Answer:
It results in no solution.
Step-by-step explanation:
If you subtract x on both sides, this will leave you with 0 ≠ 3. The result is no solution. This is why it is contradictory.
The weight of an object above the surface of the Earth varies inversely with the square of the
distance from the center of the Earth. If a body weighs 50 pounds when it is 3,960 miles from
Earth's center, what would it weigh if it were 4,015 miles from Earth's center?
Answer:
weight =48.71228786pounds
Step-by-step explanation:
[tex]w = \frac{k}{ {d}^{2} } \\ 50 = \frac{k}{ {3960}^{2} } \\ \\ k = 50 \times {3960}^{2} \\ k = 50 \times 15681600 \\ k = 784080000 \\ \\ w = \frac{784080000}{ {d}^{2} } \\ w = \frac{784080000}{16120225} \\ \\ w = 48.71228786 \\ w = 48.7pounds[/tex]
If a body weighs 50 pounds when it is 3,960 miles from Earth's center, it would weigh approximately 48.547 pounds if it were 4,015 miles from Earth's center, according to the inverse square law formula.
We know the inverse square law formula:
W₁ / W₂ = D²₂ / D²₁
Where W₁ is the weight of the body at the initial distance D₁, and W₂ is the weight at the final distance D₂.
So we have,
W₁ = 50
D₁ = 3,960
D₂ = 4015
We know that the body weighs 50 pounds when it is 3,960 miles from Earth's center,
So we can plug in those values as follows:
50 / W₂ = (4,015)²/ (3,960)²
To solve for W₂, we can cross-multiply and simplify as follows:
W₂ = 50 x (3,960)² / (4,015)²
W₂ = 50 x 15,681,600 / 16,120,225
W₂ = 48.547 pounds (rounded to three decimal places)
Therefore, if the body were 4,015 miles from Earth's center, it would weigh approximately 48.547 pounds.
To learn more about inverse square law visit:
https://brainly.com/question/30562749
#SPJ2
For a standard normal distribution, find:
P(z > c) = 0.058
Find c.
Answer:
1.572
Step-by-step explanation:
For a standard normal distribution,
P(z > c) = 0.058
To obtain C ; we find the Zscore corresponding to the proportion given, which is to the right of the distribution ;
Using technology or table,
Zscore equivalent to P(Z > c) = 0.058 is 1.572
Hence, c = 1.572
(-2x) (x-3) answer please
Answer:
−2x^2+6x
Explanation:
You just have to distribute meaning you have to multiply -2x to the equation.
5. Given a test in which there is overlap of the test results for diseased and non-diseased individuals (e.g., normal individuals are found who have test results ranging in value from 8 to 15, and diseased individuals are found who have test results ranging in value from 12 to 25, so that in the range of values 12 to 15 there are both normal and diseased individuals), if the current cutoff value lies in the range of this overlap and you move the cutoff value toward the normal population (lower numbers in this example), the true negative numbers will _____________________ . (5 points)
Answer:
True negative numbers are considered as diseased individual. So, the true negative numbers will increase
Step-by-step explanation:
True negative numbers are considered as diseased individual. So, the true negative numbers will increase.
prove:
sin²A-cos²B=sin²B-cos²A
Step-by-step explanation:
thwashm m GB DC GM 3hka it g feeds ygzdkzyzuzjz indin, mi, hn zbe
Answer:
Solution given:
L.H.S
sin²A-cos²B
we havesin²A=1-cos²A and Cos²B=1-sin²B
nowreplacing value
1-cos²A-(1-sin²B)
open bracket1-cos²A-1+sin²B
keep together like terms1-1+sin²B-Cos²A
=sin²B-Cos²A
R.H.S
proved.What is the equation of the line that passes through (-3,-1) and has a slope of 2/5? Put your answer in slope-intercept form
A: y= 2/5x -1/5
B: y= 2/5x +1/5
C: y= -2/5x -1/5
Answer:
y = 2/5x + 1/5
Step-by-step explanation:
y = 2/5x + b
-1 = 2/5(-3) + b
-1 = -6/5 + b
1/5 = b
I need help plz!!
8.57396817...•5/8 is rational or irrational?
Answer:
Irrational
Step-by-step explanation:
Any non-zero rational number multiplied by an irrational number will be irrational. We can rewrite this as (8.57... * 5) / 8, but we have no idea how to make 8.57... * 5 rational, or expressed as the quotient of two integers.
Which expression is equivalent to (b^n)m?
