Answer:
Mass of sodium produced = 2.74 × 10⁵ g of Na
Mass of chlorine produce = 4.24 × 10⁵ g of Cl₂
Explanation:
In the electrolysis of molten NaCl as described above, the quantity of charge used is given by the formula, Q = I × t
Where I isnthe current passed in amperes and t is time in seconds.
Q = 4.0 × 10⁴ A × (8 × 60 × 60) s = 1.152 × 10⁹ C
Equation for the discharge of sodium is; Na+ + e- ---> Na (s)
One mole of electrons is required to discharge one mole of Na
One mole of electron = 1 faraday = 96500 C
One mole of Na has a mass of 23 g
96500 C produces 23 g of Na
1.152 × 10⁹ C will produce 23 g × 1.152 × 10⁹ C / 96500 C = 2.74 × 10⁵ g of Na
Equation for the discharge of chlorine gas is; 2 Cl- ---> Cl₂(g) + 2e-
Two mole of electrons are required to discharge one mole of chlorine gas
Two moles of electron = 2 faraday = 2 × 96500 C = 193000
One mole of Cl₂ has a mass of 71 g
193000 C produces 71 g of Cl₂
1.152 × 10⁹ C will produce 71 g × 1.152 × 10⁹ C / 193000 C = 4.24 × 10⁵ g of Cl₂
The amount of Na produced is 274551 g and the amount of Cl₂ produced is 423763.5 g.
Current passed through the cell = [tex]4.0\times10^4 A[/tex]
Time = 8 Hours
We have to calculate the amount of Na and [tex]Cl_2[/tex] produced in 8 hours in the downs cell.
What is a down cell?The Downs process is an electrochemical method for the commercial preparation of metallic sodium, in which molten NaCl is electrolyzed in a special apparatus called the Downs cell.
The total charge passed through the cell is calculated by the given formula as
Charge(Q) = Current(I) × time(t)
Q = [tex]4.0\times10^4 A \times t[/tex]
[tex]t = 8 \times 60\times 60[/tex] sec
t = 28800 sec
Q = [tex]4.0\times10^4 A \times 28800[/tex] sec
Q = [tex]115200\times 10^4 A\ sec[/tex]
We know that, Ampere = Coulombs per sec
Q = [tex]115200\times 10^4\ C[/tex]
1 mol of electrons 96500 C charge
Therefore, the number of mols of electrons carries this [tex]115200\times 10^4\ C[/tex] charge = [tex]\frac{115200\times10^4}{96500}[/tex] = 1.1937 × 10⁴ = 11937 mol electrons
In the Down's cell
Half cell reactions are:
Reduction half-reaction: [tex]2Na^+(aq)+2e^- \to 2Na(s)[/tex]
Oxidation half-reaction: [tex]2Cl^-(aq)\to Cl_2(g) + 2e^-[/tex]
We know that no. of moles = [tex]\frac{given \ mass}{molar \ mass}[/tex]
Molar mass of Na = 23 g/mol
The mass of Na formed = 11937 mol × 23 g/mol = 274551 grams
The molar mass of Cl₂ = 71 g/mol
The mass of Cl₂ = [tex]\frac{11937}{2}\times 71 = 423763.5 \ grams[/tex]
Hence, the amount of Na produced is 274551 g and the amount of Cl₂ produced is 423763.5 g.
To learn more about electrochemistry, click here:
https://brainly.com/question/13891856
find out the equivalent weight of Ca(OH)2
Answer:
The equivalent weight of calcium hydroxide is 1/2 he mass of a mol of calcium hydroxide. 1 mol Ca(OH)2 = 74 grams Ca(OH)2 ; 1 equivalent Ca(OH)2 = 37 grams Ca(OH)2......
Explanation:
HOPE IT HELPS YOU
9) Describe a method that could be used to extract lead from lead oxide (11). You will need
to include charcoal, an ignition (or test) tube and a Bunsen burner. Make sure
you include
each step and what safety measures you would take?
Answer:
Explained below.
Explanation:
In order to extract lead from lead oxide, we need to add carbon from coke to the lead oxide.
We will need;
A bunsen burner
A test tube
Charcoal
First step is to heat charcoal in an oxygen free environment. The safety measure here to ensure an oxygen free environment is to add some zinc metal powder into the test tube in order to remove any atmospheric oxygen inside the container.
