Answer:
Blank 1: Gasses
Blank 2: More
Blank 3: Solids
Blank 4: Fluids
Blank 5: Liquid
Blank 6: Gas
Blank 7: Higher
Blank 8: Lower
Blank 9: Sun
Blank 10: Radiation
Blank 11: Conductors
P.S. order of answers does not matter between Blank 5 and 6.
A 2.0 kg breadbox on a fric-
tionless incline of angle u 40 is
connected, by a cord that runs over a
pulley, to a light spring of spring con-
stant k 120 N/m, as shown in
Fig. 8-43. The box is released from rest when the spring is unstretched. Assume that the pulley is massless and frictionless. (a) What is the speed of the box when it has moved 10 cm down the in- cline? (b) How far down the incline from its point of release does the box slide before momentarily stopping, and what are the (c) magnitude and (d) direction (up or down the incline) of the box’s acceleration at the instant the box momentarily stops?
What kind of energy is in a moving skateboard
Answer:
I guess it is kinetic energy
Answer:
kinetic energy because my dog told me
Suppose a diode consists of a cylindrical cathode with a radius of 6.200×10−2 cm , mounted coaxially within a cylindrical anode with a radius of 0.5580 cm . The potential difference between the anode and cathode is 400 V . An electron leaves the surface of the cathode with zero initial speed (vinitial=0). Find its speed vfinal when it strikes the anode.
Answer:
The final speed will be "[tex]1.185\times 10^7 \ m/sec[/tex]".
Explanation:
The given values are:
Potential difference,
Δv = 400 v
Radius,
r = 0.5580 cm
As we know,
⇒ [tex]W=e \Delta v[/tex]
and,
⇒ [tex]\frac{1}{2}mv^2=e \Delta v[/tex]
then,
⇒ [tex]v=\sqrt{\frac{2e \Delta v}{m} }[/tex]
On substituting the values, we get
⇒ [tex]=\sqrt{\frac{2\times 1.6\times 10^{-19}\times 400}{9.11\times 10^{-31}} }[/tex]
⇒ [tex]=\sqrt{\frac{1.6\times 10^{-19}\times 800}{9.11\times 10^{-31}}}[/tex]
⇒ [tex]=1.185\times 10^7 \ m/sec[/tex]
Review please help.
Answer:
1 and 3
Explanation:
because they are going up from 0
A box having a weight of 8 lb is moving around in a circle of radius rA = 2 ft with a speed of (vA)1 = 5 ft/s while connected to the end of a rope. If the rope is pulled inward with a constant speed of vr = 4 ft/s, determine the speed of the box at the instant rB = 1 ft. How much work is done after pulling in the rope from A to B? Neglect friction and the size of the box
Answer:
W = 1.875 J
Explanation:
For this exercise let's use the relationship between work and kinetic energy
W = ΔK
The kinetic energy of rotational motion is
K₀ = ½ I w²
we can assume that the box is small, so it can be treated as a point object, with moment of inertia
I = m rₐ²
angular and linear velocity are related
v = w r
w = v / r
we substitute in the equation, for point A
K₀ = ½ (m rₐ²) (v / rₐ)²
K₀ = ½ m v²
For the final point B, as the system is isolated the angular momentum is conserved
initial L₀ = Io wo
final L_f = I_f w_f
L₀ = L_f
I₀ w₀ = I_f w_f
(m rₐ²) w₀ = (m [tex]r_{b} ^2[/tex]) w_f
w_f = (rₐ/r_b)² w₀
with this value we find the final kinetic energy
K_f = ½ I_f w_f²
K_f = ½ (m [tex]r_{b}^2[/tex]) ( (rₐ / r_b)² w₀) ²
K_f = ½ m [tex]\frac{r_a^4}{r_b^2} \ w_o^2[/tex]
we substitute in the realcion of work
W = K_f - K₀
W = ½ m [tex]( \( \frac {r_a^2 }{r_b} )^2[/tex] w₀² - ½ m v²
W = ½ m [tex]\frac{r_a^4}{r_b^2} ( \frac{v}{r_a} ) ^2[/tex] - ½ m v²
W = ½ m [tex]\frac{r_a^2}{r_b^2} \ v^2[/tex] - ½ m v2
W = ½ m v² (([tex]( \ (\frac{r_a}{r_b})^2 -1)[/tex]
let's calculate
W = ½ ( [tex]\frac{8}{32}[/tex] ) 5 ((2/1)² -1)
W = 0.625 (3)
W = 1.875 J
The eight plants of the Solar System orbit the Sun in a chaotic random way.
