find the 5th term in the sequence an=n÷n+1

Answers

Answer 1

Answer:

The 5th term of a sequence is defined as the term with n = 5.  So for this sequence, a sub 5 = 5/6


Related Questions

Factor 4(20) + 84. 4(20 + 21) 4(21 + 20) 20(4 + 84) 20(4 + 4)

Answers

Answer:

[tex]\huge\boxed{4 ( 20 + 21)}[/tex]

Step-by-step explanation:

4(20) + 84

Resolve Parenthesis

80 + 84

Taking 4 common as both are the multiples of 4

4 ( 20 + 21)

Records indicate that x years after 2008, the average property tax on a three bedroom home in a certain community was T(x) =20x^2+40x+600 dollars.

Required:
a. At what rate was the property tax increasing with respect to time in 2008?
b. By how much did the tax change between the years 2008 and 2012?

Answers

Answer:

a) 40 dollars

b) 480 dollars

Step-by-step explanation:

Given the average property tax on a three bedroom home in a certain community modelled by the equation T(x) =20x²+40x+600, the rate at which the property tax is increasing with respect to time in 2008 can be derived by solving for the function T'(x) at x=0

T'(x) = 2(20)x¹ + 40x° + 0

T'(x) = 40x+40

At x = 0,

T'(0) = 40(0)+40

T'(0) = 40

Hence the property tax was increasing at a rate of 40dollars with respect to the initial year (2008).

b) There are 4 years between 2008 and 2012. To know how much that the tax change between the years 2008 and 2012, we will find T(4) - T(0)

Given T(x) =20x²+40x+600

T(4) =20(4)²+40(4)+600

T(4) = 320+160+600

T(4) = 1080 dollars

Also T(0) =20(0)²+40(0)+600

T(0) = 0+0+600

T(0)= 600 dollars

T(4) - T(0) = 1080 - 600

T(4) - T(0) = 480 dollars

Hence, the tax has changed by $480 between 2008 and 2012

Find the minimum sample size n needed to estimate for the given values of​ c, ​, and E. c​, ​, and E Assume that a preliminary sample has at least 30 members.

Answers

Answer:

hello your question is incomplete below is the complete question

Find the minimum sample size n needed to estimate μ For the given values of​ c, σ​, and E. c=0.98​, σ=6.5​, and E=22 Assume that a preliminary sample has at least 30 members.

Answer : 48

Step-by-step explanation:

Given data:

E = 2.2,

std ( σ ) = 6.5

c ( level of confidence ) = 0.98

To find the minimum sample size

we have to first obtain the value of  [tex]Z_{a/2}[/tex]  

note : a can be found using this relation :

( 1 - a ) = 0.98 ----- equation 1

a = 1 - 0.98 = 0.02

hence:  a/2 = 0.01

This means that P( Z ≤ z ) = 0.99  the value of z can be found using the table of standard normal distribution. from the table the value of z = 2.33

P( Z ≤ 2.33 ) = 0.99

To obtain the sample size n

[tex]n = (\frac{std*z}{E} )^{2}[/tex]

n = [tex](\frac{6.5*2.33}{2.2} )^2[/tex] =  (6.88409)^2

Therefore n ≈ 48

Complete the table of values for y=-x^2+2x+1
X -3, -2, -1,0,1,2,3,4,5
Y -14,7, ,1, -2 -14

Answers

Answer:

  see the attachment

Step-by-step explanation:

When you have a number of function evaluations to do, it is convenient to let a graphing calculator or spreadsheet do them. That avoids the tedium and the mistakes in arithmetic.

Here's your completed table.