Step-by-step explanation:
By the law of exponent :
(a^n)^m=a^n×m
Option C
b^n×m is the correct answer...
hope it helps
Use the discriminant to determine the number of solutions to the quadratic equation −40m2+10m−1=0
From the analysis of the discriminant, you obtain that the quadratic function has no real solutions.
In first place, you must know that the roots or solutions of a quadratic function are those values of x for which the expression is 0. This is the values of x such that y = 0. That is, f (x) = 0.
Being the quadratic function f (x)=a*x² + b*x + c, then the solution must be when: 0 =a*x² + b*x + c
The solutions of a quadratic equation can be calculated with the quadratic formula:
[tex]Solutions=\frac{-b+-\sqrt{b^{2} -4*a*c} }{2*a}[/tex]
The discriminant is the part of the quadratic formula under the square root, that is, b² - 4*a*c
The discriminant can be positive, zero or negative and this determines how many solutions (or roots) there are for the given quadratic equation.
If the discriminant:
is positive: the quadratic function has two different real solutions. equal to zero: the quadratic function has a real solution. is negative: none of the solutions are real numbers. That is, it has no real solutions.In this case, a= -40, b=10 and c= -1. Then, replacing in the discriminant expression:
discriminant= 10² -4*(-40)*(-1)
Solving:
discriminant= 100 - 160
discriminant= -60
The discriminant is negative, so the quadratic function has no real solutions.
Consider the probability that no more than 28 out of 304 students will not graduate on time. Choose the best description of the area under the normal curve that would be used to approximate binomial probability.
a. Area to the right of 27.5
b. Area to the right of 28.5
c. Area to the left of 27.5
d. Area to the left of 28.5
e. Area between 27.5 and 28.5
Solution :
Here the probability that exactly 28 out of 304 students will not graduate on time. That is
P (x = 28)
By using the normal approximation of binomial probability,
[tex]$P(x=a) = P(a-1/2 \leq x \leq a+1/2)$[/tex]
∴ [tex]$P(x=28) = P(28-1/2 \leq x \leq 28+1/2)$[/tex]
[tex]$=P(27.5 \leq x \leq 28.5)$[/tex]
That is the area between 27.5 and 28.5
Therefore, the correct option is (e). Area between 27.5 and 28.5
HELP WILL GIVE BRAINLYIST
Answer:
The parent cubic function has been vertically stretched by a factor of 4.
Equation:G(x)= 4[tex]\sqrt[3]{x}[/tex]
Answer: Option B
OAmalOHopeO
Solve this inequality: x+ 4< 16
Answer:
x < 12
Step-by-step explanation:
subtract 4 from both sides:
x + 4 < 16
- 4 -4
x < 12
Answer:
x<4
Step-by-step explanation:
x+4 <16
x < 16
4
x<4
I hope this will help you
Question 3 plz show ALL STEPS
Answer:
7,0, -1 and -2
Step-by-step explanation:
Just substitute the values,
a. f(g(7))=f(-1) [g(7)=-1 given]
=7 [f(-1)=7 given]
b.f(g(-1))=f(3)=0 [g(-1)=3 Given]
c.g(f(-1))=g(7)=-1 [f(-1)=7 given]
d.g(f(7))=g(5)=-2 [f(7)=g(5) given]
Let x represent the average annual salary of college and university professors (in thousands of dollars) in the United States. For all colleges and universities in the United States, the population variance of x is approximately σ2
= 47.1. However, a random sample of 15 colleges and universities in Kansas showed that x has a sample variance σ2 = 83.2. Use a 5% level of significance to test the claim that the variance for colleges and universities in Kansas is greater than 47.1. Use the traditional method. Assume that a simple random sample is selected from a normally distributed population.
a. Check requirements.
b. Establish H0 and H1 and note the level of significance.
c. Find the sample test statistic.
d. Find Critical Value.
e. Conclude the test and interpret results.
Answer:
Kindly check explanation
Step-by-step explanation:
Given that :
The hypothesis :
H0 : σ²= 47.1
H1 : σ² > 47.1
α = 5% = 0.05
Population variance, σ² = 47.1
Sample variance, s² = 83.2
Sample size, n = 15
The test statistic = (n-1)*s²/σ²
Test statistic, T = [(15 - 1) * 83.2] ÷ 47.1
Test statistic = T = [(14 * 83.2)] * 47.1
Test statistic = 1164.8 / 47.1
Test statistic = 24.73
The degree of freedom, df = n - 1 ; 10 = 9
Critical value (0.05, 9) = 16.92 (Chisquare distribution table)
Reject H0 ; If Test statistic > Critical value
Since ; 24.73 > 16.92 ; Reject H0 and conclude that variance is greater.
