Step-by-step explanation:
Let find the distance of the diameter. using distance formula.
[tex](3 + 1) {}^{2} + ( - 2 + 6) {}^{2} = \sqrt{8} [/tex]
The diameter is sqr root of 8 units.
A circle equation is
[tex] {x}^{2} + {y}^{2} = {r}^{2} [/tex]
where r is the radius. The radius is half the diameter so
[tex]r = \frac{ \sqrt{8} }{2} = \frac{ \sqrt{8} }{ \sqrt{4} } = \sqrt{2} [/tex]
[tex] {r}^{2} = { \sqrt{2} }^{2} = 2[/tex]
So our radius is 2.
Now we need to find the midpoint or Center of the diameter.
[tex] \frac{ - 6 - 2}{2} = - 4[/tex]
[tex] \frac{3 - 1}{2} = 1[/tex]
So the center of the circle is (-4,1). So our equation of the Circle us
[tex](x + 4) {}^{2} + (y - 1) {}^{2} = ( \sqrt{2} ) {}^{2} [/tex]
A class of kindergarteners is making get well cards for children in the houses how many different cards can be made from 2 shapes 4 card colors 3 colors of glitter and 8 colors of markers
Answer:
192
Step-by-step explanation:
Multiply all numbers together.
2 * 4 * 3 * 8 = 192
Answer:
it's 192 because you have to multiply all of the numbers to get 192
A sum of money increased by its 0.05 in every 6 months after how long time the annual compound interest on Rs. 4000 will be Rs. 1324?
Answer:
3 x 2 = 6 years to get Rs. 1324
Step-by-step explanation:
This is a mathematical relationship that transcends currencies. In other words, it also applies to Dollars, Pounds and Yen.
“Annual compound interest” is a phrase of dubious meaning. The process is a “compound interest problem”, but the item I think you are looking for is simply the amount of interest.
Month 0: interest: 0 balance: 4,000
Month 6: interest; 200 balance: 4,200
Month 12: interest 210 balance: 4,410 12-month total interest: 410
Month 18: interest: 220.5 balance: 4,630.5 12-month total interest: 430.5
Month 24: interest: 231.525 balance: 4,862.025 12-month total interest: 452.025
Month 30: int: 243.10125 bal: 5,105.12625 12-month total int: 474.35125
Keep expanding this progression until the 12-month total interest meets or exceeds 1324, the answer will be the number of months in the last line.
Please help! Identify the recursive formula for the sequence 20, 28, 36, 44, . . . .
Answers below in picture:
Option A
Answered by GauthMath if you like please click thanks and comment thanks
Computers from a certain manufacturer have a mean lifetime of 62 months, with a standard deviation of 12 months. The distribution of lifetimes is not assumed to be symmetric. Between what two lifetimes does Chebyshev's Theorem guarantee that we will find at least approximately 75% of the computers
Answer:
Between 38 and 86 months.
Step-by-step explanation:
Chebyshev Theorem
The Chebyshev Theorem can also be applied to non-normal distribution. It states that:
At least 75% of the measures are within 2 standard deviations of the mean.
At least 89% of the measures are within 3 standard deviations of the mean.
An in general terms, the percentage of measures within k standard deviations of the mean is given by [tex]100(1 - \frac{1}{k^{2}})[/tex].
In this question:
Mean of 62, standard deviation of 12.
Between what two lifetimes does Chebyshev's Theorem guarantee that we will find at least approximately 75% of the computers?
Within 2 standard deviations of the mean, so:
62 - 2*12 = 38
62 + 2*12 = 86
Between 38 and 86 months.
There are two boxes containing red and blue balls. For box A, there are 3red balls and 7blue balls. For box B, there are 6red balls and 4blue balls. Now randomly pick up one ball from the two boxes, and the selected ball is red. What is the probability that this red ball is from box A
Answer:
0.3333 = 33.33% probability that this red ball is from box A.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Red ball
Event B: From box A.
Probability of a red ball:
3/10 = 0.3 of 1/2 = 0.5(box A)
6/10 = 0.6 of 1/2 = 0.5(box B). So
[tex]P(A) = 0.3*0.5 + 0.6*0.5 = 0.45[/tex]
Probability of a red ball from box A:
0.3 of 0.5, so:
[tex]P(A \cap B) = 0.3*0.5 = 0.15[/tex]
What is the probability that this red ball is from box A?
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.15}{0.45} = 0.3333[/tex]
0.3333 = 33.33% probability that this red ball is from box A.
A committee of 3 is to be selected randomly from a group of 3 men and 2 women.
Let X represent the number of women on the committee. Find the probability
distribution of X.