Given the function, Calculate the following values:

Answers

Answer:

[tex]f(-2)=33\\f(-1)=12\\f(0)=1\\f(1)=0\\f(2)=9[/tex]

Step-by-step explanation:

[tex]f(x)=5x^{2} -6x+1\\f(-2)=5(-2)^{2} -6(-2)+1\\f(-2)=5(4)+12+1\\f(-2)=20+13\\f(-2)=33[/tex]

[tex]f(x)=5x^{2}-6x+1\\f(-1)=5(-1)^{2} -6(-1)+1\\f(-1)=5(1)+6+1\\f(-1)=5+7\\f(-1)=12[/tex]

[tex]f(x)=5x^{2}-6x+1\\f(0)=5(0)^{2}-6(0)+1\\f(0)=5(0)-0+1\\f(0)=0+1\\f(0)=1[/tex]

[tex]f(x)=5x^{2}-6x+1\\f(1)=5(1)^{2}-6(1)+1\\f(1)=5(1)-6+1\\f(1)=5-5\\f(1)=0[/tex]

[tex]f(x)=5x^{2}-6x+1\\f(2)=5(2)^{2}-6(2)+1\\f(2)=5(4)-12+1\\f(2)=20-11\\f(2)=9[/tex]

Evaluate 2/3 + 1/3 + 1/6 + …

Answers

Answer:

7/6

Step-by-step explanation:

The LCD of these three fractions is 6; the denominators 3, 3 and 6 divide evenly into 6.

Therefore we have:

4/6 + 2/6 + 1/6 = 7/6

Simplify your answer as much as possible

Answers

You said    - 1/3 - 3/5 x  =  1/2

Multiply each side by 3 :

- 1 - 9/5 x  =  3/2

Multiply each side by 5 :

- 5 - 9x  =  15/2

Multiply each side by 2 :

- 10 - 18x = 15

Add 10 to each side :

- 18x  =  25

Divide each side by -18 :

x = - 25/18

or  x = - 1 and 7/18 (same thing)


Help please!!! Thank you

Answers

Answer:

5/7

Step-by-step explanation:

There are a couple ways to solve this.  One would be by finding the least common denominator for each one with 2/3, subtracting, and seeing what is left over.  Another way is converting to decimals.

2/3=0.666666

————————-

7/8=0.875

8/9=0.88888

4/5=0.8

5/7=0.7143

They are all greater than 2/3 (0.6666666), but 5/7 is the closest, so would have the least waste.

cSuppose you are standing such that a 45-foot tree is directly between you and the sun. If you are standing 200 feet away from the tree and the tree casts a 225-foot shadow, how tall could you be and still be completely in the shadow of the tree? x 225 ft 200 ft 45 ft Your height is ft (If needed, round to 1 decimal place.)

Answers

Answer:

you could stand at 5.0 ft and still be completely in the shadow of the tree

Step-by-step explanation:

From the diagram attached below;

We consider;

[tex]\overline {BC}[/tex] to be the height of the tree and [tex]\overline {DE}[/tex] to be the height of how tall you could be and still be completely in the shadow of the tree.

∠D = ∠B = 90°

Also;

ΔEAD = ΔBAC   (similar triangles)

Therefore, their sides will also be proportional

i.e

[tex]\dfrac{\overline {DE}}{ \overline {BC}}= \dfrac{\overline{AD}}{ \overline{AC}}[/tex]

[tex]\dfrac{x}{ 45}= \dfrac{225-220}{225}[/tex]

[tex]\dfrac{x}{ 45}= \dfrac{25}{225}[/tex]

By cross multiply

225x = 45 × 25

[tex]x = \dfrac{45 \times 25}{225}[/tex]

[tex]x = \dfrac{1125}{225}[/tex]

x = 5.0 ft

Therefore, you could stand at 5.0 ft and still be completely in the shadow of the tree

There are 9 students at the math club picnic. If 3 students are drinking punch and 6 are drinking lemonade, what fraction are drinking lemonade

Answers

6/9 = 2/3
Therefore 2/3 of the students are drinking lemonade.

Determine the volume of a sphere with a diameter of 70 mm. Question 13 options: A) 21,714.7 mm3 B) 3,216.9 mm3 C) 100,024 mm3 D) 179,594.4 mm3

Answers

Answer:

The answer is option D

Step-by-step explanation:

Volume of a sphere is given by

[tex]V = \frac{4}{3} \pi {r}^{3} [/tex]

where r is the radius

From the question to calculate the radius we use the formula

radius = diameter / 2

diameter =70mm

radius = 70/2 = 35 mm

So the volume of the sphere is

[tex]V = \frac{4}{3} \pi \times {35}^{3} [/tex]

[tex]V = \frac{171500\pi}{3} [/tex]

We have the final answer as

Volume = 179,594.4 mm³

Hope this helps you

Kenji earned the test scores below in English class.
79, 91, 93, 85, 86, and 88
What are the mean and median of his test scores?

