The set of points that represent the intersection of the curve of vector function F and circle C is
{(4+10cos(t), 4+10cos(t), 16+40cos(t)) | t ranges from 0 to 2π}.
We have,
Vector function F = (y + 2x, 2x + 5z, 7y + 8x)
C is the circle with radius 5, center at (2,0,0), in the plane x = 2
C is oriented counterclockwise as viewed from the origin (0,0,0)
The vector function F represents a three-dimensional curve in space.
The circle C is a two-dimensional object in space, lying in the plane x = 2 and centered at (2,0,0) with a radius of 5. It is also oriented counterclockwise as viewed from the origin (0,0,0).
To find the intersection of vector function curve F and circle C, we can substitute the equation of the circle into the equation of the curve and solve for the parameter(s) that satisfy the equation. However, since the equation of the circle is given in terms of x only, we can simplify the equation of the curve by substituting y = 0 and z = 0:
F = (2x, 2x, 8x)
Now, we can substitute x = 2 + 5cos(t) and y = 5sin(t) (the parameterization of the circle C in the plane x = 2) into the equation of the curve F:
F = (2(2+5cos(t)), 2(2+5cos(t)), 8(2+5cos(t)))
= (4+10cos(t), 4+10cos(t), 16+40cos(t))
Thus, the intersection of vector function curve F and circle C is given by the set of points:
{(4+10cos(t), 4+10cos(t), 16+40cos(t)) | t in [0, 2π)}
Note- that the parameter t represents the angle of rotation around circle C, and ranges from 0 to 2π to cover the entire circle.
To know more about the "vector function": https://brainly.com/question/28479805
#SPJ11
I need help solving this question:
Answer:
The answer is letter D.
Step-by-step explanation:
Ye
Answer:
The answer is C
x -10 < -20
x < -20 + 10
x< -10
The sign won't change to the other side because the variable we were asked to find is in the positive form.
At the end of the reaction, Marco finds that the mass of the contents of the
beaker is 247 g. He repeats the experiment and gets the same result.
a Has he made a mistake?
Suggest why Marco got this result. how the
b
Answer: To determine if Marco has made a mistake, we would need to know the expected mass of the contents of the beaker before the reaction took place. If the expected mass was 247 g or close to it, then Marco may not have made a mistake.
However, if the expected mass was significantly different from 247 g, then it is possible that Marco made a mistake in his experiment. It could be a measurement error, a calculation error, or a procedural error.
There are several reasons why Marco may have obtained a mass of 247 g at the end of the reaction. One possibility is that the reaction produced a product that was relatively volatile, and some of it was lost during the experiment. Another possibility is that Marco did not completely dry the product before weighing it, which could result in a higher measured mass due to the presence of residual moisture.
To determine the exact reason why Marco obtained a mass of 247 g, further investigation and experimentation would be needed.
Step-by-step explanation:
find the area and circumference of the circle below.round your answers to the nearest hundredth
Answer:
Step-by-step explanation:
The area of given circle is 28.27 sq.m. The circumference of given circle is 18.85 m (rounded to the nearest hundredth).
Give a short note on Circumference?The circumference of a circle is the distance around the edge or boundary of the circle. It is also the perimeter of the circle. The circumference is calculated using the formula:
C = 2πr
where "C" is the circumference, "π" is a mathematical constant approximately equal to 3.14159, and "r" is the radius of the circle.
The circumference of a circle is proportional to its diameter, which is the distance across the circle passing through its center. Specifically, the circumference is equal to the diameter multiplied by π, or:
C = πd
where "d" is the diameter of the circle.
Given that the diameter of the circle is 6m.
We know that the radius (r) of the circle is half of the diameter (d), so:
r = d/2 = 6/2 = 3m
The area (A) of the circle is given by the formula:
A = πr²
Substituting the value of r, we get:
A = π(3)² = 9π ≈ 28.27 sq.m (rounded to the nearest hundredth)
The circumference (C) of the circle is given by the formula:
C = 2πr
Substituting the value of r, we get:
C = 2π(3) = 6π ≈ 18.85 m (rounded to the nearest hundredth)
To know more about area visit:
https://brainly.com/question/28642423
#SPJ1
The complete question is:
you walk 1 1.5 miles to the gym and then another 1 1/10 miles to a basketball court. How many yards did you walk in all?
