratic equation is given by:
D = b² - 4ac
= (-0.45)² - 4(0.005)(10)
= 0.2025 - 0.2
= 0.0025
The discriminant of the equation is positive which indicates we have two roots. Therefore, the temperature of the machine part will cross 135°F at some point during the operation.
We can also find the roots of the quadratic equation using the formula:
[tex]x = (-b \± \sqrt(D)) / 2a[/tex]
Substituting the values of a, b, and D, we get:
[tex]x = (0.45 \± \sqrt(0.0025)) / 2(0.005)\\= (0.45 \± 0.05) / 0.01[/tex]
Taking the positive value, we get:
x = 50
Therefore, the temperature of the machine part will cross 135°F after 50 minutes of operation.
Learn more on discriminant here;
https://brainly.com/question/12526527
#SPJ1
Elizabeth works as a server in coffee shop, where she can earn a tip (extra money) from each customer she serves. The histogram below shows the distribution of her 60 tip amounts for one day of work. 25 g 20 15 10 6 0 0 l0 15 20 Tip Amounts (dollars a. Write a few sentences to describe the distribution of tip amounts for the day shown. b. One of the tip amounts was S8. If the S8 tip had been S18, what effect would the increase have had on the following statistics? Justify your answers. i. The mean: ii. The median:
a. Histogram shows tip amounts ranging between $6 and $25, skewed to the right with a longer tail of higher tips.
b. Increasing the $8 tip to $18 would increase the mean since total tip amount increases by $10 spread out over 60 customers. Median won't be affected since changing one value does not alter the middle value.
a. The histogram shows that Elizabeth received a range of tip amounts, with the majority of tips falling between $6 and $25. The distribution is skewed to the right, with a longer tail of higher tip amounts.
b. i. The mean would increase because the total tip amount would increase by $10, and this increase would be spread out over the 60 customers.
ii. The median would not be affected because it is the middle value when the data is ordered, and changing one value does not change the middle value.
Learn more about histogram here: brainly.com/question/30354484
#SPJ4
Find the 66th derivative of the function f(x) = 4 sin (x)…..
In response to the stated question, we may state that As a result, the 66th derivative of f(x) = 4 sin(x) is 4 sin(x) (x).
what is derivative?In mathematics, the derivative of a function with real variables measures how sensitively the function's value varies in reaction to changes in its parameters. Derivatives are the fundamental tools of calculus. Differentiation (the rate of change of a function with respect to a variable in mathematics) (in mathematics, the rate of change of a function with respect to a variable). The use of derivatives is essential in the solution of calculus and differential equation problems. The definition of "derivative" or "taking a derivative" in calculus is finding the "slope" of a certain function. Because it is frequently the slope of a straight line, it should be enclosed in quotation marks. Derivatives are rate of change metrics that apply to almost any function.
Using the chain rule and the derivative of the sine function repeatedly yields the 66th derivative of the function [tex]f(x) = 4 sin (x).[/tex]
The derivative of sin(x) is cos(x), and the derivative of cos(x) is -sin(x), and this pattern repeats itself every two derivatives.
As a result, the first derivative of f(x) is:
[tex]f'(x) = 4 cos (x)[/tex]
The second derivative is as follows:
[tex]f"(x) = -4 sin (x)[/tex]
The third derivative is as follows:
[tex]f"'(x) = -4 cos (x)[/tex]
The fourth derivative is as follows:
[tex]f""(x) = 4 sin (x)[/tex]
And so forth.
[tex]f^{(66)(x)} = 4 sin (x)[/tex]
Because the pattern repeats every four derivatives, the 66th derivative is the same as the second, sixth, tenth, fourteenth, and so on.
As a result, the 66th derivative of f(x) = 4 sin(x) is 4 sin(x) (x).
To know more about derivatives visit:
https://brainly.com/question/25324584
#SPJ1
The population of a certain city was 3,846 in 1996. It is expected to decrease by about 0.27% per year. Write an exponential decay function, and use it to approximate the population in 2022.
Answer:
To write an exponential decay function for this situation, we can use the formula:
P(t) = P₀e^(rt)
where:
P(t) = the population at time t
P₀ = the initial population
r = the annual rate of decrease (as a decimal)
t = time in years
We are given P₀ = 3,846 and r = -0.0027 (since the population is decreasing).
To approximate the population in 2022, we need to find t, the number of years from 1996 to 2022. That is:
t = 2022 - 1996 = 26 years
Now we can plug in the values we have:
P(t) = 3,846 e^(-0.0027t)
To find P(2022), we plug in t = 26:
P(26) = 3,846 e^(-0.0027(26))
≈ 3,200.62
Therefore, we can approximate the population of the city in 2022 to be about 3,201 people.
Answer:
3,101
Step-by-step explanation:
Please hit brainliest if this helped!
To write an exponential decay function for the population of the city, we can use the formula:
P(t) = P₀e^(-rt)
where P(t) is the population at time t, P₀ is the initial population, r is the decay rate, and e is the base of the natural logarithm.