Answers

Answer:

mean=87

median=87

Step-by-step explanation:

mean=sum of test score/number of subject

mean=79+91+93+85+86+88/6

mean=522/6

mean=87

Literal meaning of median is medium.

To find the number which lies in the medium, we must rearrange the number in ascending.

79, 91, 93, 85, 86, 88

79, 85, 86, 88, 91, 93

86+88/2=87

Hope this helps ;) ❤❤❤

Let me know if there is an error in my answer.

Given that
[tex]\sqrt{2p-7}=3[/tex]
and
[tex]7\sqrt{3q-1}=2[/tex]
Evaluate
[tex]p + {q}^{2} [/tex]​

Answers

Answer:

Below

Step-by-step explanation:

The two given expressions are:

● √(2p-7) = 3

● 7√(3q-1) = 2

We are told to evaluate p+q^2

To do that let's find the values of p and q^2

■■■■■■■■■■■■■■■■■■■■■■■■■■

Let's start with p.

● √(2p-7) = 3

Square both sides

● (2p-7) = 3^2

● 2p-7 = 9

Add 7 to both sides

● 2p-7+7 = 9+7

● 2p = 16

Divide both sides by 2

● 2p/2 = 16/2

● p = 8

So the value of p is 8

■■■■■■■■■■■■■■■■■■■■■■■■■■

Let's find the value of q^2

● 7√(3q-1) = 2

Square both sides

● 7^2 × (3q-1) = 2^2

● 49 × (3q-1) = 4

● 49 × 3q - 49 × 1 = 4

● 147q - 49 = 4

Add 49 to both sides

● 147q -49 +49 = 4+49

● 147q = 53

Divide both sides by 147

● 147q/147 = 53/147

● q = 53/ 147

Square both sides

● q^2 = 53^2 / 147^2

● q^2 = 2809/21609

■■■■■■■■■■■■■■■■■■■■■■■■■

● p+q^2 = 8 +(2809/21609)

● p+q^2 = (2809 + 8×21609)/21609

● p+q^2 = 175681 / 21609

● p + q^2 = 8.129

Round it to the nearest unit

● p+ q^2 = 8

Which equation does the graph of the systems of equations solve? (1 point) 2 linear graphs. They intersect at negative 1, 1

Answers

Answer:

  3x +4 = -2x -1

Step-by-step explanation:

The line that goes up to the right has a y-intercept of +4. This is where it crosses the y-axis. It's slope (rise/run) is 3/1 = 3, so its equation in slope-intercept form is ...

  y = mx +b . . . . where m is the slope, b is the y-intercept

  y = 3x +4

The other line has a negative slope and a y-intercept of -1. The slope of that line is rise/run = -2/1 = -2, so its equation is ...

  y = -2x -1

__

The solution point will have the x-coordinate that is the solution of the equation ...

  y = y

  3x +4 = -2x -1 . . . . . . substituting the above expressions for y.

The mean weight of newborn infants at a community hospital is 6.6 pounds. A sample of seven infants is randomly selected and their weights at birth are recorded as 9.0, 7.3, 6.0, 8.8, 6.8, 8.4, and 6.6 pounds. Does the sample data show a significant increase in the average birthrate at a 5% level of significance?
A. Fail to reject the null hypothesis and conclude the mean is 6.6 lb.
B. Reject the null hypothesis and conclude the mean is lower than 6.6 lb.
C. Reject the null hypothesis and conclude the mean is greater than 6.6 lb.
D. Cannot calculate because the population standard deviation is unknown

Answers

Answer:

The correct option is  A

Step-by-step explanation:

From the question we are told that

    The  population is  [tex]\mu = 6.6[/tex]

     The level of significance is [tex]\alpha = 5\% = 0.05[/tex]

      The sample data is  9.0, 7.3, 6.0, 8.8, 6.8, 8.4, and 6.6 pounds

The Null hypothesis is [tex]H_o : \mu = 6.6[/tex]

