Answer:
45°
Step-by-step explanation:
[tex] \sin \: m\angle F = \frac{EG}{FG} \\ \\ \sin \: m\angle F = \frac{2 \sqrt{11} }{2 \sqrt{22} } \\ \\ \sin \: m\angle F = \frac{\sqrt{11} }{ \sqrt{22} } \\ \\ \sin \: m\angle F = \frac{1}{ \sqrt{2} } \\ \\ \sin \: m\angle F = \sin \: 45 \degree \\ \\ \huge \boxed{ \purple{m\angle F = 45 \degree }}[/tex]
(d) 320 If the measurement of two angles of a triangle are 72º and 70%, find third ange in degrees. If the measurement of two angles of a triangle are 630 and 100
A television and DVD player cost a total of $1230. The cost of the television is two times the cost of the DVD player. Find the cost of each item
Answer:
Television = 820
DVD Player = 410
Step-by-step explanation: Imagine the television as 2, and the DVD player as 1. If you’re were to draw it out with boxes, you’d see that the tv has two boxes and the DVD player has 1 box. All are exactly the same amount, and there are a total of three boxes. So divided 1230 by 3 and you get 410. Using the idea of the boxes, the DVD player get’s one 410, and the tv gets two 410s, or 820.
Enter the degree of the polynomial below.
6x + 9x + 3x – 4410 - 9x5 – 5x6
A. 9
B. 10
c. 6.
OD. 4
Answer:
the answer is d
Step-by-step explanation:
Will mark brainliest
Plz solve on a paper or draw on the picture thx in advance
9514 1404 393
Answer:
the red angle has no specific value
Step-by-step explanation:
There is sufficient information here to specify all of the angles except the two unknown angles in the 70° (dark blue) triangle. Those two angles must total 110°, but that measure cannot be allocated between them based on the information in the diagram.
The attachments show that all of the given angle constraints can be met while the red angle may vary considerably. It can range through the interval (0°, 110°), but cannot be either of those end values.
I NEED HELP PLEASE AND THANK YOU!!! ASAP
Answer:
71
Step-by-step explanation:
Initial angle lies in 4th quadrant
4 pounds of oranges costs $ 12 . What is the unit price per pound?
Answer:
3 dollars per pound
Step-by-step explanation:
Unit Price = Cost / Pounds of oranges
Unit Price = 12 / 4
Unit Price = 3
The unit price per pound is $3
Find the length of side
x to the nearest tenth.
What is the probability that z equals 1.5
Answer:
0.1
Step-by-step explanation:
The probability value corresponding to z = 1.5 is 0.9332.
What is probability?Probability is a number that expresses the likelihood or chance that a specific event will take place. Both proportions ranging from 0 to 1 and percentages ranging from 0% to 100% can be used to describe probabilities.
The standard normal curve is a special case of a normal curve with a mean of 0 and a standard deviation of 1. Since it is symmetric around the mean, 50% of the observations lie under the mean while the other 50% of the observations lie above the mean.
Thus the probability value corresponding to z = 1.5 is 0.9332.
Since the total probability value under the curve is 1, we subtract 0.9332 from 1 to calculate the area to the right.
P(Z>1.5)
=P(Z≤1.5)
=1−0.9332
=0.0668
Learn more about probability here:
https://brainly.com/question/30034780
#SPJ3
34 Proportions
Mathematics, Pre-Algebra
Question 2
A boat can travel 21 miles on 7 gallons of gasoline. How far can it travel on 17 gallons?
Answer:
51 miles
Step-by-step explanation:
hope it's clear and understandable
:)
Convert degrees to radians
Answer:
it's answer is
[tex] \frac{25}{18} [/tex]
Which graph is a function?
Answer:
B
Step-by-step explanation:
A function is a relation in which each input, x, has only one output, y.
There are two ways to determine if a relation is a function:
1. If each x-input has only one, unique y-output, then it's a function. If some x-inputs share the same y-outputs, it's not a function.