You walked a total of 4576 yards to get to the basketball court.
What is unit conversion?In order to represent amounts in a more practical or acceptable unit of measurement, unit conversions are crucial for addressing mathematical issues. In this task, for instance, we were given distances in miles but had to translate them into yards to get the overall distance travelled. We wouldn't be able to compare or combine values that are stated in various units without unit conversions. When working with formulae or equations that contain physical quantities with multiple units, unit conversions are also crucial.
Given that, the distance walked is 1.5 miles and 1 1/10 miles.
Coverting into yards we have:
1.5 miles is equal to 1.5 x 1760 = 2640 yards
1 1/10 miles is equal to (1 + 1/10) x 1760 = 1936 yards
Total distance is:
2640 + 1936 = 4576 yards
Hence, you walked a total of 4576 yards to get to the basketball court.
Learn more about unit conversions here:
https://brainly.com/question/19420601
#SPJ1
Tyra will flip a red and yellow counter and spin a spinner labeled A-E. If Tyra flips the counter and spins the spinner, then list only the outcomes in which a red counter and a vowel are spun. (Select all that apply)
red, A
red, E
yellow, A
yellow, E
red, B
There are two possible outcomes where a red counter and a vowel are spun: a)red, A and b) red, E.
To see why, we can make a table listing all the possible outcomes of flipping a red or yellow counter and spinning a spinner labeled A-E:
A B C D E
Red A B C D E
Yellow A B C D E
We can then circle the outcomes that satisfy the condition of spinning a red counter and a vowel: red, A and red, E.
Therefore, the selected outcomes are:
red, A
red, E
For more questions like Outcomes click the link below:
https://brainly.com/question/31011919
#SPJ11
Please some help me
Answer:
x=4/7
Step-by-step explanation:
To start, use the distributive property and multiply 2 by what is in the parenthesis. Do 2x3x as well as 2x-1. This will get you 6x-2 on the left side. On the right side, since there is a minus sign, change the x to -x and 3 to -3. You will ultimately get 6x-2=5-x-3. To solve this, you must isolate the variable by using inverse operations. The final answer is 4/7.
1 0 6
0 1 1
0 0 0
Find the solution(s) to the system, if it exists. State the solution as a point (be sure to use parentheses), use parameter(s) s and t if needed. If the system is inconsistent, then state no solution.
The system has infinitely many solutions, which can be written as (x, y, z) = (1 - 60s, -10 + 600s, s) where s is a parameter.
To solve the system of equations:
1x + 0y + 60z = 1
1x + 10y + 0z = 0
0x + 0y + 0z = 0
The third equation is an identity, implying that it does not give us any new information. The first two equations can be used to solve for x, y, and z:
From the first equation, we get x = 1 - 60z
From the second equation, we get y = 0 - 10x = -10(1 - 60z) = -10 + 600z
Therefore, the solution to the system can be written as a point in terms of z as:
(x, y, z) = (1 - 60z, -10 + 600z, z)
Since z can take on any value, there are infinitely many solutions to the system, which can be parameterized as:
(x, y, z) = (1 - 60s, -10 + 600s, s) where s is a parameter.
he system has infinitely many solutions, which can be written as (x, y, z) = (1 - 60s, -10 + 600s, s) where s is a parameter.
For more questions like Equation click the link below:
https://brainly.com/question/29657983
#SPJ11
Find the volume and surface area of soda if the radius is 6cm and the height is 11cm
The soda can has an estimated volume of 1,026.72 cubic centimeters and an estimated surface area of 452.39 square centimeters.
To find the volume and surface area of a soda can with radius 6 cm and height 11 cm, we can use the formulas:
Volume of cylinder = πr²h
Surface area of cylinder = 2πrh + 2πr²
Substituting the given values, we get:
Volume = π × 6² × 11
Volume = 1,026.72 cubic centimeters (rounded to two decimal places)
Surface area = 2π × 6 × 11 + 2π × 6²
Surface area = 452.39 square centimeters (rounded to two decimal places)
Therefore, the volume of the soda can is approximately 1,026.72 cubic centimeters, and the surface area is approximately 452.39 square centimeters.