 The Alternative hypothesis is  [tex]H_a : \mu > 6.6[/tex]

The critical value of the level of significance obtained from the normal distribution table is

                       [tex]Z_{\alpha } = Z_{0.05 } = 1.645[/tex]

Generally the sample mean is mathematically evaluated as

      [tex]\=x = \frac{\sum x_i }{n}[/tex]

substituting values

      [tex]\=x = \frac{9.0 + 7.3 + 6.0+ 8.8+ 6.8+ 8.4+6.6 }{7}[/tex]

      [tex]\=x = 7.5571[/tex]

The standard deviation is mathematically evaluated as

           [tex]\sigma = \sqrt{\frac{\sum [ x - \= x ]}{n} }[/tex]

substituting values

          [tex]\sigma = \sqrt{\frac{ [ 9.0-7.5571]^2 + [7.3 -7.5571]^2 + [6.0-7.5571]^2 + [8.8- 7.5571]^2 + [6.8- 7.5571]^2 + [8.4 - 7.5571]^2+ [6.6- 7.5571]^2 }{7} }[/tex][tex]\sigma = 1.1774[/tex]

Generally the test statistic is mathematically evaluated as

            [tex]t = \frac{\= x - \mu } { \frac{\sigma }{\sqrt{n} } }[/tex]

substituting values

           [tex]t = \frac{7.5571 - 6.6 } { \frac{1.1774 }{\sqrt{7} } }[/tex]

            [tex]t = 1.4274[/tex]

Looking at the value of  t and  [tex]Z_{\alpha }[/tex]   we see that [tex]t < Z_{\alpha }[/tex] hence we fail to reject the null hypothesis

  What this implies is that there is no sufficient evidence to state that the sample data show as significant increase in the average birth rate

The conclusion is that the mean is  [tex]\mu = 6.6 \ lb[/tex]

distance between 2,-5 and 3,-7

Answers

Answer:

√5

Step-by-step explanation:

[tex](2 ,-5) = (x_1,y_1)\\(3,-7)=(x_2,y_2)\\\\d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\ \\d = \sqrt{(3-2)^2 +(-7-(-5))^2}\\ \\d = \sqrt{(1)^2+(-7+5)^2}\\ \\d = \sqrt{(1)^2 + (-2)^2}\\ \\d = \sqrt{1 +4}\\ \\d = \sqrt{5}[/tex]

Power +, Inc. produces AA batteries used in remote-controlled toy cars. The mean life of these batteries follows the normal probability distribution with a mean of 35.0 hours and a standard deviation of 5.5 hours. As a part of its quality assurance program, Power +, Inc. tests samples of 25 batteries.
A) What can you say about the shape of the distribution of the sample mean?
B) What is the standard error of the distribution of the sample mean?
C) What proportion of the samples will have a mean useful life of more than 36 hours?
D) What proportion of the sample will have a mean useful life greater than 34.5 hours?
E) What proportion of the sample will have a mean useful life between 34.5 and 36.0 hours?

Answers

Answer:

(A) The shape of the distribution of the sample mean is bell-shaped.

(B) The standard error of the distribution of the sample mean is 1.1.

(C) The proportion of the samples that have a mean useful life of more than 36 hours is 0.1814.

(D) The proportion of the sample that has a mean useful life greater than 34.5 hours is 0.6736.

(E) The proportion of the sample that has a mean useful life between 34.5 and 36.0 hours is 0.4922.

Step-by-step explanation:

We are given that Power +, Inc. produces AA batteries used in remote-controlled toy cars. The mean life of these batteries follows the normal probability distribution with a mean of 35.0 hours and a standard deviation of 5.5 hours.

As a part of its quality assurance program, Power +, Inc. tests samples of 25 batteries.

Let [tex]\bar X[/tex] = sample mean life of these batteries

(A) The shape of the distribution of the sample mean will be bell-shaped because the sample mean also follows the normal distribution as it is taken from the population data only.

