The definition of vector space that fails is part A and B because it does not satisfy the any property of vector space.
The following statement can be determined if at-least one part of vector space definition that fails as:
(a) A is not a vector space because it does not contain the zero vector.
The zero vector is the unique vector that satisfies the property that when it is added to any other vector in the space, the result is the original vector.
However, in this case, the [a1, b1] + [a2, b2] = [a1 - a2, b1 - b2] is 0x² + 1, which is not an element of A. Therefore, A fails to satisfy the requirement of having a zero vector, and it is not a vector space.
(b) B is not a vector space because it does not satisfy the distributive property of scalar multiplication over vector addition.
In general, scalar multiplication must distribute over vector addition, meaning that for any scalar a and any vectors u and v in the space, a(u+v) = au + av.
However, in B, the scalar multiplication is defined as usual for R², but the vector addition is defined differently. In particular,[a1, b1] + [a2, b2] = [a1 - a2, b1 - b2].
The vector space definition fails because the vector addition is not associative, and it is also not commutative, which are the first two conditions for vector spaces. Therefore, the first and second conditions of the definition are not met.
To learn more about the vector space:
https://brainly.com/question/11383
#SPJ11
Find the tangential and normal components of the acceleration vector for the curve → r ( t ) = 〈 − 3 t , − 5 t ^ 2 , − 2 t ^ 4 〉 at the point t = 1
The tangential component of the acceleration vector at point t = 1 is aT(1) = 233/3 and The normal component of the acceleration vector at point t = 1 is aN(1) = (1/3)√10459
How do we calculate the tangential component?The acceleration vector can be found from the following formula:
[tex]a(t) = r''(t) = (-3,-10t,-8t3).[/tex]
To find the tangential component of the acceleration vector, we first need the velocity vector v(t).
[tex]v(t) = r'(t) = (-3,-10t,-8t3) .[/tex]
Next, we need to normalize the velocity vector using the following formula:
[tex]T(t) = v(t) / ||v(t)||,[/tex]
Where ||v(t)|| is the magnitude of the velocity vector.
[tex](1) = (-3,-10,-8) / \sqrt{(3^2 + 10^2 + 8^2)} = (-3/3, -10/3, -8/3) = (-1 , -10/3, -8/3) .[/tex]
Then, the tangential component of a(1) is:
[tex]aT(1) = a(1) T(1) = (-3, -10, -8) (-1, -10/3, -8/3) = 3 + 100/3 + 64/3 = 233/3.[/tex]
How do we calculate the normal component?To find the normal component of a(1), we simply need to find the magnitude of the tangential component and subtract it from the magnitude of the acceleration vector.
[tex]aN(1) = \sqrt{ (a^2 - aT(1)^2)} = \sqrt{(3^2 + (10)^2 + (8)^2 - (233/3)^ 2)} = \sqrt{(9 + 100 + 64 - 54289/9)} = \sqrt{(10459/9)} = (1/3)\sqrt{10459}[/tex]
Therefore, the tangential and normal components of the acceleration vector at the point t = 1 are:
[tex]aT(1) = 233/3[/tex] and [tex]aN(1) = (1/3)\sqrt{10459}[/tex]
See more information about acceleration vector in: https://brainly.com/question/29811580
#SPJ11
Three softball players discussed their batting averages after a game.
Probability
Player 1 four sevenths
Player 2 five eighths
Player 3 three sixths
By comparing the probabilities and interpreting the likelihood, which statement is true?
The statement that is true is: Player 2 has the highest likelihood of getting a hit in their at-bats.
How to determine the true statement from the optionsBy comparing the probabilities, we can interpret the likelihood of each player getting a hit in their at-bats. The highest probability indicates the highest likelihood of getting a hit.
Comparing the probabilities of the three players, we can see that:
Player 2 has the highest probability (5/8), which means they are the most likely to get a hit in their at-bats.
Player 1 has a lower probability (4/7) than Player 2, but a higher probability than Player 3. This means they are less likely to get a hit than Player 2, but more likely to get a hit than Player 3.
Player 3 has the lowest probability (3/6 = 1/2) of getting a hit, which means they are the least likely to get a hit in their at-bats.
Therefore, the statement that is true is: Player 2 has the of getting a hit in their at-bats.