Learn more about volume here: brainly.com/question/1578538
#SPJ4
The _________ method is equivalent to a lottery system in which all the available names are placed in a container, the container is shaken, and the names of the "winners" or participants are then drawn out in an unbiased manner.- Non probability sampling- Systematic sampling- Simple random sampling - Stratified sampling
The Simple random sampling method is equivalent to a lottery system in which all the available names are placed in a container, the container is shaken, and the names of the "winners" or participants are then drawn out in an unbiased manner.
What is Simple random sampling?
The Simple random sampling is a sampling technique in which every member of the population has an equal chance of being chosen as a sample. The samples are chosen randomly, without any specific criterion. In this method, the selection of individuals for the sample is done without any specific pattern. This means that each member of the population is equally likely to be selected as a sample.In Simple random sampling, each member of the population is assigned a number, and the samples are selected using a random number generator or drawing names out of a hat. The selected samples are then analyzed to make predictions about the entire population.For example, if a researcher wanted to know the average age of students in a school, they might use Simple random sampling to choose a sample of 50 students. The researcher would assign each student a number and then use a random number generator to select the samples.There are some advantages and disadvantages of Simple random sampling, which are listed below:Advantages of Simple random sampling It is easy to understand and conduct the process.Each member of the population has an equal chance of being selected as a sample.It ensures that the sample is representative of the entire population.Disadvantages of Simple random sampling It can be time-consuming to select the samples.There may be a chance of human error when selecting samples.The sample size may not be large enough to draw meaningful conclusions.
For more questions on random sampling
https://brainly.com/question/9910540
#SPJ11
If Jacob spent 45$ on dinner and wanted to top the waitress 15%, which of the following would be a good estimate for the tip?
Answer: 6.75
Step-by-step explanation:
45 x 0.15= 6.75
Find the Laplace transform Y(s) of the solution of the given initial value problem. Then invert to find y(t) . Write uc for the Heaviside function that turns on at c , not uc(t) .y'' + 16y = e^(?2t)u2y(0) = 0 y'(0) = 0Y(s) =y(t) =
The Laplace transform is a mathematical technique used to solve differential equations and analyze signals and systems in engineering, physics, and other fields. It is named after the French mathematician Pierre-Simon Laplace.
The Laplace transform of the given initial value problem is given by:
Y(s) = (2s^2 + 16) / (s^2(s^2+16))
Inverting the Laplace transform to find y(t) gives us:
y(t) = e^(-8t) * (1-cos(4t)) + 2sin(4t) + u2(t)
Where u2(t) is the Heaviside function that turns on at t = 2.
To find the Laplace transform of y(t), we first take the Laplace transform of both sides of the differential equation:
L(y''(t)) + 16L(y(t)) = L(e^(-2t)u_2(t))
Using the property L(y''(t)) = s^2Y(s) - sy(0) - y'(0) and noting that y(0) = 0 and y'(0) = 0, we can simplify to get:
s^2Y(s) + 16Y(s) = L(e^(-2t)u_2(t))
Using the property L(e^(-at)u_c(t)) = 1/(s + a) * e^(-cs), we can substitute to get:
s^2Y(s) + 16Y(s) = 1/(s + 2)^2
Now we can solve for Y(s):
Y(s) = 1/(s^2 + 16) * 1/(s + 2)^2
To find y(t), we need to take the inverse Laplace transform of Y(s). We can use partial fraction decomposition to simplify the expression:
Y(s) = A/(s^2 + 16) + B/(s + 2) + C/(s + 2)^2
Multiplying both sides by the denominator and solving for A, B, and C, we get:
A = 1/8
B = -1/4
C = 1/8
Substituting these values, we get:
Y(s) = 1/8 * 1/(s^2 + 16) - 1/4 * 1/(s + 2) + 1/8 * 1/(s + 2)^2
Taking the inverse Laplace transform of each term, we get:
y(t) = (1/8)sin(4t) - (1/4)e^(-2t) + (1/4)te^(-2t)
Therefore, the solution to the initial value problem y'' + 16y = e^(-2t)u_2(t), y(0) = 0, y'(0) = 0 is y(t) = (1/8)sin(4t) - (1/4)e^(-2t) + (1/4)te^(-2t).
To learn more about “Laplace transform” refer to the https://brainly.com/question/29583725
#SPJ11
Consumer Reports magazine presented the following data on the number of calories in a hot dog for each of 17 brands of meat hot dogs:
173 191 182 190 172 147 146 139 175 136 179 153 107 195 135 140 138 Fill in the blanks as the data for the five-number summary:
Min = [min] Q1 = [Q1] M = [Median] Q3 = [Q3] Max = [Max]
The five-number summary for the given data is Min = 107, Q1 = 138, M = 175, Q3 = 190, and Max = 195.