Total number of ways to select 3 people from the 5 total: 5!/(3! (5 - 3)!) = 10
• Number of ways of picking 0 women:
[tex]\dbinom20\times\dbinom33 = 1\times1 = 1[/tex]
• Number of ways of picking 1 woman:
[tex]\dbinom21\times\dbinom32 = 2\times3 = 6[/tex]
• Number of ways of picking 2 women:
[tex]\dbinom22\times\dbinom31 = 1\times3 = 3[/tex]
• Number of ways of picking 3 women: 0, since there are only 2 to choose from
Then X has the probability mass function
[tex]P(X=x) = \begin{cases}\frac1{10}&\text{if x=0}\\\frac6{10}=\frac35&\text{if }x=1\\\frac3{10}&\text{if }x=2\\0&\text{otherwise}\end{cases}[/tex]
Use the Distributive property to solve this equation
-2(x-4)+8=2
Answer:
x=7
Step-by-step explanation:
-2(x-4)+8=2(remove brackets by multiplying with -2)
-2x+8+8=2(group like terms and simply)
-2x=2-16(change side change sign)
-2x = -14(divide both sides by -2)
x=7
a pair of fair dice is rolled anf the sum of the numbers is noted. determine the probability that one die resulted in a 3, given that the sum is 8. g
Answer:
0.4 = 40% probability that one die resulted in a 3.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
Outcomes for the dice:
For the pair of dice:
(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)
(2,1), (2,2), (2,3), (2,4), (2,5), (2,6)
(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)
(5,1), (5,2), (5,3), (5,4), (5,5), (5,6)
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)
So 36 total outcomes.
In this question:
Event A: Sum of 8
Event B: One dice resulting in 3.
Probability of a sum of 8:
These are the following desired outcomes:
(2,6), (3,5), (4,4), (5,3), (6,2)
5 outcomes out of 36, so:
[tex]P(A) = \frac{5}{36}[/tex]
Probability of a sum of 8 and one dice resulting in 3.
(3,5) or (5,3), so 2 outcomes out of 36, and:
[tex]P(A \cap B) = \frac{2}{36}[/tex]
Probability that one die resulted in a 3, given that the sum is 8:
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{2}{36}}{\frac{5}{36}} = \frac{2}{5} = 0.4[/tex]
0.4 = 40% probability that one die resulted in a 3.
Graphing an integer problem help please
Answer:
Step-by-step explanation:
Given function is,
h(x) = 1 - 2x
Domain of the function = {-3, -2, 1, 5}
For range of the function,
Substitute the values of 'x' in the function,
h(-3) = 1 - 2(-3)
= 7
h(-2) = 1 - 2(-2)
= 5
h(1) = 1 - 2(1)
= -1
h(5) = 1 - 2(5)
= -9
Therefore, set of range for the function will be {7, 5, -1, -9}
Now plot the ordered pairs,
(-3, 7), (-2, 5), (1, -1), (5, -9)
Given the equation y/x = -6/7 the constant of variation is:
Answer:
[tex]{ \tt{ \frac{y}{x} = - \frac{6}{7} }} \\ { \tt{y = - \frac{6}{7}x }} \\ { \boxed{ \bf{constant = - \frac{6}{7} }}}[/tex]
Seth and Ted can paint a room in 5 hours if they work together. If Ted were to work by himself, it would take him 1 hours longer than it would take Seth working by himself. How long would it take Seth to paint the room by himself if Ted calls in sick
Answer:
Seth would need 10 hours to paint the room.
Step-by-step explanation:
Let's define:
S = rate at which Seth works
T = rate at which Ted works
When they work together, the rate is S + T
And we know that when they work together they can pint one room in 5 hours, then we can write:
(S + T)*5 h = 1 room.
We also know that Ted alone would need one hour more than Seth alone.
Then if Seth can paint the room in a time t, we have:
S*t = 1room
and
T¨*(t + 1h) = 1room
Then we have 3 equations:
(S + T)*5 h = 1
S*t = 1
T¨*(t + 1h) = 1
(I removed the "room" part so it is easier to read)
We want to find the value of S.
First, let's isolate one variable (not S) in one of the equations.