Learn more about probabilities at https://brainly.com/question/24756209
#SPJ1
I need help with answer this question
Answer:
y = 2x/15 + 6
Step-by-step explanation:
3y/2 = x/5 + 9
3y = (x/5 + 9) (2) The 2 that was dividing goes on to multiply on the other side.
3y= 2x/5 + 18
y = (2x/5 + 18) / 3 The 3 that was multiplying goes on to divide on the other side.
y = 2x/15 + 6
cosθ(1+tanθ)=cosθ+sinθ
Answer:
Starting with the left side of the equation:
cosθ(1+tanθ) = cosθ(1+sinθ/cosθ) (since tanθ = sinθ/cosθ)
= cosθ + sinθ
Therefore, the left side of the equation is equal to the right side of the equation, which means that cosθ(1+tanθ) = cosθ+sinθ is true.
Two percent of all individuals in a certain population are carriers of a particular disease. A diagnostic test for this disease has a 95% detection rate for carriers and a 3% detection rate for noncarriers. Suppose the test is applied independently to two different blood samples from the same randomly selected individual. A. What is the probability that both tests yield the same result?
The probability that both tests yield the same result is 7.7%.
Simply put, probability is the likelihood that something will occur. When we don't know how an occurrence will turn out, we can discuss the likelihood or likelihood of various outcomes. Statistics is the study of occurrences that follow a probability distribution.
It is predicated on the likelihood that something will occur. The justification for probability serves as the primary foundation for theoretical probability. For instance, the theoretical chance of receiving a head when tossing a coin is 12.
Let's break it down:-
90% don't have of those 99%
5% will be positive
1% positive of those 1%
90% positive
10% negative.
Well we need it to be the same, so 99*(.05*.05+.95*.95)+.01*(.9*.9+.1*.1)= 90.4%.
If both tests are positive, we have:-
0.99*0.05*0.05 and 0.01*0.9*0.9 for being positive, so :-
[tex]\frac{carrier}{positive} = \frac{0.01*0.9*0.9}{(0.99*0.05*0.05+0.01*0.9*0.9)} = 7.7[/tex]
hence, the probability of the two tests yield the same result is 7.7%.
To know more about probability go through:-
https://brainly.com/question/13604758
#SPJ4
what is the probability of reaching into the box and randomly drawing a chip number that is smaller than 212 ? express your answer as a simplified fraction or a decimal rounded to four decimal places.
The probability of reaching into the box and randomly drawing a chip number that is smaller than 212 is 0.9378
First, we should find the total number of chips in the box. The box contains 225 chips numbered from 1 to 225. Therefore, the probability of reaching into the box and randomly drawing a chip number that is smaller than 212 is 211/225.
The probability can be expressed as a simplified fraction or a decimal rounded to four decimal places. The probability is rounded to four decimal places is 0.9378.
The probability of drawing a chip number that is smaller than 212 from the box is 211/225 or 0.9378 (rounded to four decimal places).
To learn more about probability refer :
https://brainly.com/question/21200970
#SPJ11
Your monthly take-home pay is $900. Your monthly credit card payments are about $135. What percent of your take-home pay is used for your credit card payments?
i came up with $765
Answer:15 percent
Step-by-step explanation:
What is the difference between the simple and compound interest if you borrow $3,000 at a 6% interest rate for 2 years?
$180.00
$10.00
$6.00
$80.00
Answer:
Correct option is C)
Simple interest =
100
3000×6×2
=360
Compound interest =3000(1+
100
6
)
2
−3000=18×20.6=370.8
∴ Difference is Rs.10.8.
you can convert this value to $$
or simply the answer will be 2. $10
(hob-evzw-zjw) come
Answer:
B is your answer.
10.80$ which you just round to 10. 10 is your answer.
Step-by-step explanation:
For simple interest, the formula is:
Simple Interest = Principal × Rate × Time
For compound interest, the formula is:
Compound Interest = Principal × (1 + Rate)^Time - Principal
Let's calculate the values:
Principal = $3,000
Rate = 6% or 0.06
Time = 2 years
Simple Interest = $3,000 × 0.06 × 2 = $360
To calculate compound interest, we need to use the formula:
Compound Interest = $3,000 × (1 + 0.06)^2 - $3,000
= $3,000 × (1.06)^2 - $3,000
= $3,000 × 1.1236 - $3,000
= $3,370.80 - $3,000
= $370.80
The difference between simple and compound interest is:
$370.80 - $360 = $10.80
c) assume that 25% of the defendants in the state are innocent. in a certain year 200 people put on trial. what is the expected value and variance of the number of cases in which juries got the right decision?