True
False
Answer:
The Solar System has plants? I assume you meant planets. If so, that is false
Explanation:
An object undergoing simple harmonic motion takes 0.15 s to travel from one point of zero velocity to the next such point. The distance between those points is 30 cm. (a) Calculate the period of the motion. s (b) Calculate the frequency of the motion. Hz (c) Calculate the amplitude of the motion. cm
Answer:
Explanation:
Point of zero velocity are extreme points situated on either side of equilibrium position .
a )
Time taken to travel between these two points is .15 s
time for half the oscillation = .15 s
Time for full one oscillation = .30 s .
Time period of oscillation = .30 s
b)
frequency = 1 / time period
= 1 / .30s = 3.33 oscillation per second.
c )
Distance between these two point is equal to two times amplitude
2 x amplitude = 30 cm
amplitude = 15 cm
Which two chemical equations show double-replacement reactions?
A. C+02 - CO2
B. 2Li + CaCl2 - 2LiCl + Ca
I C. Ca(OH)2 + H2S04 - CaSO4 + 2H20
D. Na2CO3 + H2S - H2CO3 + Na2S
The two chemical equations show double-replacement reactions are Ca(OH)2 + H2S04 - CaSO4 + 2H20 and Na2CO3 + H2S - H2CO3 + Na2S.
What is double replacement reaction?A double replacement reaction have two ionic compounds that are exchanging anions or cations.
From the given options, we can choose the following based on their exchange of anions or cations.
Ca(OH)2 + H2S04 - CaSO4 + 2H20Na2CO3 + H2S - H2CO3 + Na2SThus, the two chemical equations show double-replacement reactions are Ca(OH)2 + H2S04 - CaSO4 + 2H20 and Na2CO3 + H2S - H2CO3 + Na2S.
Learn more about double replacement reaction here: https://brainly.com/question/14281077
#SPJ2
A solenoid that is 93.9 cm long has a cross-sectional area of 17.3 cm2. There are 1270 turns of wire carrying a current of 7.80 A. (a) Calculate the energy density of the magnetic field inside the solenoid. (b) Find the total energy in joules stored in the magnetic field there (neglect end effects).
Answer:
[tex]65.6\ \text{J/m}^3[/tex]
[tex]0.11\ \text{J}[/tex]
Explanation:
B = Magnetic field = [tex]\mu_0 \dfrac{N}{l}I[/tex]
[tex]\mu_0[/tex] = Vacuum permeability = [tex]4\pi10^{-7}\ \text{H/m}[/tex]
N = Number of turns = 1270
[tex]l[/tex] = Length of solenoid = 93.9 cm = 0.939 m
[tex]I[/tex] = Current = 7.8 A
A = Area of solenoid = [tex]17.3\ \text{cm}^2[/tex]
Energy density of a solenoid is given by
[tex]u_m=\dfrac{B^2}{2\mu_0}\\\Rightarrow u_m=\dfrac{(\mu_0 \dfrac{N}{l}I)^2}{2\mu_0}\\\Rightarrow u_m=\dfrac{\mu_0N^2I^2}{2l^2}\\\Rightarrow u_m=\dfrac{4\pi\times 10^{-7}\times 1230^2\times 7.8^2}{2\times 0.939^2}\\\Rightarrow u_m=65.6\ \text{J/m}^3[/tex]
The energy density of the magnetic field inside the solenoid is [tex]65.6\ \text{J/m}^3[/tex]
Energy is given by
[tex]U_m=u_mAl\\\Rightarrow U_m=65.6\times 17.3\times 10^{-4}\times 0.939\\\Rightarrow U_m=0.11\ \text{J}[/tex]
The total energy in joules stored in the magnetic field is [tex]0.11\ \text{J}[/tex].
A carnival ride starts at rest and is accelerated from an initial angle of zero to a final angle of 6.3 rad by a rad counterclockwise angular acceleration of 2.0 s2 What is the angular velocity at 6.3 rad?