How to find the minimum, maximum?In statistics, the five-number summary is a set of descriptive statistics that provide a summary of the distribution of a dataset. The five-number summary consists of the minimum value, the first quartile (Q1), the median (M), the third quartile (Q3), and the maximum value.
To find the five-number summary for the given data on the number of calories in a hot dog for each of 17 brands of meat hot dogs, we need to order the data from smallest to largest.
107 135 136 138 139 146 147 153 172 173 175 179 182 190 191 195
The minimum value is the smallest value in the dataset, which is 107.
The first quartile (Q1) is the value that is greater than or equal to 25% of the data and less than or equal to 75% of the data. To find Q1, we take the median of the lower half of the data:
Q1 = median(107, 135, 136, 138, 139, 146, 147, 153) = 138
The median (M) is the value that is in the middle of the dataset when the data is ordered from smallest to largest. For the given data, there are 17 values, so the median is the 9th value:
M = median(107, 135, 136, 138, 139, 146, 147, 153, 172, 173, 175, 179, 182, 190, 191, 195) = 175
The third quartile (Q3) is the value that is greater than or equal to 75% of the data and less than or equal to 25% of the data. To find Q3, we take the median of the upper half of the data:
Q3 = median(172, 173, 175, 179, 182, 190, 191, 195) = 190
The maximum value is the largest value in the dataset, which is 195.
Therefore, the five-number summary for the given data is Min = 107, Q1 = 138, M = 175, Q3 = 190, and Max = 195.
To know more about Median visit:
brainly.com/question/1153198
#SPJ1
Julio bought a fish tank shaped like a rectangular prism. The inside of the tank measures
24
24 inches in length,
10
10 inches in width, and
12
12 inches in height. The tank is filled with water to a height of
8
8 inches. How many more cubic inches of water are needed to fill the tank to the top?
The quantity of water are needed to fill the tank to the top is 960 cubic inches
The total volume of the tank is given by multiplying its length, width, and height
Volume of tank = 24 inches × 10 inches × 12 inches = 2,880 cubic inches
The volume of water in the tank is given by multiplying the filled height with the base area of the tank:
Volume of water = 8 inches × 24 inches × 10 inches = 1,920 cubic inches
To find how many more cubic inches of water are needed to fill the tank to the top, we need to subtract the volume of water in the tank from the total volume of the tank:
Volume of air space = Volume of tank - Volume of water
= 2,880 cubic inches - 1,920 cubic inches
= 960 cubic inches
Learn more about volume here
brainly.com/question/21416050
#SPJ4
The given question is incomplete, the complete question is:
Julio bought a fish tank shaped like a rectangular prism. The inside of the tank measures
24 inches in length, 10 inches in width, and 12 inches in height. The tank is filled with water to a height of 8 inches. How many more cubic inches of water are needed to fill the tank to the top?
evaluate the diagram below, and find the measures of the missing angles
Answer:
A=100
B= 80
C=80
D=100
E=80
F=80
G=100
Step-by-step explanation:
state the null hypothesis and alternative hypothesis, in notation, for the individual t-test for testing the slope coefficient associated with?
The null hypothesis and alternative hypothesis in the notation for the individual t-test for testing the slope coefficient associated with a simple linear regression are given below:
Null hypothesis: H₀: β₁ = 0
Alternative hypothesis: Hₐ : β₁ ≠ 0
The hypothesis test is used to determine whether or not there is sufficient evidence to support the alternative hypothesis that the slope of the regression line is not equal to zero. The null hypothesis is that the slope of the regression line is equal to zero.
Therefore, we will use the individual t-test for the slope coefficient to test the hypothesis regarding the slope of the regression line. The formula for the t-test for the slope coefficient is given below:
t = (b₁– β₁) / SEb₁
Where b₁ is the sample slope coefficient β₁ is the hypothesized value of the slope coefficient (i.e., 0) SEb₁ is the standard error of the slope coefficient.