The expected value of cases in which juries got the right decision is 150, and the variance is 375.
1. Since 25% of defendants in the state are innocent, that means that 75% of the defendants are guilty.
2. This means that in the given year, 150 out of the 200 people put on trial will be guilty.
3. Thus, the expected value of cases in which juries got the right decision is 150.
4. The variance of the number of cases in which juries got the right decision is calculated by taking the expected value and subtracting it from the total number of people put on trial, which is 200.
5. The result of the calculation is 375, which is the variance of cases in which juries got the right decision.
See more about variance at: https://brainly.com/question/9304306
#SPJ11
Find the first 4 terms of the sequence represented by the expression 3n + 5
The first 4 terms of the sequence represented by the expression 3n + 5
is 8, 11, 14 and 17.
Sequence:
In mathematics, an array is an enumerated collection of objects in which repetition is allowed and in case order. Like a collection, it contains members (also called elements or items). The number of elements (possibly infinite) is called the length of the array. Unlike sets, the same element can appear multiple times at different positions in the sequence, and unlike sets, order matters. Formally, a sequence can be defined in terms of the natural numbers (positions of elements in the sequence) and the elements at each position. The concept of series can be generalized as a family of indices, defined in terms of any set of indices.
According to the Question:
Given, aₙ = (3n+5).
First four terms can be obtained by putting n=1,2,3,4
a 1=(3×1+5) = 8
a 2 =(3×2+5) = 11
a 3 =(3×3+5) = 14
a 4 =(3×4+5) = 17
First 4 terms in the sequence are 8, 11, 14, 17.
Learn more about Sequence:
https://brainly.com/question/30262438
#SPJ4
Isaiah is grounded and has to stay in his room all day. He made up a game where he throws balled-up paper called a "trashball" into his trash can. The diameter of the top of the trash can 1 the diameter of the top of is 12 in. Isaiah wants the "trashball" to have a diameter that is the trash can. > What should the diameter of Isaiah's "trashball" be? d Level G ? in. 12 in.
Answer:
Isiah Thomas
Step-by-step explanation:
I amazing fact
Answer:
the correct answer is 4
Step-by-step explanation:
yea sorry i don’t know step-by-step
parabola a and parabola b both have the x-axis as the directrix. parabola a has its focus at (3,2) and parabola b has its focus at (5,4). select all true statements.
a. parabola A is wider than parabola B
b. parabola B is wider than parabola A
c. the parabolas have the same line of symmetry
d. the line of symmetry of parabola A is to the right of that of parabola B
e. the line of symmetry of parabola B is to the right of that of parabola A
In the following question, among the given options, Option (b) "Parabola B is wider than Parabola A" and option (d) "The line of symmetry of Parabola A is to the left of that of Parabola B" are the true statements.
The following statements are true about the parabolas: c. the parabolas have the same line of symmetry, and d. the line of symmetry of parabola A is to the right of that of parabola B.
Parabola A and Parabola B have the x-axis as the directrix, with the focus of Parabola A at (3,2) and the focus of Parabola B at (5,4). As the focus of Parabola A is to the left of the focus of Parabola B, the line of symmetry for Parabola A is to the right of the line of symmetry of Parabola B.
Parabola A and Parabola B may have different widths, depending on their equation, but this cannot be determined from the information given.
For more such questions on Parabola
https://brainly.com/question/29635857
#SPJ11
Seven bags of cement weighs 3kg 52g what Is the weight of the each?
Answer:
436g
Step-by-step explanation:
1kg=1000g
3kg=3000g
3000+52=3052
3052÷7=436
Hi help me with this question
Solve for X
30=5(X+5)
X=?
The solution for X in equation 30=5(X+5)X is X= 1.
To solve the equation, we can start by distributing the 5 on the right-hand side of the equation, which gives us:
30 = 5X + 25X
Combining like terms, we get:
30 = 30X
Dividing both sides by 30, we get:
X = 1
However, we need to check whether this value satisfies the original equation. Plugging X=1 into the equation gives us:
30 = 5(1+5)(1)
30 = 5(6)
30 = 30
Therefore, the only valid solution is X=1.