(B) The standard error of the distribution of the sample mean is given by;

            Standard error =  [tex]\frac{\sigma}{\sqrt{n} }[/tex]

Here, [tex]\sigma[/tex] = standard deviation = 5.5 hours

         n = sample of batteries = 25

So, the standard error =  [tex]\frac{5.5}{\sqrt{25} }[/tex]  = 1.1.

(C) The z-score probability distribution for the sample mean is given by;

                               Z  =  [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = population mean life of battery = 35.0 hours

            [tex]\sigma[/tex] = standard deviation = 5.5 hours

            n = sample of batteries = 25

Now, the proportion of the samples that will have a mean useful life of more than 36 hours is given by = P([tex]\bar X[/tex] > 36 hours)

     

       P([tex]\bar X[/tex] > 36 hours) = P( [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] > [tex]\frac{36-35}{\frac{5.5}{\sqrt{25} } }[/tex] ) = P(Z > 0.91) = 1 - P(Z [tex]\leq[/tex] 0.91)

                                                               = 1 - 0.8186 = 0.1814

(D) The proportion of the samples that will have a mean useful life of more than 34.5 hours is given by = P([tex]\bar X[/tex] > 34.5 hours)

     

       P([tex]\bar X[/tex] > 34.5 hours) = P( [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] > [tex]\frac{34.5-35}{\frac{5.5}{\sqrt{25} } }[/tex] ) = P(Z > -0.45) = P(Z [tex]\leq[/tex] 0.45)

                                                                    = 0.6736

(E) The proportion of the samples that will have a mean useful life between 34.5 and 36.0 hours is given by = P(34.5 hrs < [tex]\bar X[/tex] > 36 hrs)

     P(34.5 hrs < [tex]\bar X[/tex] < 36 hrs) = P([tex]\bar X[/tex] < 36 hrs) - P([tex]\bar X[/tex] [tex]\leq[/tex] 34.5 hrs)

     P([tex]\bar X[/tex] < 36 hours) = P( [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\frac{36-35}{\frac{5.5}{\sqrt{25} } }[/tex] ) = P(Z < 0.91) = 0.8186

     P([tex]\bar X[/tex] [tex]\leq[/tex] 34.5 hours) = P( [tex]\frac{\bar X - \mu}{\frac{\sigma}{\sqrt{n} } }[/tex] [tex]\leq[/tex] [tex]\frac{34.5-35}{\frac{5.5}{\sqrt{25} } }[/tex] ) = P(Z [tex]\leq[/tex] -0.45) = 1 - P(Z [tex]\leq[/tex] 0.45)

                                                                    = 1 - 0.6736 = 0.3264                              

Therefore, P(34.5 hrs < [tex]\bar X[/tex] < 36 hrs) = 0.8186 - 0.3264 = 0.4922.

According to the Federal Communications Commission, 70% of all U.S. households have vcrs. In a random sample of 15 households, what is the probability that fewer than 13 have vcrs?

Answers

Answer:

The probability  is  [tex]P(x < 13) = 0.8732[/tex]

Step-by-step explanation:

From the question we are told that

    The  probability of success is    p = 0.70

     The  sample size is  [tex]n = 15[/tex]

Generally the distribution of U.S. households have vcrs follow a binomial distribution given that there are only two outcome (household having vcrs or household not having vcrs )

The probability of failure is mathematically evaluated as

       [tex]q = 1- p[/tex]

substituting values

      [tex]q = 1- 0.70[/tex]

      [tex]q = 0.30[/tex]

The probability that fewer than 13 have vcrs is mathematically represented as

          [tex]P(x < 13) = 1- [P(13) + P(14) + P(15)][/tex]

=>     [tex]P(x < 13) = 1-[( \left 15 } \atop {}} \right. C_{13} *p^{13}* q^{15-13})+ (\left 15 } \atop {}} \right. C_{14} *p^{14}* q^{15-14}) +( \left 15 } \atop {}} \right. C_{15} *p^{15}* q^{15-15}) ][/tex]

 Here  [tex]\left 15 } \atop {}} \right. C_{13}[/tex] means  15 combination 13 and the value is  105 (obtained from calculator)

 Here  [tex]\left 15 } \atop {}} \right. C_{14}[/tex] means  15 combination 14 and the value is  15 (obtained from calculator)