2. Vertical Line Test on Graphs:
To determine whether y is a function of x, when given a graph of relation, use the following criterion: if every vertical line you can draw goes though only 1 point, the relation can be a function. If you can draw a vertical line that goes though more than 1 point, the relation cannot be a function.
Since we're given a graph relation, let's test both of the answers out.
If I were to draw a vertical line in a specific place on the first graph, I'd be hitting more than one point in the coordinate plane.
If I were to draw a vertical line in a specific place on the second graph, I'd only be hitting one point in the coordinate plane.
Therefore, choice B is a function.
Solve one and two tenths plus eight and one eighteenth
47
Is this it?
1 plus 2(10) plus 8 plus 1(18)
The degree of the polynomial function f(x) is 4. The roots of the equation f(x) =0 are -2,-1,1 and 3. Which graph could be the graph of f(x)?
Answer:
top right
Step-by-step explanation:
roots of an equation = x-intercepts
Answer:
top right is the answer from my calculatins
A plumber charges $65 for a diagnostic check. After the check, it is $85 per hour for the work. With $320 in your wallet, how many hours of Work can you afford?
Answer:
3 hours
Step-by-step explanation:
first, you subtract 65 from 320 to cover the diagnostic check.
Then, you subtract 85 from the remaining cash three times and you'll get 0
You are playing a game by drawing a card from a standard deck and replacing it. If the card is a face card, you win $30. If it is not a face card, you pay $2. There are 12 face cards in a deck of 52 cards. What is the expected value of playing the game
92 cardsㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
Let f(x) = e ^3x/5x − 2. Find f'(0).
Answer:
Step-by-step explanation:
Our friend asking what the actual function is has a point. I completed this under the assumption that what we have is:
[tex]f(x)=\frac{e^{3x}}{5x-2}[/tex] and used the quotient rule to find the derivative, as follows:
[tex]f'(x)=\frac{e^{3x}(5)-[(5x-2)(3e^{3x})]}{(5x-2)^2}[/tex] and simplifying a bit:
[tex]f'(x)=\frac{5e^{3x}-[15xe^{3x}-6e^{3x}]}{(5x-2)^2}[/tex]and a bit more to:
[tex]f'(x)=\frac{5e^{3x}-15xe^{3x}+6e^{3x}}{(5x-2)^2}[/tex] and combining like terms:
[tex]f'(x)=\frac{11e^{3x}-15xe^{3x}}{(5x-2)^2}[/tex] and factor out the GFC in the numerator to get:
[tex]f'(x)=\frac{e^{3x}(11-15x)}{(5x-2)^2}[/tex] That's the derivative simplified. If we want f'(0), we sub in 0's for the x's in there and get the value of the derivative at x = 0:
[tex]f'(0)=\frac{e^0(11-15(0))}{(5(0)-2)^2}[/tex] which simplifies to
[tex]f'(0)=\frac{11}{4}[/tex] which translates to
The slope of the function is 11/4 at the point (0, -1/2)
The mother was fed 21 fish, how many fish was the cub fed?
Which equation represents a line that passes through (4,1/3) and has a slope of 3/4?
Oy- 3/4= 1/3(x-4)
Oy-1/3= 3/4(x-4)
Oy- 1/3= 4(x-3/4)
Oy-4 = 3/4(x-1/3)
Step-by-step explanation:
With this kind of problem, we're looking at an equation in the form
y - y1 = m(x - x1)
(m = slope)
so we can substitute m, y1, and x1 with the values we're given.
y - y1 = m(x - x1)
y - 1/3 = 3/4(x - 4)
Answer:
y - 1/3 = 3/4(x - 4)
A sailor on a trans-Pacific solo voyage notices one day that if he puts 625.mL of fresh water into a plastic cup weighing 25.0g, the cup floats in the seawater around his boat with the fresh water inside the cup at exactly the same level as the seawater outside the cup (see sketch at right).