The final angular velocity of the carnival ride at a displacement of 6.3 rad is 25.2 rad/s.
Final angular velocity of the carnival ride
The final angular velocity of the carnival ride is determined by applying third kinematic equation as shown below;
ωf = ωi + 2αθ
where;
ωf is the final angular velocity of the carnival ride = ?ωi is the initial angular velocity of the carnival ride = 0α is the angular acceleration = 2.0 rad/s²θ is the angular displacement of the carnival ride = 6.3 radωf = 0 + 2(2.0) x 6.3
ωf = 25.2 rad/s
Thus, the final angular velocity of the carnival ride at a displacement of 6.3 rad is 25.2 rad/s.
Learn more about angular velocity here: https://brainly.com/question/6860269
Answer: 5.0 rad/s
Explanation: Because that’s what khan said so try it out.
Batteries are not perfect. They can't deliver infinite current. As the current load on a battery gets larger, the voltage output gets smaller.
a. True
b. False
Which of the following best defines
weather?
A. the expanding or contracting of the atmosphere
B. the measurement of the amount of water vapor in the
atmosphere
C. the condition of the atmosphere at a certain time and
place
Help Resources
D. the average air temperature of a specific region
Answer:
I'd say D
Explanation:
because not all weather happens within the atmosphere, and most weather depends on region (lile if your near the equator or not)
Explain, step by step, how to calculate the amount of current (I) that will go through the resistor in this circuit
Answer:
0.03 A
Explanation:
From the question given above, the following data were obtained:
Voltage (V) = 12 V
Resistor (R) = 470 Ω
Current (I) =?
From ohm's law, the voltage, current and resistor are related by the following formula:
Voltage = current × resistor
V = IR
With the above formula, we can obtain the current in the circuit as follow:
Voltage (V) = 12 V
Resistor (R) = 470 Ω
Current (I) =?
V = IR
12 = I × 470
Divide both side by 470
I = 12 / 470
I = 0.03 A
Thus, the current in the circuit is 0.03 A
Answer:
0.03 A
Explanation:
Explain, step by step, how to calculate the amount of current (I) that will go through the resistor in this circuit
0.03 A
A woman shouts at a boy who is underwater what happens to the speed of the sound wave as it moves from the air into the water
Answer:
B. it increases
Explanation:
As shown in the table provided, the speed of sound in water (1493 m/s) is greater than the speed of sound in air (346 m/s).
Answer:
B is the correct answer.
Explanation:
In which type of circuit does charge move in only one direction?
A. A D.C CIRCUIT
B. AN A.C CIRCUIT
C. A COMBINED CIRCUIT
D. A PARALLEL CIRCUIT
a highway curve of radius 100 m, banked at an angle of 45 degrees, may be negotiated without friction at a speed of:
A car making this turn is pulled downward by its own weight, and pushed up by the road at an angle of 45°, so by Newton's second law,
• the net horizontal force on the car is
∑ F = N cos(45°) = m a = m v ² / R
• the net vertical force on the car is
∑ F = N sin(45°) - m g = 0
where
• N = magnitude of the normal force
• m = mass of the car
• a = v ² / R = centripetal acceleration of the car
• v = tangential speed of the car
• R = 100 m = radius of curvature
• g = 9.8 m/s² = acceleration due to gravity
From the net vertical force equation, we get
N = m g / sin(45°)
and substituting this into the net horizontal force equation and solving for v gives
(m g / sin(45°)) cos(45°) = m v ² / R
v = √(R g cos(45°) / sin(45°)) ≈ 31 m/s
We have that A highway curve of radius 100 m, banked at an angle of 45 degrees, may be negotiated without friction at a speed of
V=32m/s
From the question we are told
a highway curve of radius 100 m, banked at an angle of 45 degrees, may be negotiated without friction at a speed of:
Generally the equation for the Velocity is mathematically given as
[tex]V=\sqrt{rgtan\theta}[/tex]
Therefore
[tex]V=\sqrt{rgtan\theta}\\\\V=\sqrt{100*9.8*tan45}\\\\V=32m/s[/tex]
Therefore
A highway curve of radius 100 m, banked at an angle of 45 degrees, may be negotiated without friction at a speed of
V=32m/s
For more information on this visit
https://brainly.com/question/6201432?referrer=searchResults
Assume a device is designed to obtain a large potential difference by first charging a bank of capacitors connected in parallel and then activating a switch arrangement that in effect disconnects the capacitors from the charging source and from each other and reconnects them all in a series arrangement. The group of charged capacitors is then discharged in series. What is the maximum potential difference that can be obtained in this manner by using ten 500
Answer:
8 kV
Explanation:
Here is the complete question
Assume a device is designed to obtain a large potential difference by first charging a bank of capacitors connected in parallel and then activating a switch arrangement that in effect disconnects the capacitors from the charging source and from each other and reconnects them all in a series arrangement. The group of charged capacitors is then discharged in series. What is the maximum potential difference that can be obtained in this manner by using ten 500 μF capacitors and an 800−V charging source?