Learn more about Equations:
https://brainly.com/question/28871326
#SPJ4
Whats 21 square root of 98 divided by 7 square root of 21
The 21 square root of 98 divided by 7 square root of 21 = 21√98 / 7√21 = 6.4807407
A square root of a number x is a number y such that y2 = x; in other words, a number y who's square and the result of multiplying the number by itself, or y ⋅ y, is x.
Every nonnegative real number x has a unique nonnegative square root, called the principal square root, which is denoted by √where the symbol √ is called the radical sign.
Every positive number x has two square roots: √ which is positive, and -√ which is negative. The two roots can be written more concisely using the ± although the principal square root of a positive number is only one of its two square roots, the designation "the square root" is often used to refer to the principal square root.
To learn more about square root, click here:
brainly.com/question/29286039
#SPJ4
a pastry chef accidentally inoculated a cream pie with six s. aureus cells. if s. aureus has a generation time of 60 minutes, how many cells would be in the cream pie after 7 hours?
After the time of seven hours, the cream pie would have approximately 768 S. aureus cells after 7 hours with a generation time of 60 minutes.
How many cells would be in the cream pie after 7 hours?Six S. aureus cells have been accidentally inoculated into a cream pie. S. aureus has a generation time of 60 minutes. S. aureus is a pathogenic bacterium found in the environment, as well as on the skin, and in the upper respiratory tract.
The generation time of this bacterium is 60 minutes, meaning that a single bacterium can produce two new cells in 60 minutes.
If there are 6 S. aureus cells in a cream pie, the number of bacteria will continue to increase as time passes.
The number of generations (n) in seven hours is calculated as:
n = t/g
n = 7 hours × 60 minutes/hour/60 minutes/generation = 7 generations
The number of cells in the cream pie after 7 hours is calculated as :
N = N₀ × 2ⁿ
N = 6 cells × 2⁷
N = 768 cells
Therefore, after seven hours, the cream pie would have approximately 768 S. aureus cells.
Learn more about Number of generations here:
https://brainly.com/question/17045618
#SPJ11
Each angle of a regular polygon is 1680. How
many sides has it? What is the name of this
polygon?
Answer: 2 solutions
Step-by-step explanation:
To find the angle of a regular polygon, use the formula 180(n-2)/n (where n is the amount of sides.)
Setting them equal, we get (180n-360)/n = 1680.
Multiplying by n on both sides, we get 180n-360 = 1680n.
Solving, we get 1500n = 360.
n = 0.24, which means it is not a shape, as you cannot have a shape with 0.24 sides.
The other way to look at it is to take full revolutions of 360 away from each angle, giving us 240 (the smallest remainder without it going negative). However, all the angles would be concave. If all the angles are concave, then it might connect backwards.
Subtracting 240 from 360 (to get the "exterior" angles, we get 120. Plugging it in to our equation 180(n-2)/n and solving, we get 180n-360 = 120n, and solving gives us 60n = 360, or n=6.
Since the amount of sides came together cleanly, we can classify this polygon as a normal hexagon, which has 6 sides.
A bus arrives every 10 minutes at a bus stop. It is assumed that the waiting time for a particular individual is a random variable with a continuous uniform distribution.
a) What is the probability that the individual waits more than 7 minutes?
b) What is the probability that the individual waits between 2 and 7 minutes?A continuous random variable X distributed uniformly over the interval (a,b) has the following probability density function (PDF):fX(x)=1/0.The cumulative distribution function (CDF) of X is given by:FX(x)=P(X≤x)=00.
In the following question, among the various parts to solve- a) the probability that the individual waits more than 7 minutes is 0.3. b)the probability that the individual waits between 2 and 7 minutes is 0.5.
a) The probability that an individual will wait more than 7 minutes can be found as follows:
Given that the waiting time of an individual is a continuous uniform distribution and that a bus arrives at the bus stop every 10 minutes.Since the waiting time is a continuous uniform distribution, the probability density function (PDF) can be given as:fX(x) = 1/(b-a)where a = 0 and b = 10.