Calculate the amount of salt dissolved in each liter of seawater. Be sure your answer has a unit symbol, if needed, and round it to 2 significant digits.
You'll need to know that the density of fresh water at the temperature of the sea around the sailor is 0.999/gcm3. You'll also want to remember Archimedes' Principle, that objects float when they displace a mass of water equal to their own mass.
Answer:
can you say again please
Answer please answer!!
I need the answer asap
Answer:
35 cm
Step-by-step explanation:
is the correct answer
The three sides of a triangle are n, 3n+3, and 3n−1. If the perimeter of the triangle is 72m, what is the length of each side?
Answer: 10m, 33m, and 29m
Step-by-step explanation:
n + 3n+3 + 3n-1 = 72m
7n+2=72m
7n = 72-2
n = 70/7
n = 10
if x¹=xcosA+ysinA and y¹=xsinA-ycosA, show that (x¹)²+(y¹)²=x²+y²
Expanding each square on the left side, you have
(x cos(A) + y sin(A))² = x² cos²(A) + 2xy cos(A) sin(A) + y² sin²(A)
(x sin(A) - y cos(A))² = x² sin²(A) - 2xy sin(A) cos(A) + y² cos²(A)
so that adding them together eliminates the identical middle terms and reduces to the sum to
x² cos²(A) + y² sin²(A) + x² sin²(A) + y² cos²(A)
Collecting terms to factorize gives us
(y² + x²) sin²(A) + (x² + y²) cos²(A)
(x² + y²) (sin²(A) + cos²(A))
and sin²(A) + cos²(A) = 1 for any A, so we end up with
x² + y²
as required.
Consider the probability that at most 85 out of 136 DVDs will work correctly. Assume the probability that a given DVD will work correctly is 52%. Specify whether the normal curve can be used as an approximation to the binomial probability by verifying the necessary conditions.
Answer:
Since both [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the necessary conditions are satisfied.
0.9945 = 99.45% probability that at most 85 out of 136 DVDs will work correctly.
Step-by-step explanation:
Test if the normal curve can be used as an approximation to the binomial probability by verifying the necessary conditions.
It is needed that:
[tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex]
Binomial probability distribution
Probability of exactly x successes on n repeated trials, with p probability.
Can be approximated to a normal distribution, using the expected value and the standard deviation.
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
The standard deviation of the binomial distribution is:
[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]
Normal probability distribution
Problems of normally distributed distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].
Assume the probability that a given DVD will work correctly is 52%.
This means that [tex]p = 0.52[/tex]
136 DVDs
This means that [tex]n = 136[/tex]
Test the conditions:
[tex]np = 136*0.52 = 70.72 \geq 10[/tex]
[tex]n(1-p) = 136*0.48 = 65.28 \geq 10[/tex]
Since both [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the necessary conditions are satisfied.
Mean and standard deviation:
[tex]\mu = E(X) = np = 136*0.52 = 70.72[/tex]
[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{136*0.52*0.48} = 5.83[/tex]
Consider the probability that at most 85 out of 136 DVDs will work correctly.
Using continuity correction, this is [tex]P(X \leq 85 + 0.5) = P(X \leq 85.5)[/tex], which is the p-value of Z when X = 85.5. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{85.5 - 70.72}{5.83}[/tex]
[tex]Z = 2.54[/tex]
[tex]Z = 2.54[/tex] has a p-value of 0.9945.
0.9945 = 99.45% probability that at most 85 out of 136 DVDs will work correctly.