We can isolate t in the second one, to get:
t = 1/S
Now we can replace it on the third equation:
T¨*(t + 1h) = 1
T¨*( 1/S + 1h) = 1
Now we need to isolate T in this equation, we will get:
T = 1/( 1/S + 1h)
Now we can replace this in the first equation:
(S + T)*5h = 1
(S + 1/( 1/S + 1h) )*5h = 1
Now we can solve this for S
(S + 1/( 1/S + 1h) )= 1/5h
S + 1/(1/S + 1h) = 1/5h
Now we can multiply both sides by (1/S + 1h)
(1/S + 1h)*S + 1 = (1/5h)*(1/S + 1h)
1 + S*1h + 1 = 1/(S*5h) + 1/5
S*1h + 2 = (1/5h*S) + (1/5)
Now we can multiply both sides by S, to get:
(1h)*S^2 + 2*S = (1/5h) + (1/5)*S
Now we have a quadratic equation:
(1h)*S^2 + 2*S - (1/5)*S - (1/5h) = 0
(1h)*S^2 + (9/5)*S - (1/5h) = 0
The solutions are given by the Bhaskara's formula:
[tex]S = \frac{-(9/5) \pm \sqrt{(9/5)^2 - 4*(1h)*(-1/5h)} }{2*1h} = \frac{-9/5 \pm 2}{2h}[/tex]
Then the solution (we only take te positive one) is:
S = (-9/5 + 2)/2h
S = (-9/5 + 10/5)/2h = (1/5)/2h = 1/10h
Then Seth needs a time t to paint one room:
(1/10h)*t = 1
t = 1/(1/10h) = 10h
So Seth would need 10 hours to paint the room.
1/2 of 12=1/4 of?
1/3 of 90=2/3of?
Answer:
24 and 45
Step-by-step explanation:
Okay, now that I can answer this question with the right answers:
The easy way to do this is to first solve the left hand side of the equation.
1/2 of 12 is the same as 12/2 = 6.
So 6 = 1/4 * x
To solve for that unknown x, just multiply both sides by 4 to cancel out the fraction:
6*4 = 4* 1/4*x
24 = x
For the other equation, do the same thing:
1/3 * 90 = 90/3 = 30
30 = 2/3*x
30*3 = 3* 2/3 *x
90 = 2x
90/2 = 2x/2
45 = x
If y is 2,851, 1% of Y is
Excellent question, but let's rephrase it.
Suppose you have a square of surface area of 2851.
What would be a hundredth of such square?
What would be surface area of that hundredth.
Why hundredth? Because percent denotes hundredths cent is a latin word for hundred. You would usually encounter similar word that describes 100 years: century.
Well it is actually very easy. Just divide 2851 into 100 pieces and look at what is the area of one piece.
[tex]2851/100=285.1=y[/tex]
So a single piece has an area of 258.1.
Hope this helps. :)
Find an odd natural number x such that LCM (x, 40) = 1400
Answer:
175.
Step-by-step explanation:
40 = 2*2*2*5
1400 = 2*2*2*5*5*5*7
So by inspection we have x = 5*5*7 = 175
Domain and range problem help please
Answer:
The domain is the number of copies made (N)
The range is the is the total cost of the books (C)
The domain we know that they made 200 copies, so the domain would be 0-200.
The range would be:
C=10(200)+700
C=200+700
C=900
Range would be 700-900
Find the value of x.
A. 10
B. 6
C. 14
D. 8
9514 1404 393
Answer:
B. 6
Step-by-step explanation:
The products of the lengths of the parts of the chord are the same.
7×12 = 14x
7(12)/14 = x = 6 . . . . . divide by 14
Answer:
Option (B)
Step-by-step explanation:
If two chords are intersecting each other at a point insides a circle,
"Product of the measures of the line segments on each chord are equal"
By this property,
MH × HY = TH × HN
By substituting the measures of each segment,
7 × 12 = 14 × ([tex]x[/tex])
[tex]x=\frac{84}{14}[/tex]
[tex]x=6[/tex]
Therefore, Option (B) will be the correct option.
Use the unit circle to find tan 60°.
a. square root 3/3
c. 2 square root 3/3
b. square root 3/2
d. square root 3
Please select the best answer from the choices provided
A
B
C
D
the answer is d ( square root 3 )
tan = oposite / adjacent
tan 60° = √3 / 1
= √3
A candidate running for public office receives 2,000 of the 8, 000 total votes cast from an election. Name the numerator and denominator
of the fraction that represents the candidate's fraction of the total votes.
Question 8 of 53
How much would $700 be worth after 8 years, if it were invested at 5%
interest compounded continuously? (Use the formula below and round your
answer to the nearest cent.)
A(t) = P•e^rt
A. $5887.12
B. $1044.28
C. $6432.11
D. $38,218.71
9514 1404 393
Answer:
B. $1044.28
Step-by-step explanation:
Putting the given numbers into the given formula, we have ...