Secondly, we will now put charcoal inside the test tube and turn on the bunsen burner to heat it until coke is formed.
Thirdly, we now introduce lead oxide into the coke inside the test tube and the carbon in the coke reacts with the lead oxide to produce lead and carbon dioxide.
Throughout all this process, since we required an oxygen free environment inside the test tube, whenever the test tube is opened, its neck must immediately be warmed by heat with the tube placed in a horizontal direction or very close to being in that horizontal direction so that any movement of air moves outwards from the tube.
What is the mass of 2.30x10^22 formula units of NaOH (molar mass =40.0g/mol)
Answer:
643(%=:(¥75 )(:7$"8"),"7$"()9_/"¥?:
Which event would be impossible to explain by using John Dalton's model of the atom?
Answer:
That is, the atom is a solid and indivisible mass. However, the fenomenom by which an iron atom emits particles when it is struck by light (known as the photoelectric effect) can not be explaind by this indivisible atom model.
In the experiment "Preparation and Standardization of a Sodium Hydroxide Solution", why was the burette rinsed with NaOH before filling it to "zero" for the titration?
Answer: The correct option is ALL OF THE ABOVE.
Explanation:
TITRATION is a type of volumetric analysis which is used for determining the concentration of solutions. In this process a specific volume of a solution is placed in a conical flask by means of a pipette and small quantities of a second solution is slowly added from a burette until the end point is reached. This is determined by a means of an indicator which shows a characteristic colour change.
During titration, the following precautions should be followed to avoid errors and maintain standardisation in the experiment.
--> Any air bubble in the burette and pipette must be removed during measurement
--> the burette tap should be tightened to avoid leakage.
--> Remove the funnel from the burette before taking any reading to avoid errors in reading the volume.
--> use the base solution such as Sodium Hydroxide Solution to rinse the burette after washing with soap and tap water:
• to remove any air bubble and fill it's tip
• to remove any residual liquid from the water and soap solution which may interfere with the results of the experiment.
• to check if the burette is in good condition.
Therefore all of the above options to the question are correct.
By how many times would you expect Al2(SO4)3 to depress the F.P of water compared to sucrose C12H22011 ?
Answer:
By how many times would you expect Al2(SO4)3 to depress the F.P of water compared to sucrose C12H22011 ?.
Explanation:
The freezing point of a pure solvent decreases further by adding a nonvolatile solute.
This is called depression in freezing point.
When an ionic solute is dissolved then the depression in the freezing point is proportional to the number of ions present in the solution.
In aluminum sulfate, there are five ions formed as shown below:
[tex]Al_2(SO_4)_3(aq)->2Al^3^+(aq)+3SO_4^2^-(aq)[/tex]
But sucrose is a covalent compound and it does not undergo dissociation.
Hence, aluminum sulfate decreases the freezing point of water by five times compared to sucrose.
Explanation:
How does a scientist form a hypothesis?
Explanation: The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. It is only at this point that researchers begin to develop a testable hypothesis.
(Unless you are creating an exploratory study, your hypothesis should always explain what you expect to happen)
If a hydrogen atom and a helium atom have the same kinetic energy:________
a. the wavelength of the hydrogen atom will be about 4 times longer than the wavelength of the helium atom.
b. the wavelength of the hydrogen atom will be about 2 times longer than the wavelength of the helium.
c. the wavelength of the hydrogen atom will be roughly equal to the wavelength of the helium atom.
d. the wavelength of the helium atom will be about 2 times longer than the wavelength of the hydrogen atom.
e. the wavelength of the helium atom will be about 4 times longer than the wavelength of the hydrogen atom.
Answer: If a hydrogen atom and a helium atom have the same kinetic energy then the wavelength of the hydrogen atom will be roughly equal to the wavelength of the helium atom.
Explanation:
The relation between energy and wavelength is as follows.
[tex]E = \frac{hc}{\lambda}\\[/tex]
This means that energy is inversely proportional to wavelength.
As it is given that energy of a hydrogen atom and a helium atom is same.
Let us assume that [tex]E_{hydrogen} = E_{helium} = E'[/tex]. Hence, relation between their wavelengths will be calculated as follows.