Please help me to find this answer
Answer:
37
Step-by-step explanation:
Tan(B) = 6/8
B= arctan(3/4)=37
At a time hours after taking a tablet, the rate at which a drug is being eliminated r(t)= 50 (e^-01t - e^-0.20t)is mg/hr. Assuming that all the drug is eventually eliminated, calculate the original dose.
Answer:
2500 mg
Step-by-step explanation:
Since r(t) is the rate at which the drug is being eliminated, we integrate r(t) with t from 0 to ∞ to find the original dose of drug, m. Since all of the drug will be eliminated at time t = ∞.
Since r(t) = 50 (e^-01t - e^-0.20t)
m = ∫₀⁰⁰50 (e^-01t - e^-0.20t)
= 50∫₀⁰⁰(e^-01t - e^-0.20t)
= 50[∫₀⁰⁰e^-01t - ∫₀⁰⁰e^-0.20t]
= 50([e^-01t/-0.01]₀⁰⁰ - [e^-0.20t/-0.02]₀⁰⁰)
= 50(1/-0.01[e^-01(∞) - e^-01(0)] - {1/-0.02[e^-0.02(∞) - e^-0.02(0)]})
= 50(1/-0.01[e^-(∞) - e^-(0)] - {1/-0.02[e^-(∞) - e^-(0)]})
= 50(1/-0.01[0 - 1] - {1/-0.02[0 - 1]})
= 50(1/-0.01[- 1] - {1/-0.02[- 1]})
= 50(1/0.01 - 1/0.02)
= 50(100 - 50)
= 50(50)
= 2500 mg
find the greatest number than divides 45 60 75 without leaving remainder
Answer:
15
Step-by-step explanation:
15 is the greatest number that divides 45 60 75 without leaving remainder
Answer:
15
Step-by-step explanation:
Let write the factors of each number:
45: (1,3,5,9,15,45)
60:(1,2,3,4,5,6,10,12,15,20,30,60)
75:(1,3,5,15,15,75).
The greatest common factor is 15. So the answer is 15.
Which of the two functions below has the smallest minimum y-value?
f(x) = 4(x - 6)4 + 1
g(x) = 2x3 + 28
O A. g(x)
B. f(x).
C. The extreme minimum y-value for f(x) and g(x) is --
D. There is not enough information to determine
Answer:
Answer A
Step-by-step explanation:
[tex]\displaystyle \lim_{n \to -\infty} (3x^3+28)=-\infty\\\\minimum\ of \ f(x)=6\\\\Answer\ A[/tex]
please help me with geometry
Answer:
x = 7
Explaination:
ABC = 40°
and BD bisects the angle so ABD = 20°
so 3x-1=20
solving for x gets us
x = 7
consider a study conducted to determine the average protein intake among an adult population. Suppose that a confidence level of 85% is required with an interval about 10 units wide. if a preliminary data indicates a standard deviation of 20g, what sample of adults should be selected for the study?
Answer:
made up of about 20 common amino acids. The proportion of these amino acids varies as a characteristic of a given protein, but all food proteins—with the exception of gelatin—contain some of each. Amino nitrogen accounts for approximately 16% of the weight of proteins. Amino acids are required for the synthesis of body protein and other important nitrogen-containing compounds, such as creatine, peptide hormones, and some neurotransmitters. Although allowances are expressed as protein, a the biological requirement is for amino acids.
Proteins and other nitrogenous compounds are being degraded and resynthesized continuously. Several times more protein is turned over daily within the body than is ordinarily consumed, indicating that reutilization of amino acids is a major feature of the economy of protein metabolism. This process of recapture is not completely efficient, and some amino acids are lost by oxidative catabolism. Metabolic products of amino acids (urea, creatinine, uric acid, and other nitrogenous products) are excreted in the urine; nitrogen is also lost in feces, sweat, and other body secretions and in sloughed skin, hair, and nails. A continuous supply of dietary amino acids is required to replace these losses, even after growth has ceased.
Amino acids consumed in excess of the amounts needed for the synthesis of nitrogenous tissue constituents are not stored but are degraded; the nitrogen is excreted as urea, and the keto acids left after removal of the amino groups are either utilized directly as sources of energy or are converted to carbohydrate or fat.