To know more about the "null hypothesis and alternative hypothesis": https://brainly.com/question/25263462
#SPJ11
The tires on Mavis’ car will have to be replaced when they each have 160 000 km of wear on them. If new tires cost $140.00 each, what is the total cost of the wear on Mavis’ tires for a year in which she drives 25 000 km?
Answer:
If the tires on Mavis’ car have to be replaced when they each have 160 000 km of wear, then the total distance Mavis can drive on a set of tires is:
4 tires * 160,000 km = 640,000 km
If Mavis drives 25,000 km in a year, she will need to replace her tires after:
640,000 km ÷ 25,000 km/year = 25.6 years
Since Mavis will need to replace her tires once every 25.6 years, the cost of the wear on her tires for a single year is:
$140.00/tire * 4 tires = $560.00
So the total cost of the wear on Mavis’ tires for a year in which she drives 25,000 km is $560.00.
Step-by-step explanation:
source: trust me bro
In Exercise 5.12 , we were given the following joint probability density function for the random variables Y1 and Y2, which were the proportions of two components in a sample from a mixture of insecticide: f(y1,y2)={2,0,0≤y1≤1,0≤y2≤1,0≤y1+y2≤1 elsewhere
Are Y1 and Y2 independent?
The conclude that the Y1 and Y2 are not independent.
The joint probability density function for the random variables Y1 and Y2 for a mixture of insecticide isf(y1,y2)={2,0,0≤y1≤1,0≤y2≤1,0≤y1+y2≤1 elsewhereTo verify if the Y1 and Y2 are independent, we need to check if f(y1,y2) is equal to the product of the marginal probabilities of Y1 and Y2.Therefore, we need to find the marginal density functions of Y1 and Y2.Probability Density Function:We know that for a given joint probability density function, the probability density function of Y1 is given by integrating over all possible values of Y2, and vice versa.Mathematically,P(Y1)=∫0∫1f(y1,y2)dy2... (1)P(Y2)=∫0∫1f(y1,y2)dy1... (2)Using equation (1) to calculate P(Y1), we get, P(Y1)=∫0∫1f(y1,y2)dy2=∫0∫1(2)dy2=2... (3)Similarly, we can use equation (2) to calculate P(Y2) as follows:P(Y2)=∫0∫1f(y1,y2)dy1=∫0∫1(2)dy1=2... (4)Product of marginal density functions:Now we can find the product of marginal density functions as follows:P(Y1)P(Y2)=2×2=4... (5)Thus, to verify if the Y1 and Y2 are independent, we need to check if f(y1,y2) is equal to the product of the marginal probabilities of Y1 and Y2.Since 2 ≠ 4, Y1 and Y2 are not independent. Hence, we can conclude that the Y1 and Y2 are not independent.
Learn more about Conclude
brainly.com/question/2711657
#SPJ11
An equation is given.
x² + 9 = 6x
What is one solution to the equation?
x=
Step-by-step explanation:
x²-6x+9=0
using the almighty formula where a=1 , b=-6 , c=9
Select the two correct answers.
Which statements correctly describe the equation shown?
y = 4 × 18
a. the value of y is more than 18.
b. The value of y is 4 times as many as 18.
c.The value of y is 4 fewer than 18.
d.The value of y is 4 times as much as 18.
e.The value of y is 18 more than 4.
f. The value of y is 18 fewer than 4.
Statement d is also correct because it means the same thing as statement b, just using different phrasing.
What is an equation?It consists of two sides, left-hand side (LHS) and right-hand side (RHS), separated by an equal sign (=). The equation represents a relationship between the expressions on both sides, indicating that they have the same value.
According to question:The two correct statements that describe the equation y = 4 × 18 are:
b. The value of y is 4 times as many as 18.
d. The value of y is 4 times as much as 18.
Statement b is correct because the equation y = 4 × 18 means that y is equal to 4 times the value of 18, or y = 4 × 18 = 72.
Statement d is also correct because it means the same thing as statement b, just using different phrasing. "As much as" and "many as" are interchangeable in this context, and both mean "multiplied by."
To know more about equation visit:
https://brainly.com/question/29174899
#SPJ1
Can anyone help me please
Answer:
a) 44 children can safely play in the playground of area 154 m^2.
b) The smallest playground area in which 24 children can play is 84 m^2.
Step-by-step explanation:
We have the ratio 210m^2 : 60.
a) 154/210 is 11/15. Multiplying this scale factor gives the ratio 154 m^2 : 44.