[tex]E_{hydrogen} = \frac{hc}{\lambda_{hydrogen}}[/tex] ... (1)
[tex]E_{helium} = \frac{hc}{\lambda_{helium}}[/tex] ... (2)
Equating the equations (1) and (2) as follows.
[tex]E_{hydrogen} = E_{helium} = E'\\\frac{hc}{\lambda_{hydrogen}} = \frac{hc}{\lambda_{helium}} = E'\\\lambda_{helium} = \lambda_{hydrogen} = E'[/tex]
Thus, we can conclude that if a hydrogen atom and a helium atom have the same kinetic energy then the wavelength of the hydrogen atom will be roughly equal to the wavelength of the helium atom.
g Calculate the number of grams of aluminum that is produced in 1.00 h by the electrolysis of molten AlCl3 if the electrical current is 10.0A.
Answer:
3.36 grams Al°(s)
Explanation:
Given AlCl₃(s), determine the mass (grams) of Al°(s) produced from electrolysis of Aluminum Chloride at 10.0 amps for 1.00 hour.
AlCl₃(s) + 378.3°F (=192.4°C) => Al⁺³(l) + 3Cl⁻(l)
formula wt. Al° = 27g/mol
Faraday Constant (F°) = 96,500 amp·sec
? grams Al°(s) = 10.0amps x (1 mole e⁻/96,500amp-sec) x (1 mole Al°(s)/3 mole e⁻) x (27g Al°(s)/1 mole Al°(s)) x 3,600 sec = 3.36 grams Al°(s)
The 3.36 grams of aluminum are produced in 1 hour by the electrolysis of molten AlCl₃ when 10A current is passed.
What is electrolysis?Electrolysis is a process that uses an electrical current to break chemical compounds. The electric current is passed through the substance to bring the chemical change by gain or loss of electrons.
The electrolysis of the aluminum chloride in the molten state is represented as:
AlCl₃ → Al³⁺ + 3Cl⁻
At cathode: Al³⁺ + 3e⁻ → Al (s)
Given, the current. I = 10 A and t = 1 hr = 3600 s
We know that the current is calculated from the equation: I = q/t
q = I× t
q = (10A) × (3600s)
q = 36 × 10³ C
We know, 96500 C of the charge has electrons = 1 mol
36 × 10³ C of the charge has electrons = 0.373 mol
3 moles of electrons required to produce aluminum = 1 mol
0.373 mol of electrons will produce aluminum = 0.373/3 = 0.124 mol
We know that, the mass of one mole of Al = 27g
The mass of 0.124 mol of Al = 27 × 0.124 = 3.36 g
Therefore, the aluminum produced in 1 hour by the electrolysis of molten AlCl₃ is equal to 3.36 grams.
Learn more about electrolysis, here:
https://brainly.com/question/12054569
#SPJ5
Draw the Lewis structure for the polyatomic hydronium H3O cation. Be sure to include all resonance structures that
Answer:
Lewis structure of Hydronium ion is shown below :
Explanation:
Lewis structure : It is a representation of valence electrons on the atoms in a molecule
Here , Hydronium ion is given , which contains 1 atom of oxygen and 3 atoms of hydrogen .
Oxygen has a total of 6 valence electrons and hydrogen contains 1 valence electron .
Oxygen share its 3 valence electrons with 3 hydrogen atoms and left with 3 valence electrons. From these three valence electrons of oxygen atom two electrons will be shown as a pair of electrons on oxygen atom but a single electron can not be shown . So , to simplify this, one positive charge is shown overall .
Resonance structure will be same as the hybrid structure because all three atoms are same , that is hydrogen .
What mass of NaOH would need to be dissolved in 500.0 mL of water to produce a solution with a pH of 12.40
Answer:
0.5024 g
Explanation:
Step 1: Calculate the concentration of H⁺
We will use the definition of pH.
pH = -log [H⁺]
[H⁺] = antilog -pH = antilog -12.40 = 3.981 × 10⁻¹³ M
Step 2: Calculate the concentration of OH⁻
We will use the ionic product of water expression.