In this problem, P₀ = 3,846 and r = 0.0027 (0.27% expressed as a decimal). We want to find the population in 2022, which is 26 years after 1996.To use the formula, we need to convert 26 years to the same time units as the decay rate. Since the decay rate is per year, we can use 26 years directly. Therefore, the exponential decay function for the population is:
P(t) = 3,846e^(-0.0027t)
To find the population in 2022 (t = 26), we substitute t = 26 into the function:
P(26) = 3,846e^(-0.0027*26) ≈ 3,101
Therefore, the population in 2022 is approximately 3,101.
Let me know if this helped by hitting brainliest! If you have any questions, comment below and I"ll get back to you ASAP.
T
AD
View Instructions
Interpreting a Dot Plot
DAR
3 4 5
1 2
Number of pets at home
6
How many people have 2 pets at home?
How many people have at least 3 pets at home?
How many more people have 2 pets than 5 pets?
How many people have less than 3 pets at home?
11
10 HELP MEEE
If we total up the dots plot for 3, 4, and 5 pets, we find that 3 people have 2 pets at home, 10 individuals have at least 3 pets at home.
What is the 1 pet in the world?The fact that dogs are the most common pet in the world shouldn't be shocking. There is a reason why there are tens of millions of dogs living in the United States alone, which is why some people say that dogs are a man's greatest friend. Around the world, at least one dog is kept in one-third of all households.
What exactly is a house pet?A fully domesticated animal kept constitutes a "household pet." a pet kept by you for personal company, like a dog, cat, reptile, bird, or mouse. Any kind of horse, cow, pig, sheep, goat, chicken, turkey, other captive fur-bearing animal is not considered a household pet, nor is any animal that is typically kept for food or profit.
To know more about dots plot visit:-
https://brainly.com/question/22068145
#SPJ1
The total number of people with pets at home is 11, which is the sum of the heights of the columns.
What is equation?
A math equation is a method that links two claims and represents equivalence using the equals sign (=). An equation is a mathematical statement that establishes the equivalence of two mathematical expressions in algebra.
Based on the given dot plot, we can answer the following questions:
How many people have 2 pets at home?
Answer: Two people have 2 pets at home, as indicated by the two dots in the second column.
How many people have at least 3 pets at home?
Answer: Six people have at least 3 pets at home, as indicated by the dots in the third column and beyond.
How many more people have 2 pets than 5 pets?
Answer: There are no dots in the last column, which represents 5 pets. Therefore, the difference between the number of people with 2 pets and those with 5 pets is 2 - 0 = 2.
How many people have less than 3 pets at home?
Answer: Three people have less than 3 pets at home, as indicated by the dots in the first two columns.
Therefore, the total number of people with pets at home is 11, which is the sum of the heights of the columns.
To know more about equation fro the given link:
brainly.com/question/649785
#SPJ1
(b) Write 5 as a percentage.
Answer:
5 as a percentage of 100 is 5/100 which is 5%
what is the Taylor's series for 1+3e^(x)+x^2 at x=0
The Taylor's series for [tex]1 + 3e^x + x^2[/tex] at [tex]x=0[/tex] is :
[tex]1 + 3e^x+ x^2 = 5 + 3x + (3/2)x^2 + (1/3)x^3 + ...[/tex]
What do you mean by Taylor's series ?
The Taylor's series is a way to represent a function as a power series, which is a sum of terms involving the variable raised to increasing powers. The series is centered around a specific point, called the center of the series. The Taylor's series approximates the function within a certain interval around the center point.
The general formula for the Taylor's series of a function f(x) centered at [tex]x = a[/tex] is:
[tex]f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...[/tex]
where [tex]f'(a), f''(a), f'''(a),[/tex] etc. are the derivatives of f(x) evaluated at [tex]x = a[/tex].
Finding the Taylor's series for [tex]1 + 3e^x + x^2[/tex] at [tex]x=0[/tex] :
We need to find the derivatives of the function at [tex]x=0[/tex]. We have:
[tex]f(x) = 1 + 3e^x + x^2[/tex]
[tex]f(0) = 1 + 3e^0 + 0^2 = 4[/tex]
[tex]f'(x) = 3e^x+ 2x[/tex]
[tex]f'(0) = 3e^0 + 2(0) = 3[/tex]
[tex]f''(x) = 3e^x + 2[/tex]
[tex]f''(0) = 3e^0 + 2 = 5[/tex]
[tex]f'''(x) = 3e^x[/tex]
[tex]f'''(0) = 3e^0 = 3[/tex]
Substituting these values into the general formula for the Taylor's series, we get:
[tex]f(x) = f(0) + f'(0)x + f''(0)x^2/2! + f'''(0)x^3/3! + ...[/tex]
[tex]f(x) = 4 + 3x + 5x^2/2 + 3x^3/6 + ...[/tex]
Simplifying, we get:
[tex]f(x) = 5 + 3x + (3/2)x^2 + (1/3)x^3 + ...[/tex]
Therefore, the Taylor's series for [tex]1 + 3e^x + x^2[/tex] at [tex]x=0[/tex] is :
[tex]1 + 3e^x+ x^2 = 5 + 3x + (3/2)x^2 + (1/3)x^3 + ...[/tex]
To know more about Taylor's series visit :
brainly.com/question/29733106
#SPJ1