Find f(x) and g(x) so the function can be expressed as y = f(g(x)). (1 point) [tex]y=\frac{7}{x^{2} } +10[/tex]

Find F(x) And G(x) So The Function Can Be Expressed As Y = F(g(x)). (1 Point) [tex]y=\frac{7}{x^{2} }

Answers

Answer 1

Answer:

The functions are [tex]f(x) = 7\cdot x+10[/tex] and [tex]g(x) = \frac{1}{x^{2}}[/tex], respectively.

Step-by-step explanation:

Let suppose that [tex]g(x) = \frac{1}{x^{2}}[/tex], then [tex]f(g(x))[/tex] is:

[tex]f(g(x)) = 7\cdot \left(\frac{1}{x^{2}} \right) + 10[/tex]

[tex]f(g(x)) = 7\cdot g(x) + 10[/tex]

Thus,

[tex]f(x) = 7\cdot x + 10[/tex]

The functions are [tex]f(x) = 7\cdot x+10[/tex] and [tex]g(x) = \frac{1}{x^{2}}[/tex], respectively.


Related Questions