 

 Here  [tex]\left 15 } \atop {}} \right. C_{15}[/tex] means  15 combination 15 and the value is  1 (obtained from calculator)

So

 [tex]P(x < 13) = 1-[(105 *p^{13}* q^{2})+ (15 *p^{14}* q^{1}) +(1*p^{15}* q^{0}) ][/tex]

substituting values      

 [tex]P(x < 13) = 1-[(105 *(0.70)^{13}* (0.30)^{2})+ (15 *(0.70)^{14}* (0.30)^{1}) +(1*(0.70)^{15}* (0.30)^{0}) ][/tex]

 [tex]P(x < 13) = 0.8732[/tex]

     

which statement correctly describes the relation between the variable in the equation C = nd

Answers

Answer:

nd is c

Step-by-step explanation:

Hey market sales six cans of food for every seven boxes of food the market sold a total of 26 cans and boxes today how many of each kind did the market sale

Answers

Answer:

It sold 14 cans boxes of food and 12 cans of food.

Step-by-step explanation:

The factor for the food cans depend upon every seven food boxes .So, the same no. of sets of food cans will be sold.

Let the no. of sets of food boxes be x.

According to the question,

6x+7x=26

13x=26

x=26/13

x=2

No. of food cans =6x=6×2=12 cans

No. of food boxes=7x=7×2=14 boxes

Please mark brainliest ,if it is truly the best ! Thank you!

Which of the following is equal to the rational expression below when x=-1
or -8?
11(x+8)
/(x + 1)(x+8)​

Answers

Answer:

11/(x + 1) thus d: is the answer

Step-by-step explanation:

Simplify the following:

(11 (x + 8))/((x + 1) (x + 8))

(11 (x + 8))/((x + 1) (x + 8)) = (x + 8)/(x + 8)×11/(x + 1) = 11/(x + 1):

Answer: 11/(x + 1)

determine x in the following equation 2x - 4 = 10

Answers

Answer:

7

Step-by-step explanation:

10+4 = 14

14/2  = 7

x = 7

When is it easier to use the addition method rather than the substitution method to solve a system of equations?

Answers

Answer: When the addition of two or more equations leads to the elimination of one of the variables.

Step-by-step explanation:

When we have a system of equations, the addition method seems to be useful only when adding the equations will lead to the elimination of one of the variables:

An example of this can be, for the variables x and y:

3*x + x*y - 2*y = 3

x^2 + x*y - 2y = 42

now we can "add" (actually subtract) the equations and get (eq2 minus eq1)

(x^2 + x*y - 2y) - (3*x + x*y - 2*y ) = 42 - 3

x^2 - 3*x = 39

x^2 - 3*x - 39 = 0

And now we can solve it for x, and then find the value of y.

Given the number of trials and the probability of success, determine the probability indicated: a. n = 15, p = 0.4, find P(4 successes) b. n = 12, p = 0.2, find P(2 failures) c. n = 20, p = 0.05, find P(at least 3 successes)

Answers

Answer:

A)0.126775 B)0.000004325376 C) 0.07548

Step-by-step explanation:

Given the following :

A.) a. n = 15, p = 0.4, find P(4 successes)

a = number of trials p=probability of success

P(4 successes) = P(x = 4)

USING:

nCx * p^x * (1-p)^(n-x)

15C4 * 0.4^4 * (1-0.4)^(15-4)

1365 * 0.0256 * 0.00362797056

= 0.126775

B)

b. n = 12, p = 0.2, find P(2 failures),

P(2 failures) = P(12 - 2) = p(10 success)

USING:

nCx * p^x * (1-p)^(n-x)

12C10 * 0.2^10 * (1-0.2)^(12-10)

66 * 0.0000001024 * 0.64

= 0.000004325376

C) n = 20, p = 0.05, find P(at least 3 successes)

P(X≥ 3) = p(3) + p(4) + p(5) +.... p(20)

To avoid complicated calculations, we can use the online binomial probability distribution calculator :

P(X≥ 3) = 0.07548

A test is being conducted to test the difference between two population means using data that are gathered from a matched pairs experiment. If the paired differences are normal, then the distribution used for testing is the:

Answers

Answer:

Student t-distribution.