Solution
Since the capacitors are initially connected in parallel, the same voltage of 800 V is applied to each capacitor. The charge on each capacitor Q = CV where C = capacitance = 500 μF and V = voltage = 800 V
So, Q = CV
= 500 × 10⁻⁶ F × 800 V
= 400000 × 10⁻⁶ C
= 0.4 C
Now, when the capacitors are connected in series and the voltage disconnected, the voltage across is capacitor is gotten from Q = CV
V = Q/C
= 0.4 C/500 × 10⁻⁶ F
= 0.0008 × 10⁶ V
= 800 V
The total voltage obtained across the ten capacitors is thus V' = 10V (the voltages are summed up since the capacitors are in series)
= 10 × 800 V
= 8000 V
= 8 kV
Example of the center of the gravity
Answer:
The example of the center of the gravity is the middle of a seesaw
Explanation:
I hope this will help you and plz mark me brainlist
Which nucleus completes the following equation?
Answer:
Option D. ²³⁹₉₃Np
Explanation:
From the question given above, the following data were:
²³⁹₉₂U —> ⁰₋₁e + __
Let ⁿₘX represent the unknown. Thus, the equation above becomes
²³⁹₉₂U —> ⁰₋₁e + ⁿₘX
Next, we shall determine n, m and X. This can be obtained as follow:
239 = 0 + n
239 = n
n = 239
92 = –1 + m
Collect like terms
92 + 1 = m
93 = m
m = 93
ⁿₘX => ²³⁹₉₃X => ²³⁹₉₃Np
Thus, the balanced equation becomes:
²³⁹₉₂U —> ⁰₋₁e + ⁿₘX
²³⁹₉₂U —> ⁰₋₁e + ²³⁹₉₃Np
Option D gives the correct answer to the question.
Answer:
D
Explanation:
239 93 Np
The magnitude of the force can be determined as?
Answer:
the mass of the object multiplied by the acceleration of the object
Explanation:
N2L states that F = ma (force equals mass times acceleration).
If you live in Melbourne, Australia, the local magnetic field has a strength of about 4x10-5 T. The magnetic field vector is directed northward, making an angle of 30 deg above the horizontal. An electron in Melbourne is moving parallel to the ground, in the west direction, at a speed of 9x105 m/s. What are the magnitude and direction of the magnetic force on the electron
Answer:
[tex]5.76\times 10^{-18}\ \text{N}[/tex] perpendicular to the velocity and magnetic field
Explanation:
B = Magnetic field = [tex]4\times 10^{-5}\ \text{T}[/tex]
[tex]\theta[/tex] = Angle the magnetic field makes with the horizontal = [tex]30^{\circ}[/tex]
v = Velocity of electron = [tex]9\times 10^5\ \text{m/s}[/tex]
q = Charge of electron = [tex]1.6\times 10^{-19}\ \text{C}[/tex]
Magnetic force is given by
[tex]F=qvB\sin\theta\\\Rightarrow F=1.6\times 10^{-19}\times 9\times 10^5\times 4\times 10^{-5}\sin30^{\circ}\\\Rightarrow F=2.88\times 10^{-18}\ \text{N}[/tex]
The magnitude of the magnetic force is [tex]2.88\times 10^{-18}\ \text{N}[/tex] and the direction is perpendicular to the velocity and magnetic field.
Tony ran 600 meters in 60 seconds. What was Tony's speed during the
race?