Hence the PDF of the waiting time can be given as:fX(x) = 1/10The probability that an individual waits more than 7 minutes can be obtained using the complementary probability. This is given by:P(X > 7) = 1 - P(X ≤ 7)The probability that X ≤ 7 can be obtained using the cumulative distribution function (CDF), which is given as:FX(x) = P(X ≤ x) = ∫fX(t) dtwhere x ∈ [a,b].In this case, the CDF of the waiting time is given as:FX(x) = ∫0x fX(t) dt= ∫07 1/10 dt + ∫710 1/10 dt= [t/10]7 + [t/10]10= 7/10Using this, the probability that an individual waits more than 7 minutes is:P(X > 7) = 1 - P(X ≤ 7)= 1 - 7/10= 3/10= 0.3So, the probability that the individual waits more than 7 minutes is 0.3.
b) The probability that the individual waits between 2 and 7 minutes can be calculated as follows:P(2 < X < 7) = P(X < 7) - P(X < 2)Since the waiting time is a continuous uniform distribution, the PDF can be given as:fX(x) = 1/10Using the CDF of X, we can obtain:P(X < 7) = FX(7) = (7 - 0)/10 = 0.7P(X < 2) = FX(2) = (2 - 0)/10 = 0.2Therefore, P(2 < X < 7) = 0.7 - 0.2 = 0.5So, the probability that the individual waits between 2 and 7 minutes is 0.5.
For more such questions on probability
https://brainly.com/question/24756209
#SPJ11
Arun’s mother’s age is 6 years more than 4 times Arun’s age. If Arun’s age is m years, find
mother’s age
As per the unitary method, Arun's mother would be 36 years old if Arun is 3 years old.
Let Arun's age be m years.
Let Arun's mother's age be n years.
From the problem statement, we know that n = 4m + 6. This means that Arun's mother's age is directly proportional to Arun's age, with a constant ratio of 4 and a constant difference of 6.
To solve for n, we can use the unitary method. We can set up a proportionality between the two ages as follows:
n / m = (4m + 6) / m
To solve for n, we can cross-multiply to get:
n = m x (4m + 6)
Expanding the right-hand side of the equation, we get:
n = 4m² + 6m
Therefore, Arun's mother's age is 4m² + 6m years. We can simplify this expression by factoring out 2m:
n = 2m(2m + 3)
This gives us a simpler form of the equation for Arun's mother's age. To find her age, we simply substitute Arun's age (m) into this expression and simplify.
If Arun is 3 years old (m = 15), then his mother's age would be:
n = 2m(2m + 3) = 2(3)(2(3) + 3) = 2(3)(6) = 36
To know more about unitary method here
https://brainly.com/question/28276953
#SPJ4
Can someone help me with this please?
To solve the question asked, you can say: So, the other angle of the figure is 49 degree.
what are angles?In Euclidean geometry, an angle is a shape consisting of two rays, known as sides of the angle, that meet at a central point called the vertex of the angle. Two rays can be combined to form an angle in the plane in which they are placed. Angles also occur when two planes collide. These are called dihedral angles. An angle in planar geometry is a possible configuration of two rays or lines that share a common endpoint. The English word "angle" comes from the Latin word "angulus" which means "horn". A vertex is a point where two rays meet, also called a corner edge.
here the given angles are as -
107 + (180-156) + x = 180
as total angle sum of a triangle is 180
so,
x = 180 - 131
x = 49
So, the other angle of the figure is 49 degree.
To know more about angles visit:
https://brainly.com/question/14569348
#SPJ1
a 3-digit pin number is selected. what it the probability that there are no repeated digits? the probability that no numbers are repeated is
The probability that no numbers are repeated = [tex]\frac{720}{1000}=0.72[/tex]
The probability that there are no repeated digits in a 3-digit pin number is 0.72.
Formula used:
[tex]P(n,r)=\frac{n!}{(n-r)!}\\ Probability=\frac{Number of favourable outcomes}{Total number of events in the samples pace}[/tex]
There are 10 digits (0,1,2,3,4,5,6,7,8,9) to choose from.
Therefore, the total number of possible 3-digit pin numbers with no repeated digits is
[tex]P(10,3)=\frac{10!}{(10-3)!}\\P(10,3)= \frac{10!}{7!}\\P(10,3)=720[/tex]
The total number of possible 3-digit pin numbers [tex]= 10 * 10 * 10 = 1000[/tex].