Step-by-step explanation:

In this scenario, a test is being conducted to test the difference between two population "means" using data that are gathered from a matched pairs experiment. If the paired differences are normal, then the distribution used for testing is the student t-distribution.

In Statistics and probability, a student t-distribution can be defined as the probability distribution which can be used to estimate population parameters when the population variance is not known (unknown) and the sample population is relatively small. The student t-distribution is a statistical distribution which was published in 1908 by William Sealy Gosset.

A student t-distribution has a similar curve with the normal distribution curve, except that it is fatter and a little bit shorter.

Daniel and Jack together sell 96 tickets to a raffle. Daniel sold 12 more tickets than his friend. How many raffle tickets each friend sell?

Answers

Answer:

Daniel sold 54 and Jack sold 42

Step-by-step explanation:

D = number of tickets that Daniel sold

J = number of tickets that Jack sold

D + J = 96

D = 12+ J

Substitute the second equation into the first equation

12 + J + J = 96

Combine like terms

12 + 2J = 96

Subtract 12 from each side

2J = 84

Divide by 2

J = 42

D = J+12

D = 54

Daniel sold 54 and Jack sold 42

Answer:

Jack sold 42 & Daniel sold 54.

Step-by-step explanation:

96 - 12 = 84

84 / 2 = 42

Jack sold 42.

42 + 12 = 54

Daniel sold 54.

42 + 54 = 96

Simple math! What is the issue with my work? I got it wrong.

Answers

Answer:

x = 6

Step-by-step explanation:

In the third line of the solution on right side of the equal sign, middle term should be 8x instead of 4x.

The final value of x will be 6.

[tex] PQ^2 + QO^2 = PO^2 \\

x^2 + 8^2 = (4+x)^2 \\

x^2 + 64 = 16 + 8x + x^2 \\

64 = 16 + 8x \\

64 - 16 = 8x \\

48 = 8x \\

6 = x\\[/tex]

What is nine thousandths as a decimal

Answers

Answer:

Nine thousandths = 0.009

Step-by-step explanation:

thousandths =  1/1000 = 0.001

nine thousandths = 9/1000 = 0.009

Answer:

.009

Step-by-step explanation:

9 thousandths as a decimal is 9/1000.  Which is the same 0.009

Height of a tree increases by 2.5 feet each growing season. Quadratic, linear or exponential?

Answers

Answer:

Linear

Step-by-step explanation:

Given

Height of a tree grows by 2.5 feet

Required

Determine the type of relationship

Take for instance, the height of the tree at year 1 is x

At year 2, it will be x + 2 * 1

At year 3, it will be x + 2 * 2

At year 4, it will be x + 2 * 3

Following same pattern

At year n, it will be x + 2 *(n - 1)

Hence, growth rate = x + 2(n -1)

From the list of given options, the correct answer is Linear because the derived formula above is an example of a linear equation

There are $400$ pages in Sheila's favorite book. The average number of words per page in the book is $300$. If she types at an average rate of $40$ words per minute, how many hours will it take to type the $400$ pages of the book?

Answers

Answer:

50hours

Step-by-step explanation:

Given that there are 400 pages in Sheila's favorite book.

The average number of words per page in the book is 300

She types an average rate of 40words per minute.

So to type 400pages of the book

Total number of words in the pages = 400×300 = 120000 words

Typing rate : 40words ------- 1minute

120000 words ----------- x minutes

Hence we have 40 × X mins = 120000 × 1min

Make X the subject

40X = 120000minutes

X = 120000/40

X = 3000minutes

Since 60minutes = 1hour

3000minutes = 3000minutes/60

= 50hours

Hence it took her 50hours to type 400pages

Solution:

The total number of words in the book is 400 x 300. Sheila types at a rate of 40 words per minute, or 40 x 60 words per hour. The number of hours it takes her is equal to the number of words divided by her rate of typing, or 400x300/40x60 = 50 hours.