[H⁺] [OH⁻] = 10⁻¹⁴
[OH⁻] = 10⁻¹⁴/[H⁺] = 10⁻¹⁴/3.981 × 10⁻¹³ = 0.02512 M
Step 3: Calculate the initial concentration of NaOH
NaOH is a strong base and the molar ratio of NaOH to OH⁻is 1:1. Thus, the initial concentration of NaOH is 1/1 × 0.02512 M = 0.02512 M.
Step 4: Calculate the moles of NaOH
We will use the definition of molarity.
M = moles of NaOH/liters of solution
moles of NaOH = M × liters of solution
moles of NaOH = 0.02512 mol/L × 0.5000 L = 0.01256 mol
Step 5: Calculate the mass of 0.01256 moles of NaOH
The molar mass of NaOH is 40.00 g/mol.
0.01256 mol × 40.00 g/mol = 0.5024 g
What molecule is this
Answer:
That is a " ball and stick " model which represents carbon compounds.
Explanation:
This is the answer. Hope it helps you find what you're looking for.
Please help meee! Chemistry!
P=18000000/6 zeros. not sure how to do rest
Explanation:
a) [tex]n = \dfrac{PV}{RT} = \dfrac{(1.8×10^7\:\text{Pa})(3\:\text{L})}{(8310\:\text{L•Pa/mol•K})(300\:\text{K})}[/tex]
[tex]\:\:\:\:\:\:\:= 21.7\:\text{mol}[/tex]
b) [tex]P = \dfrac{nRT}{V}[/tex]
[tex]\:\:\:\:\:\:\:\:\:= \dfrac{(50\:\text{mol})(8310\:\text{L•Pa/mol•K})(300\:K)}{(3\:L)}[/tex]
[tex]\:\:\:\:\:\:\:\:\:=4.2×10^7\:\text{Pa}[/tex]
An unknown weak acid with a concentration of 0.530 M has a pH of 5.600. What is the Ka of the weak acid
Answer:
Ka = 3.45x10⁻⁶
Explanation:
First we calculate [H⁺], using the given pH:
pH = -log[H⁺][H⁺] = [tex]10^{-pH}=10^{-5.6}[/tex] [H⁺] = 2.51x10⁻⁶ MTo solve this problem we can use the following formula describing a monoprotic weak acid:
[H⁺] = [tex]\sqrt{C*Ka}[/tex]We input the data that we already know:
2.51x10⁻⁶ = [tex]\sqrt{0.530*Ka}[/tex]And solve for Ka:
Ka = 3.45x10⁻⁶If I have 25g of Sodium, how much Sodium Chloride will I theoretically create?
O 50g NaCl
0 58.3g NaCl
O 63.7g Naci
0 35.4g NaCl
Answer:
64 g
Explanation:
Step 1: Write the balanced equation
2 Na + Cl₂ ⇒ 2 NaCl
Step 2: Calculate the moles corresponding to 25 g of Na
The molar mass of Na is 22.98 g/mol.
25 g × 1 mol/22.98 g = 1.1 mol
Step 3: Calculate the moles of NaCl formed from 1.1 moles of Na
The molar ratio of Na to NaCl is 2:2. The moles of NaCl formed are 2/2 × 1.1 mol = 1.1 mol.
Step 4: Calculate the mass corresponding to 1.1 moles of NaCl
The molar mass of NaCl is 58.44 g/mol.
1.1 mol × 58.44 g/mol = 64 g
The speed of sound depends on the __?_____ and ____?____ of the medium through which it travels
Answer:
Density and rigidity
Which one of the following molecule is planer?
a. NF3 c. PH3
b. BH3 d. NCl3
Answer:
option a
hope helps you
have a great day
this was in my science test just want to see if anyone knows?? the wording is so confusing
the relative atomic mass of an element compares the mass of an atom of an element with the mass of an atom of.......
Answer:
the molar mass of the element
Plz!!!!Plz!!!!!help help
Answer:
false
Explanation:
category 1 is the worst
An oxygen atom with three missing electrons is released near the Van de Graaff generator. What is its energy in MeV at this distance
Answer:
(a) The potential near its surface is 45 * 10^6 V.
(b) The distance from which its center is the potential 1.00 MV is 45 m.
(c) Its energy in MeV when the atom is at the distance found in part b is 132 MeV.