Which of the following show the factored equivalent of
f(x) = (2x^2 +7x + 3)(x - 3) and its zeros?
Answer:
the answer is "D"
(2x+1)(x+3)(x-3) //// -3,-.5,3
Step-by-step explanation:
Factored Form: y= (2x+1)(x+3)(x-3)
Answer:
D
Step-by-step explanation:
[tex]f(x) = (2x^2 +7x + 3)(x - 3)[/tex] is factored into: [tex]f(x)= (2x+1)(x+3)(x-3)[/tex]
That takes out the choices B and C.
The roots are -0.5, 3, and -3.
Therefore, the answer is D.
I hope this helps!
pls ❤ and mark brainliest pls!
Please help!! The question is the image below VVV
Answers are also images after the picture.
Step-by-step explanation:
When adding two fractions with different bases (bottom numbers), we can use this function:
[tex]\frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}[/tex]
So, to apply this to the given question:
[tex]\frac{x+3}{x-6} +\frac{1}{x-2}[/tex]
= [tex]\frac{(x+3)(x-2)+(1)(x-6)}{(x-6)(x-2)}[/tex]
From the given answers, we see we don't need to simplify the resulting base number, which makes things a lot easier.
Multiply top using: (a + b)(c + d) = ac + ad + bc + bd= [tex]\frac{[(x*x) + (x*-2)+(3*x)+(3*-2)]+(x-6)}{(x-6)(x-2)}[/tex]
Simplify.= [tex]\frac{[x^2 -2x+3x-6]+(x-6)}{(x-6)(x-2)}[/tex]
Remove parentheses.= [tex]\frac{x^2 -2x+3x-6+x-6}{(x-6)(x-2)}[/tex]
Simplify again.= [tex]\frac{x^2 +2x-12}{(x-6)(x-2)}[/tex]
Now if we wanna be a little smart, we can see that from here, the only answer that has x^2 and something else, is A. But, just for show, lets factor.
Factor.= [tex]\frac{x(x+2)}{(x-6)(x-2)}[/tex]
Answer:
A) [tex]\frac{x(x+2)}{(x-6)(x-2)}[/tex]
prove that tan² theta + cot² theta = sec² theta cosec² theta- 2
Step-by-step explanation:
Tan² theta = sec² theta - 1
Cot² theta = cosec² theta - 1
Tan²+Cot² = sec²-1+cosec²-1
= sec²+cosec²-2
Please find attached herewith the solution of your question.
If you have any doubt, please comment.
Factorize:
625a^4 + 4b^4
(625 • (a4)) + 22b4
54a4 + 22b4
Final result :
625a4 + 4b4
Which of the following fractions is closest to 0? 5/12 , 2/3, 5/6,3/4
Answer:
5/12
Step-by-step explanation:
5/12 , 2/3, 5/6,3/4
Get a common denominator of 12
5/12, 2/3 *4/4, 5/6*2/2, 3/4 *3/3
5/12, 8/12, 10/12, 9/12
The numerator closest to 0 is the fraction closest to 0
5/12
- 18 = -3x + 6
Plz help
Answer:
8 =x
Step-by-step explanation:
- 18 = -3x + 6
Subtract 6 from each side
-18-6 = -3x+6-6
-24 = -3x
Divide each side by -3
-24/-3 = -3x/-3
8 =x
Answer:
x= 8
Step-by-step explanation:
[tex]\sf{}[/tex]
=> -3x+6 = -18
=> -3x+6-6= -8-6
=> -3x= -24
=> x= 8
Hello I'm new can anyone help me with this question?
Thank you so much! <3 xoxo
if x and y are linear pair of angel then x +y=
Answer: x + y = 180²
Step-by-step explanation:
A linear pair is a pair of adjacent, supplementary angles.
Adjacent means next to each other.
Supplementary means that the measures of the two angles add up to equal 180 degrees.
Therefore, by definition, if x and y are linear pairs of angles, then x + y = 180.
I need help please
Don’t skip the questions if you know the answer please I need the answers as soon as possible!!
y=x²-10x-7
a>0 so we will be looking for minimum
x=-b/2a=10/2=5
y=25-50-7=-32
Answer: (5;32)
y=-4x²-8x+1
а<0 so we will be looking for maximum
х=-b/2a=8/-8=-1
у=4+8+1=13
Maximum point (-1;13)
what is the volume of the container