Other Questions
Draw concentric circles and label the four layers of the gut. Also label the hole at the inner most circle. List what is in these four layers. Knowledge Check 02 On February 28, the Jewelry store remits $975 of sales tax collected from its customers to the government. Prepare the February 28 journal entry for the Jewelry store by selecting the account names and dollar amounts from the drop-down menus. A converging lens 7.50 cm in diameter has a focal length of 330 mm . For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of resolving power of the human eye. Part A If the resolution is diffraction limited, how far away can an object be if points on it transversely 4.10 mm apart are to be resolved (according to Rayleigh's criterion) by means of light of wavelength 600 nm Which one of these people does not attend the closing? a. Your real estate agent b. Closing agent c. Seller d. Appraiser Michelle is 7 years older than her sister Joan, and Joan is 3 years younger than their brother Ryan. If the sum of their ages is 64, how old is Joan? 16 22 18 19 A regression analysis between sales (y in $1000) and advertising (x.in dollars) resulted in the following equation: = 30,000 + 4x The above equation implies that an:________ a. increase of $l in advertising is associated with an increase of $4 in sales. b. increase of $4 in advertising is associated with an increase of $4000 in sales. c. increase of $1 in advertising is associated with an increase of $34,000 in sales. d. increase of $1 in advertising is associated with an increase of $4000 in sales. QuestionAs a result of living in North America, many slaves adopted which religion?A. IslamB. HinduismC. ChristianityD. Animism Determine whether or not F is a conservative vector field. If it is, find a function f such that F = f. (If the vector field is not conservative, enter DNE.) F(x, y) = (3x2 2y2)i + (4xy + 4)j Irene Watts and John Lyon are forming a partnership to which Watts will devote one-half time and Lyon will devote full time. They have discussed the following alternative plans for sharing income and loss: (a) in the ratio of their initial capital investments, which they have agreed will be $42,000 for Watts and $63,000 for Lyon; (b) in proportion to the time devoted to the business; (c) a salary allowance of $6,000 per month to Lyon and the balance in accordance with the ratio of their initial capital investments; or (d) a salary allowance of $6,000 per month to Lyon, 10% interest on their initial capital investments, and the balance shared equally. The partners expect the business to perform as follows: year 1, $36,000 net loss; year 2, $90,000 net income; and year 3, $150,000 net income. Required: Complete the tables, one for each of the first three years, by showing how to allocate partnership income or loss to the partners under each of the four plans being considered. (Do not round intermediate calculations. Round final answers to the nearest whole dollar. Enter all allowances as positive values. Enter losses as negative values.) Evaluate 2^24^3=Your answer There were 3 madmen and 1 doctor. The doctor was going to do a test to see if they were smart. He said to the madmen, jump under the cars, there is chocolate. 1. mad jumped dead. 2. mad jumped dead. 3. mad not jumped. The doctor said that must have been smart. he asked. Why didn't you jump? Crazy, I am waiting for the truck, I will buy a big chocolate, he said. How was the joke? I wrote. In a response of approximately 50 words, explain why it would be essential for the successful A/V technician to participate in additional coursework, presentations and seminars offered by equipment manufacturers as well as annual conferences attended by colleagues in the industry. What is the solution to this system of equations?5x + 2y = 29x + 4y= 13 Which of the following statements is FALSE? A. Investments with higher volatility have rewarded investors with higher average returns. B. Volatility seems to be a reasonable measure of risk when evaluating returns on large portfolios and the returns of individual securities. C. Riskier investments must offer investors higher average returns to compensate them for the extra risk they are taking on. D. Investments with higher volatility should have a higher risk premium and, therefore, higher returns. On his return trip, Zen descends from the Calloway Peak Summit to an elevation of 2,402.5 feet, arriving at the Flat Rock Junction. So, the elevation at Flat Rock is feet. Find a vector equation and parametric equations for the line through the point (1,0,6) and perpendicular to the plane x+3y+z=5. A cell has a 5\%5%5, percent salt concentration. It is placed into a solution with a 0.5\%0.5%0, point, 5, percent salt concentration. What will happen to the cell? 3/4 + z = 5/6 what does z equal **50 points Once again and brainliest** Please hurry ;w; If x=64 &y=27 Evaluate x-yy-x