A(8) = $700•e^(0.05•8) ≈ $1044.28
Rationalize the denominator of $\displaystyle \frac{1}{\sqrt{2} + \sqrt{3} + \sqrt{7}}$, and write your answer in the form\[
\frac{A\sqrt{2} + B\sqrt{3} + C\sqrt{7} + D\sqrt{E}}{F},
\]where everything is in simplest radical form and the fraction is in lowest terms, and $F$ is positive. What is $A + B + C + D + E + F$?
9514 1404 393
Answer:
57
Step-by-step explanation:
Apparently, you want to simplify ...
[tex]\displaystyle \frac{1}{\sqrt{2} + \sqrt{3} + \sqrt{7}}[/tex]
so the denominator is rational. It looks like the form you want is ...
[tex]\dfrac{A\sqrt{2} + B\sqrt{3} + C\sqrt{7} + D\sqrt{E}}{F}[/tex]
And you want to know the sum A+B+C+D+E+F.
__
We can start by multiplying numerator and denominator by a conjugate of the denominator. Then we can multiply numerator and denominator by a conjugate of the resulting denominator.
[tex]\displaystyle =\frac{1}{\sqrt{2} + \sqrt{3} + \sqrt{7}}\cdot\frac{\sqrt{2} + \sqrt{3} - \sqrt{7}}{\sqrt{2} + \sqrt{3} - \sqrt{7}}=\frac{\sqrt{2} + \sqrt{3} - \sqrt{7}}{2\sqrt{6}-2}\\\\=\frac{\sqrt{2} + \sqrt{3} - \sqrt{7}}{2\sqrt{6}-2}\cdot\frac{\sqrt{6}+1}{\sqrt{6}+1}=\frac{(1+\sqrt{6})(\sqrt{2}+\sqrt{3}-\sqrt{7})}{10}\\\\=\frac{\sqrt{2}+\sqrt{3}-\sqrt{7}+2\sqrt{3}+3\sqrt{2}-\sqrt{42}}{10}=\frac{4\sqrt{2}+3\sqrt{3}-\sqrt{7}-\sqrt{42}}{10}[/tex]
Comparing this to the desired form we have ...
A = 4, B = 3, C = -1, D = -1, E = 42, F = 10
Then the sum is ...
A +B +C +D +E +F = 4 + 3 -1 -1 +42 +10 = 59 -2 = 57
The sum of interest is 57.
what is the minimum number of students who must be enrolledin a universitt to guarantee that there are at least two students from the same country
Answer:
Being that there are 195 countries, there would have to be 390 students
Step-by-step explanation:
A rectangular board is 1400 millimeters long and 900 millimeters wide. What is the area of the board in square meters? Do not round your answer.
=__M
Answer:
1260000 millimeters
Step-by-step explanation:
You multiply 1400mm x 900mm and this is the correct answer.
Hope it helps c:
The area of the rectangular board which is 1400 millimeters long and 900 millimeters wide is 1.26 square meters.
What is the area of a rectangular board?If x and y be the length and width of a rectangular board respectively, then the area of that rectangular board is xy square unit.
How to solve this problem?Since 1000 millimeters = 1 meter.
i.e. 1 millimeter = 1/1000 meter.
Now, length of the board = 1400 millimeters = 1400/1000 meters = 1.4 meters
Width of the board = 900 millimeters = 900/1000 meters = 0.9 meter
Area of the board = 1.4 * 0.9 = 1.26 square meters.
Therefore, the area of the rectangular board which is 1400 millimeters long and 900 millimeters wide is 1.26 square meters.
Learn more about area here -
https://brainly.com/question/6843862
#SPJ2
generate a table of values for the equation y = -4.5x - 0.5. Use values for x from -2 to 2, increment by 1 in each row
Answer:
x = -2: y = 8.5
x = -1: y = 4
x = 0: y = -0.5
x = 1: y = -5
x = 2: y = -9.5
Step-by-step explanation:
We find the numeric values for the function from x = -2 to x = 2.
x = -2:
[tex]y = -4.5(-2) - 0.5 = 9 - 0.5 = 8.5[/tex]
x = -1:
[tex]y = -4.5(-1) - 0.5 = 4.5 - 0.5 = 4[/tex]
x = 0:
[tex]y = -4.5(0) - 0.5 = 0 - 0.5 = -0.5[/tex]
x = 1:
[tex]y = -4.5(1) - 0.5 = -4.5 - 0.5 = -5[/tex]
x = 2:
[tex]y = -4.5(2) - 0.5 = -9 - 0.5 = -9.5[/tex]
please help me with this its really needed
Answer:
f(x) = log x - 1 --> (10, 0)
f(x) = -(log x - 2) --> (100, 0)
f(x) = log(- x - 2) --> (-3, 0)
f(x) = -log-(x-1) --> (0, 0)
Step-by-step explanation:
An x-intercept is the position where the value of y(in this case f(x)) is 0.