44 is found by multiplying 11/15 by 60.
44 children can safely play in the playground of area 154 m^2.
b) 24/60 is 2/5. Multiplying this scale factor gives the ratio 84 m^2 : 24
84 is found by multiplying 2/5 by 210.
The smallest playground area in which 24 children can play is 84 m^2.
Hope this helps!
Determine the convergence or divergence of the sequence with the given nth term. If the sequence converges, find its limit. (If the quantity diverges, enter DIVERGES.) an = sin(√n)/√n
The given sequence an = sin(√n)/√n converges to limit 0 as n approaches infinity
The mentioned nth term of the sequence is an = sin(√n)/√n. To determine the convergence or divergence of the sequence and find its limit, we can use the limit comparison test, which is based on comparing the given sequence with a known sequence whose convergence or divergence is already known.Suppose bn is a known sequence whose convergence or divergence is already known. Then, by the limit comparison test, the given sequence converges or diverges according as the sequence bn converges or diverges.
To apply the limit comparison test, we need to find a suitable sequence bn whose convergence or divergence is known. For this, we observe that sin x ≤ x for all x > 0. Hence, we have 0 ≤ sin(√n)/√n ≤ 1/√n, where the inequality follows by dividing both sides of sin x ≤ x by √n and substituting x = √n. Also, we know that the sequence bn = 1/√n converges to 0 as n approaches infinity. Therefore, by the limit comparison test, the given sequence an = sin(√n)/√n also converges to 0 as n approaches infinity.
To know more about Convergence and Divergence click here
brainly.com/question/9297897
#SPJ11
The coordinates of the endpoints of PQ are P( – 12,7) and Q( – 4, – 9). Point R is on PQ and divides it such that PR:QR is 3:5
The coordinates of R are (-8,-1). To find the coordinates of R, we first need to find the length of PQ.
Using the distance formula, we have:
d(P,Q) = √((x2-x1)² + (y2-y1)²)
= √((-4-(-12))² + (-9-7)²)
= √(8² + (-16)²)
= √(320)
= 8 √(5)
Since PR:QR is 3:5, we can set up the following equation:
d(P,R)/d(R,Q) = 3/5
Let the coordinates of R be (x,y). We can use the midpoint formula to find the coordinates of the midpoint of PQ, which is also the coordinates of the point that divides PQ into two parts in the ratio of 3:5.
Midpoint of PQ = ((-12-4)/2, (7-9)/2) = (-8,-1)
Using the distance formula again, we can find the distance between P and R:
d(P,R) = (3/8) d(P,Q)
= (3/8) (8 √(5))
= 3 √(5)
Now we can use the ratio PR:QR = 3:5 to find the distance between R and Q:
d(R,Q) = (5/3) d(P,R)
= (5/3) (3 √(5))
= 5 √(5)
Finally, we can use the midpoint formula to find the coordinates of R:
x = (-12 + (3/8) (8))/2 = -8
y = (7 + (-1))/2 = 3
Learn more about Coordinates:
https://brainly.com/question/20935031
#SPJ4
Complete Question:
The coordinates of the endpoints of bar (PQ) are P(-12,7) and Q(-4,-9). Point R is on bar (PQ) and divides it such that PR:QR is 3:5. What are the coordinates of R ?
Laura invierte en un pagaré $12,000. 00 a 7 días cuál es la ganancia en pesos?
As per the promissory note record, the profit in pesos is 0.098%
To do this, we'll need to use a number line to help us understand the relationship between time and the interest rate.
Let's say, that the interest rate on Laura's promissory note is 5% per year. We can represent this on a number line by dividing the line into 365 equal segments, one for each day of the year.
Each segment would represent 1/365th of the total interest rate, or approximately 0.014% (5%/365).
Now, we can mark off the first 7 segments on the number line to represent the 7 days that Laura is holding the investment. The total interest she'd earn over those 7 days would be equal to the sum of the values of those 7 segments.
In this case, that would be 7 x 0.014%, or approximately 0.098%.
To know more about promissory note here
https://brainly.com/question/13717659
#SPJ4
Complete Question:
Laura invests $12,000 in a promissory note. 00 to 7 days what is the profit in pesos?