Explanation:
Note: This question is not complete. The complete question is therefore provided before answering the question.
A research Van de Graaff generator has a 2.00-m diameter metal sphere with a charge of 5.00 mC on it. (a) What is the potential near its surface?
(b) At what distance from its center is the potential 1.00 MV?
(c) An oxygen atom with three missing electrons is released near the Van de Graaff generator. What is its energy in MeV when the atom is at the distance found in part b?
The explanation of the answer is now provided as follows:
(a) What is the potential near its surface?
Q = Charge on the generator = 5 mC = 5 * 10^(-3)C
r = Sphere radius = 2 / 2 = 1 m
k = Constant of the electric force = 9 * 10^(9) N . m^2 / C^2
Therefore, the electric potential of a point charge can be calculated as follows:
V = kQ / r
V = (9 * 10^9 * 5 * 10^(-3)) / 1 = 45 * 10^6 V
Therefore, the potential near its surface is 45 * 10^6 V.
(b) At what distance from its center is the potential 1.00 MV?
This implies the distance where the potential is 1 MV.
Since the electric potential of a point charge is as follows:
V = kQ / r
Therefore, we can solve for r and estimate it as follows:
R = kQ / V = (9 * 10^9 * 5 * 10^(-3)) / 1 * 10^6 = 45 m
Therefore, the distance from which its center is the potential 1.00 MV is 45 m.
(c) An oxygen atom with three missing electrons is released near the Van de Graaff generator. What is its energy in MeV when the atom is at the distance found in part b?
The link between the potential difference and electrical potential energy can be stated as follows:
ΔV = ΔU / q
Therefore, we have:
ΔU = qΔV = q(Va - Vb) = 3 * (45 – 1) = 132 MeV
Therefore, its energy in MeV when the atom is at the distance found in part b is 132 MeV.
Predict the products of each reaction, and whether the solution at equilibrium will be acidic, basic, or neutral.1. P4O10 + 6H2O (l)---->2. Na2O + H2O(l) ------>3. N2O5 + 3H2O (l)------>
Answer:
For 1: The product is phosphoric acid and the solution is acidic in nature.
For 2: The product is sodium hydroxide and the solution is basic in nature.
For 3: The product is nitric acid and the solution is acidic in nature.
Explanation:
For the given options:
(1): When diphosphorus pentoxide reacts with water, it leads to the formation of phosphoric acid, which makes the solution acidic in nature.
The chemical equation for the reaction follows:
[tex]P_4O_{10}+6H_2O(l)\rightarrow 4H_3PO_4(aq)[/tex]
(2): When disodium oxide reacts with water, it leads to the formation of sodium hydroxide, which makes the solution basic in nature.
The chemical equation for the reaction follows:
[tex]Na_2O+H_2O(l)\rightarrow 2NaOH(aq)[/tex]
(3): When dinitrogen pentoxide reacts with water, it leads to the formation of nitric acid, which makes the solution acidic in nature.
The chemical equation for the reaction follows:
[tex]3N_2O_5+3H_2O(l)\rightarrow 6HNO_3(aq)[/tex]
Consider reaction AgCIO3(aq)+Mgl2(aq)
Answer:
the product is Mg(Clo3)2 + AgI
A cation is a
negative electrode.
negatively charged ion.
positively charged ion.
positive electrode
Answer:
Each electrode attracts ions that are of the opposite charge. Positively charged ions, or cations, move toward the electron-providing cathode, which is negative; negatively charged ions, or anions, move toward the positive anode.
Di- n- pentyl ether can be converted to 1- bromopentane by treatment with HBr through essentially a(n) ________ mechanism.
Answer:
SN1 mechanism
Explanation:
The mechanism of this reaction is shown in the image attached.
The Di- n- pentyl ether is first protonated. The CH3(CH2)4OH is now a good leaving group as shown.
The attack of the bromide ion on the cation formed completes the mechanism to yield 1- bromopentane as shown in the mechanism.
Gaseous methane will react with gaseous oxygen to produce gaseous carbon dioxide and gaseous water . Suppose 9.6 g of methane is mixed with 64.9 g of oxygen. Calculate the maximum mass of water that could be produced by the chemical reaction. Round your answer to significant digits.