Let's start with the first equation:
f(x) = log x - 1
If f(x) is 0, we would get this equation:
0 = log x - 1
Now, we solve for x:
1 = log x
x = 10
This means the x-intercept is (10, 0).
f(x) = -(log x - 2)
Again, we can set f(x) to 0, and solve for x:
0 = -(log x - 2)
0 = log x - 2
2 = log x
x = 100
This means the x-intercept is (100, 0)
Same process applies for the third:
f(x) = log(- x - 2)
0 = log(- x - 2)
1 = -x - 2
3 = -x
x = -3
(-3, 0)
f(x) = -log-(x-1)
0 = -log-(x-1)
0 = log-(x-1)
1 = -(x-1)
1 = -x + 1
0 = -x
x = 0
(0, 0)
The claim that 40% of those persons who retired from an industrial job before the age of 60 would return to work if a suitable job was available is to be investigated at the 0.02 significance level. If 74 out of the 200 workers sampled said they would return to work, what is our decision
Answer:
The p-value of the test is of 0.1922 > 0.02, which means that there is not significant evidence to reject the null hypothesis, that is, there is not significant evidence to conclude that the proportion is of less than 40%.
Step-by-step explanation:
Test if the proportion is less than 40%:
At the null hypothesis, we test if the proportion is of at least 0.4, that is:
[tex]H_0: p \geq 0.4[/tex]
At the alternative hypothesis, we test if the proportion is of less than 0.4, that is:
[tex]H_1: p < 0.4[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
0.4 is tested at the null hypothesis:
This means that [tex]\mu = 0.4, \sigma = \sqrt{0.4*0.6}[/tex]
74 out of the 200 workers sampled said they would return to work
This means that [tex]n = 200, X = \frac{74}{200} = 0.37[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \frac{0.37 - 0.4}{\frac{\sqrt{0.4*0.6}}{\sqrt{200}}}[/tex]
[tex]z = -0.87[/tex]
P-value of the test and decision:
The p-value of the test is the probability of finding a sample proportion below 0.37, which is the p-value of z = -0.87.
Looking at the z-table, z = -0.87 has a p-value of 0.1922.
The p-value of the test is of 0.1922 > 0.02, which means that there is not significant evidence to reject the null hypothesis, that is, there is not significant evidence to conclude that the proportion is of less than 40%.
55ml to each container how much to 18 containers
Answer:
Step-by-step explanation:
770
Answer:
it's very simple!!• 1 container contains =55ml
• So 18 container contains
• 18ml multiply to 55 =
• 990 Answer.
Thank you.Help me please giving brainliest, look at photo
Answer:
3x-z+9
Step-by-step explanation:
last option 3x+z+9 .........
By examining past tournaments, it's possible to calculate the probability that a school wins their first game in the national college basketball tournament. Each school's rank going into the tournament is a strong indicator of their likelihood of winning their first game.
Find the linear regression equation that models this data.
The linear regression model which models the data is :
y = -6.41053X + 103.83509
Obtaining the regression equation could be performed using either the formula method or using technology (excel, calculator, online regression calculators )
Using technology :
• Enter the data into the columns provided ;
The regression equation obtained for the data is : y = -6.41053X + 103.83509
Where ;
Slope = -6.41053
Intercept = 103.83509
X = Rank
y = probability percentage
Hence, from the linear regression equation obtained, we could see that a negative linear relationship exists between rank and probability as implied from it's negative slope value.
Learn more on linear regression : https://brainly.com/question/12164389
Find the critical numbers (x-values) of the function y equals 2 x to the power of 5 plus 5 x to the power of 4 minus 19. Enter your answers as a comma-separated list. Round answers to 2 decimal places, if necessary.
Answer:
[tex]x=0,x=-2[/tex]
Step-by-step explanation:
From the question we are told that:
[tex]y=2x^5+5x^4-19[/tex]
Generally the equation if differentiated is mathematically given by
[tex]y'=10x^4+20x^3-0[/tex]
Where
y'=0
[tex]10x^4+20x^3=0[/tex]
Factorizing,We have
[tex]x=0,x=-2[/tex]
Therefore
The critical points are
[tex]x=0,x=-2[/tex]
A test has 6 multiple choice questions , each with four possible answers . How man different answer keys are possible?
Answer:
24
Step-by-step explanation:
6 x 4 = 24
Answer:
Step-by-step explanation:
4⁶=4096