Thus, the probability that no numbers are repeated = [tex]\frac{720}{1000}=0.72[/tex]
Therefore, the probability that there are no repeated digits in a 3-digit pin number is 0.72.
Learn more about probability below
https://brainly.com/question/13604758
Will give brainlest to first correct answer!!!
Evelyn has a bag that contains 3 red marbles and 2 blue marbles.
Evelyn randomly pulls a marble from the bag and then puts it back in the bag. She repeats this 20 times. How many times should she expect to draw a red marble from the bag?
Answer:
She will draw 120 times for a red marble
Step-by-step explanation:
To compare the pain control offered by two different analgesics in pediatric patients, the authors selected the Wong-Baker FACES pain rating scale as the primary end point. Before beginning the clinical trial, the authors sought to validate this ordinal scale by showing a correlation with a previously validated visual analog scale. Which one of the following statistical test is most appropriate to assess whether a correlation exists between these two measurements?
A. Pearson correlation
B. Analysis of variance (ANOVA)
C. Spearman rank correlation
D. Regression analysis
The most appropriate statistical test to assess whether a correlation exists between the Wong-Baker FACES pain rating scale and a previously validated visual analog scale is the (C) Spearman rank correlation.
What is correlation?Correlation refers to the connection between two variables in which a modification in one variable is linked to a modification in the other variable. Correlation can be positive or negative.
Spearman rank correlation- A non-parametric approach to test the statistical correlation between two variables is Spearman rank correlation, also known as Spearman's rho or Spearman's rank correlation coefficient. This is based on the ranks of the values rather than the values themselves. The results are denoted by the letter "r".
The formula for Spearman's rank correlation coefficient:
Rs = 1 - {6Σd₂}/{n(n₂-1)}
Where, Σd₂ = the sum of the squared differences between ranks.
n = sample size
Thus, the most appropriate statistical test to assess whether a correlation exists between these two measurements is the (C) Spearman rank correlation.
To know more about the "Spearman rank correlation": https://brainly.com/question/14646555
#SPJ11
Can some one solve this and show their work please
Answer:
m = 2n = 7Step-by-step explanation:
we solve with two equations between the corresponding sides
9m = 7m + 4
9m - 7m = 4
2m = 4
m = 2
----------------------------------
check
9 x 2 = 7 x 2 + 4
18 = 18
this answer is good
n + 6 = 2n - 1
n + 7 = 2n
7 = n
-----------------------------------
7 + 6 = 2 x 7 - 1
13 = 13
this answer is good
If the pyramids below are similar, what is the
ratio of their surface area?
21 in
14 in
A. 3:2
B. 6:4
C. 9:4
D. 27:8
The required ratio of the surface area of the given pyramids is (A) 3:2.
What are ratios?A ratio can be used to show a relationship or to compare two numbers of the same type.
To compare things of the same type, ratios are utilized.
We might use a ratio, for example, to compare the proportion of boys to girls in your class.
If b is not equal to 0, an ordered pair of numbers a and b, denoted as a / b, is a ratio.
A proportion is an equation that equalizes two ratios.
For illustration, the ratio may be expressed as follows: 1: 3 in the case of 1 boy and 3 girls (for every one boy there are 3 girls)
So, the given surface area is:
- 21 in
- 14 in
Now, calculate the ratio as:
= 21/14
= 3/2
= 3:2
Therefore, the required ratio of the surface area of the given pyramids is (A) 3:2.
Know more about ratios here:
https://brainly.com/question/2328454
#SPJ1
F(x)=-(x+3)(x+10) pls help
Answer:
Zeros: x = -10 and x = -3
Vertex: [tex](-\frac{13}{2} , \frac{49}{4} )[/tex]
Step-by-step explanation:
Pre-SolvingWe are given the following function:
f(x) = -(x+3)(x+10)
We want to find the zeros and the vertex of the parabola.
SolvingZerosThe zeros are the values of the function where f(x) = 0.
So, in order to find the zeros, we can set f(x) = 0.
0 = -(x+3)(x+10)
We can divide both sides by -1, to get:
0 = (x+3)(x+10)
To solve this, we will use zero product property.