Answer:
21.6 g
Explanation:
The reaction that takes place is:
CH₄ + 2O₂ → CO₂ + 2H₂OFirst we convert the given masses of both reactants into moles, using their respective molar masses:
9.6 g CH₄ ÷ 16 g/mol = 0.6 mol CH₄64.9 g O₂ ÷ 32 g/mol = 2.03 mol O₂0.6 moles of CH₄ would react completely with (2 * 0.6) 1.2 moles of O₂. As there are more O₂ moles than required, O₂ is the reactant in excess and CH₄ is the limiting reactant.
Now we calculate how many moles of water are produced, using the number of moles of the limiting reactant:
0.6 mol CH₄ * [tex]\frac{2molH_2O}{1molCH_4}[/tex] = 1.2 mol H₂OFinally we convert 1.2 moles of water into grams, using its molar mass:
1.2 mol * 18 g/mol = 21.6 gIn water, Vanillin, C8H8O3, has a solubility of 0.070 moles of vanillin per liter of solution at 25C. What will be produced if 5.00 g of vanillin are added to 1 L of water at 25 C?
Answer:
The full amount (5.00 g) will be dissolved in 1 L of water at 25°C.
Explanation:
The molecular weight (MW) of Vanillin (C₈H₈O₃) is calculated from the chemical formula as follows:
MW(C₈H₈O₃) = (12 g/mol x 8) + (1 g/mol x 8) + (16 g/mol x 3) = 152 g/mol
If 0.070 mol of C₈H₈O₃ are soluble per liter of water at 25°C, the maximum mass that can be dissolved in 1 L is:
0.070 mol x 152 g/mol = 10.64 g
Since 5.00 g is lesser than the maximum amount that can be dissolved (10.64 g), the added amount will be completely dissolved in 1 L of water at 25°C.
Vocabulary: dipole, dipole-dipole force, dipole-induced dipole force, electronegativity, intermolecular force, ionic bond, London dispersion force, molecule, nonpolar, nonpolar covalent bond, partial charges, polar, polar covalent bond, valence electron Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1. A big bully is having a tug-of-war with a small child. There is a ball attached to the middle of the rope. Toward whom will the ball move
Answer:
Towards the big bully
Explanation:
If a big bully and a small child are involved in a thug of war, it is clear that the bully is stronger than the child and he/she will pull the rope used in the thug of war with a greater force.
By so doing, the ball attached at the centre of the rope will naturally be drawn towards the stronger bully.
Cal is titrating 57.7 mL of 0.311 M HBr with 0.304 M Ba(OH)2. How many mL of Ba(OH)2 does Cal need to add to reach the equivalence point?
Answer:
118.06 mL
Explanation:
The neutralization reaction between HBr (acid) and Ba(OH)₂ (base) is the following:
2HBr + Ba(OH)₂ → BaBr₂ + 2H₂O
According to the equation, 2 moles of HBr react with 1 mol Ba(OH)₂. Thus, at the equivalence point the moles of acid and base react completely:
2 moles HBr = 1 mol Ba(OH)₂
We can replace the moles by the product of the molar concentration (M) and volume (V):
2 x (M HBr) x (V HBr) = M Ba(OH)₂ x V Ba(OH)₂
Now, we introduce the data in the equation to calculate the volume in mL of Ba(OH)₂:
V Ba(OH)₂ = (2 x (M HBr) x (V HBr))/M Ba(OH)₂
= (2 x 0.311 M x 57.7 mL)/(0.304 M)
= 118.06 mL
Therefore, 118 mL of Ba(OH)₂ are needed.
I need help with the practice question at the bottom. Thank you.
Explanation:
For this question, we apply the equation: Q = mCp AT Where m is the mass of the substance, Cp
is its specific heat capacity and AT is the
temperature change. Q = 896 x 0.45 x (5-94)
Q = -35884.8 Joules
So about -36 kilojoules of heat is released.
mark as brainliest
In some sheep, the presence of horns is produced by an autosomal allele that is dominant in males and recessive in females.A horned female is crossed with a hornless male. One of the resulting F1 females is crossed with a hornless male. What proportion of the male and female progeny from this cross will have horns?(5 marks)
Answer:
1/2 f1 will cross
Explanation:
answer it