What is the next number in the sequence 3, 4, 7, 12, 19
Answer:28
Step-by-step explanation:
Answer: 28
Explanation: Look for a pattern or reason for the following number in the sequence. In this case 3+1=4, 4+3=7, 7+5=12, 12+7=19, so the probable answer is to add the following odd number to the last one in the line to get the next. (19+9=28)
The volume of two similar figures are given. The surface area of the larger figure is given. Find the surface area of the smaller figure.
V=4000m^3
V=6912m^3
S.A.=2304m^3
Te surface area of the smaller figure based on the ratio is 1600m²
Calculating the surface area of the smaller figure.The ratio of the volumes of two similar figures is equal to the cube of the ratio of their corresponding sides.
Let x be the scale factor between the smaller and larger figures.
Then we have:
(x³)/(4000) = 6912
x³ = 6912/4000
x³ = 1.728
Taking the cube root of both sides, we get:
x = 1.2
So the scale factor from the larger figure to the smaller figure is 1:1.2.
The surface area of a similar figure is proportional to the square of the scale factor.
So we can use the scale factor to find the ratio of the surface areas:
SA(smaller) / SA(larger) = 1/(1.2)²
We know that the surface area of the larger figure is 2304m^2, so we can solve for the surface area of the smaller figure:
SA(smaller) = 2304 * 1/(1.2)²
SA(smaller) = 1600m²
Therefore, the surface area of the smaller figure is 1600m²
Read more about surface area at
https://brainly.com/question/16519513
#SPJ1
Which expression is equivalent to (4−2x)(4+2x)
The expression that is equivalent to (4 - 2x)(4 + 2x) is equal to 16 - 4x^2 approximately.
To simplify the expression (4 - 2x)(4 + 2x), we can use the FOIL method, which stands for First, Outer, Inner, Last. This method involves multiplying each term in the first factor by each term in the second factor and then combining like terms.
Using the FOIL method, we get:
(4 - 2x)(4 + 2x) = 4 × 4 + 4 × 2x - 2x × 4 - 2x × 2x
Simplifying the expression, we get:
16 + 8x - 8x - 4x^2
The two middle terms cancel each other out, leaving us with:
16 - 4x^2
We can also check our answer by factoring the simplified expression back to the original expression. If we factor 16 - 4x^2, we get:
16 - 4x^2 = 4(4 - x^2)
We can then use the difference of squares formula, which states that a^2 - b^2 = (a + b)(a - b), to factor further:
4(4 - x^2) = 4(2 + x)(2 - x)
This gives us back the original expression, (4 - 2x)(4 + 2x), confirming that 16 - 4x^2 is equivalent to (4 - 2x)(4 + 2x).
To learn more about expression click on,
https://brainly.com/question/30190910
#SPJ4
7,600 dollars is placed in a savings account with an annual interest rate of 6%. If no money is added or removed from the account, which equation represents how much will be in the account after 7 years?
Answers:
M=7,600(1+0.06)(1+0.06)
M=7,600(1-0.06)^7
M=7,600(1+0.06)^7
M=7,600(0.06)^7
Step-by-step explanation:
The equation that represents how much will be in the account after 7 years is:
M = 7,600(1+0.06)^7
Here's the explanation:
The formula for calculating the future value (M) of a present value (P) invested at an annual interest rate (r) for a certain number of years (t) is M = P(1+r)^t.
In this case, the present value (P) is 7,600 dollars, the annual interest rate (r) is 6% or 0.06, and the number of years (t) is 7.
Substituting these values into the formula, we get M = 7,600(1+0.06)^7. This represents how much will be in the account after 7 years if no money is added or removed from the account.
Q2 NEED HELP PLEASE HELP
Answer:
The skydiver has an initial height of 3600.
Step-by-step explanation:
3600 is the y-intercept in the form y=mx+b
In the point (0,3600) .Time is the x-axis and Height is the y-axis.
Replacing,
3600= m(0)+b
b=3600
Taking another point: (2, 3536)
We apply the formula to obtain the slope.
m= (y2-y1) / (x2-x1)
m= (3536 - 3600) / (2-0)
m= -64 / 2
m= -32
Joining all the terms:
y=-32x+3600
Help me solve it I need to show my work please help
Step-by-step explanation:
5x - 30 = 3x
2x = 30
x = 15
that's the answer
I NEED HELP BADLY PLEASE HELP
Answer: 0.11
Step-by-step explanation:
5/45=0.11