Let a=⟨1,−4,2⟩ and b=⟨−5,−5,−2⟩. Compute:
a+b=⟨ ,, ⟩
a−b=⟨ ,,⟩
2a=⟨ ,,⟩
3a+4b=⟨ ,, ⟩
|a|=
Answer:
a + b = ⟨-4, -9, 0⟩
a - b = ⟨6, 1, 4⟩
2a = ⟨2, -8, 4⟩
3a + 4b = ⟨-17, -32, -2⟩
|a| = √21
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightPre-Calculus
Vectors
OperationsScalars[Magnitude] ||v|| = √(x² + y² + z²)Step-by-step explanation:
Adding and subtracting vectors are follow the similar pattern of normal order of operations:
a + b = ⟨1 - 5, -4 - 5, 2 - 2⟩ = ⟨-4, -9, 0⟩
a - b = ⟨1 + 5, -4 + 5, 2 + 2⟩ = ⟨6, 1, 4⟩
Scalar multiplication multiplies each component:
2a = ⟨2(1), 2(-4), 2(2)⟩ = ⟨2, -8, 4⟩
Remember to multiply in the scalar before doing basic operations:
3a + 4b = ⟨3(1), 3(-4), 3(2)⟩ + ⟨4(-5), 4(-5), 4(-2)⟩ = ⟨3, -12, 6⟩ + ⟨-20, -20, -8⟩ = ⟨-17, -32, -2⟩
Absolute values surrounding a vector signifies magnitude of a vector. Follow the formula:
|a| = √[1² + (-4)² + 2²] = √21
Please answer in detail
Answer:
y=5x-1 I think because the snd option doesn't make sense but you should try y =5x-1
I need help please ive been stuck on it
Answer:
$3,300
Step-by-step explanation:
The salary given falls in the third range, meaning it should get a 5.5% income tax on the $60,000.
5.5% = 0.055
0.055 * $60,000 = $3,300
Therefore, the state income tax owed on the provided salary is $3,300.
Solve the formula for the indicated variable.
1
A=-bh, for h
2
- BA
Answer:
perdón yo no hablo inglés
Instructions: Determine whether the following polygons are
similar. If yes, type in the similarity statement and scale factor. If
no, type 'None' in the blanks.
Answer:
None
Step-by-step explanation:
The given angles aren't equal which is needed for the polygon to be similar
No, the following polygons are not similar.
Used the concept of a similar figure that states,
In terms of Maths, when two figures have the same shape but their sizes are different, then such figures are called similar figures.
Given that,
Two polygons EFGH and JKLM are shown in the image.
Now the corresponding sides of both figures are,
EF = 27
JK = 63
And, EH = 27
JM = 63
Hence, the ratio of corresponding sides is,
EF/JK = 27/63
= 9/21
= 3/7
EH/JM = 27/63
= 3/7
So their corresponding sides are equal in ratio.
But their corresponding angles are not the same.
To learn more about the angle visit:;
https://brainly.com/question/25716982
#SPJ4
Convert 653 in base 7 to base 10
If a, b, c are in A.P. show that
a (b + c)/bc,b(c + a) /ca, c(a-b )/bc
are in A.P.
Answer:
Step-by-step explanation:
[tex]\frac{a(b+c)}{bc} ,\frac{b(c+a)}{ca} ,\frac{c(a+b)}{ab} ~are~in~A.P.\\if~\frac{ab+ca}{bc} ,\frac{bc+ab}{ca} ,\frac{ca+bc}{ab} ~are~in~A.P.\\add~1~to~each~term\\if~\frac{ab+ca}{bc} +1,\frac{bc+ab}{ca} +1,\frac{ca+bc}{ab} +1~are~in~A.P.\\if~\frac{ab+ca+bc}{bc} ,\frac{bc+ab+ca}{ca} ,\frac{ca+bc+ab\\}{ab} ~are~in~A.P.\\\\divide~each~by~ab+bc+ca\\if~\frac{1}{bc} ,\frac{1}{ca} ,\frac{1}{ab} ~are ~in~A.P.\\if~\frac{a}{abc} ,\frac{b}{abc} ,\frac{c}{abc} ~are~in~A.P.\\if~a,b,c~are~in~A.P.\\which~is~true.[/tex]