When a 20 kg explosive detonates and sends a 5 kilogram piece traveling to the right at 105 m/s
what is the speed and direction of the other 15 kilogram piece of the explosive!
Answer:
speed: 35m/s
direction: left
Explanation:
Assuming the right side is the positive direction:
before explosion:
P = mv = 0
after explosion:
P' = 15P + 5P
(Set the velocity of the 15kg piece after explosion as v1' and the velocity of the 5kg piece after explosion as v2')
P' = 0.75mv1' + 0.25mv2'
P' = (15kg)v' + (5kg)(105m/s)
P' = 525kg/m/s + (15kg)v1'
P = P'
525kg/m/s + (15kg)v1' = 0
(15kg)v1' = -525kg/m/s
v1' = -35m/s
speed = |-35| = 35m/s
direction is to the left since the right side is the positive direction.
CiCi is hiking in the woods after a rainstorm when she sees a single large mass of rock and soil moving quickly downhill.
Which type of mass movement is this?
A. landslide
B. slump
C. creep
D. mudflow
6) Which of the following describes a good team member?
A) She is willing to compromise.
B) He is aggressive.
C) She is stubborn.
D) He is conceited.
Answer: A
Explanation:
Because someone who is aggressive, stubborn, or proud of theirselves are more likely to think they're above everyone else and be a bully. However someone who is willing to compromise is better since you can generally make everyone happy that way
HOPE THIS HELPS ^^
Becoming informed about economics helps a person understand the reasons a command economy is ideal. role of government in regulating production. why consumers receive tax revenue. reasons an economy must always be completely regulated. Mark this and return
Answer:
Role of government in regulating production
Explanation:
The role of government in regulating show , provides the legal and social framework, uphold competition, provides public goods and services.
What is the role of economics in the community?The community's role in conserving and enhancing common-property resources is well known.
In extra, its role in helping market growth by its power to execute trade agreements among transacting parties belonging to the community network is stressed.
Thus, it provides the legal and social framework, maintains competition, and provides public goods and services.
To learn more about economics in community click here:
https://brainly.com/question/1344575
A fox runs at a speed of 16 m/s and then stops to eat a rabbit. If this all took 120
seconds, what was his acceleration?
Answer:
a = 52s²
Explanation:
How to find acceleration
Acceleration (a) is the change in velocity (Δv) over the change in time (Δt), represented by the equation a = Δv/Δt. This allows you to measure how fast velocity changes in meters per second squared (m/s^2). Acceleration is also a vector quantity, so it includes both magnitude and direction.
Solve
We know initial velocity (u = 16), velocity (v = 120) and acceleration (a = ?)
We first need to solve the velocity equation for time (t):
v = u + at
v - u = at
(v - u)/a = t
Plugging in the known values we get,
t = (v - u)/a
t = (16 m/s - 120 m/s) -2/s2
t = -104 m/s / -2 m/s2
t = 52 s
The moon does not stay at the same distance from the earth.why?
Answer:
The moon does not stay at the same distance of the earth because the ortbit of the moon is slightly elliptical. If earth is not tilted at an angle of 66.5°, there will be no change in the season and the earth will have equal length of days and night.
Explanation:
mark me brainlest
Balance the equation by choosing the correct coefficient numbers in the drop down menus.
[Select]
SO2 +
[Select]
VH₂ →
[Select]
S +
[ Select]
H20
It is suggested you write this on scratch paper and balance it before choosing your answers :)
Answer:
SO₂ + 2H₂ —> S + 2H₂O
The coefficients are: 1, 2, 1, 2
Explanation:
SO₂ + H₂ —> S + H₂O
The above equation can be balance as follow:
SO₂ + H₂ —> S + H₂O
There are 2 atoms of O on the left side and 1 atom on the right side. It can be balance by writing 2 before H₂O as shown below:
SO₂ + H₂ —> S + 2H₂O
There are 2 atoms of H on the left side and 4 atoms the right side. It can be balance by writing 2 before H₂ as shown below:
SO₂ + 2H₂ —> S + 2H₂O
Now, the equation is balanced.
The coefficients are: 1, 2, 1, 2
if the density of a napthalene ball is 0.02kg.what is the mass of the napthalene ball if it has a volume of 100m³