Split and solve:
x+3 = 0
x = -3
x+10=0
x = -10
Vertex
Now, to find the vertex, we first get the average of the zeros.
Add the values of the zeros together, then divide by two:
[tex]\frac{-3-10}{2}[/tex] = [tex]\frac{-13}{2}[/tex]
Now, we plug this in for x to get the y value (found through f(x)) of the vertex.
[tex]f(-\frac{13}{2}) = -(-\frac{13}{2} + 3) (-\frac{13}{2} + 10)[/tex] = [tex]\frac{49}{9}[/tex]
So, the vertex is [tex](-\frac{13}{2} , \frac{49}{4} )[/tex]
The dwarf lantern shark is the smallest shark in the world. At birth, it is about 55 millimeters long. As an adult, it is only 3 times as long. How many centimeters long is an adult dwarf lantern shark? centimeters
Answer: 165
Step-by-step explanation:
55 x 3 = 165
write the equation in standard form for the circle with center (5,0) passing through (5, 9/2)
The equation in standard form for the circle with center (5,0) passing through (5, 9/2) is 4x² + 4y² - 40x + 19 = 0
Calculating the equation of the circleGiven that
Center = (5, 0)
Point on the circle = (5. 9/2)
The equation of a circle can be expressed as
(x - a)² + (y - b)² = r²
Where
Center = (a, b)
Radius = r
So, we have
(x - 5)² + (y - 0)² = r²
Calculating the radius, we have
(5 - 5)² + (9/2 - 0)² = r²
Evaluate
r = 9/2
So, we have
(x - 5)² + (y - 0)² = (9/2)²
Expand
x² - 10x + 25 + y² = 81/4
Multiply through by 4
4x² - 40x + 100 + 4y² = 81
So, we have
4x² + 4y² - 40x + 19 = 0
Hence, the equation is 4x² + 4y² - 40x + 19 = 0
Read more about circle equation at
https://brainly.com/question/1506955
#SPJ1
Levi's investment account accrues interest biannually. The function below represents the amount of money in his account if the account is left untouched for
t years.
f(t) = 2000 (1.03)2t
The amount of money in the account ( increases or decreases )
by (2 , 3 or 103)
% (every six months, each year, or every two years)
Answer:
The amount of money in the account increases by 3% every six months, or biannually.
To see why, we can break down the function f(t) = 2000(1.03)^(2t):
The base amount in the account is $2000.The term (1.03)^(2t) represents the interest accrued over time.Since the interest is compounded biannually, the exponent of 2t indicates the number of six-month periods that have elapsed. For example, if t = 1, then 2t = 2, which means two six-month periods have elapsed (i.e., one year).
Each time 2t increases by 2, the base amount is multiplied by (1.03)^2, which represents the interest accrued over the two six-month periods.
Thus, the amount of money in the account increases by 3% every six months, or biannually.
As for the second part of the question, the amount of increase is not 2%, 3%, or 103%.
question if all other factors are held constant, which of the following results in an increase in the probability of a type ii error? responses the true parameter is farther from the value of the null hypothesis. the true parameter is farther from the value of the null hypothesis. the sample size is increased. the sample size is increased. the significance level is decreased. the significance level is decreased. the standard error is decreased. the standard error is decreased. the probability of a type ii error cannot be increased, only decreased.
If all other factors are held constant, decreasing the significance level results in an increase in the probability of a type II error. This is true. we can say that the probability of making a type II error increases when the significance level is lowered.
What is a type II error? In hypothesis testing, a type II error occurs when a false null hypothesis is not rejected. When there is a real effect and the null hypothesis is false, this happens. It's a mistake that occurs when a researcher fails to reject a false null hypothesis.
A false negative is another term for a type II error. The power of the test, the size of the sample, the confidence level, and the effect size are all factors that influence the probability of making a type II error. Only if we decrease the significance level can the probability of a type II error be increased.
What is the significance level? The significance level is also known as alpha. It is the probability of rejecting a null hypothesis when it is true. It is represented by α. It is usually set at 0.05 or 0.01 in most studies. When the significance level is lowered, the probability of making a type I error decreases, but the probability of making a type II error increases. Therefore, we can say that the probability of making a type II error increases when the significance level is lowered.
For more such questions on type II error
https://brainly.com/question/30403884
#SPJ11