Answer:
80
Step-by-step explanation:
You mean the "interest on"
I=800×.1×1=80
find from first principle the derivative of 3x+5/√x
Answer:
[tex]\displaystyle \frac{d}{dx} = \frac{3x - 5}{2x^\bigg{\frac{3}{2}}}[/tex]
General Formulas and Concepts:
Algebra I
Exponential Rule [Powering]: [tex]\displaystyle (b^m)^n = b^{m \cdot n}[/tex]Exponential Rule [Rewrite]: [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex] Exponential Rule [Root Rewrite]: [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]Calculus
Derivatives
Derivative Notation
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
f(x) = cxⁿ f’(x) = c·nxⁿ⁻¹Derivative Rule [Quotient Rule]: [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \frac{3x + 5}{\sqrt{x}}[/tex]
Step 2: Differentiate
Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle \frac{3x + 5}{x^\bigg{\frac{1}{2}}}[/tex]Quotient Rule: [tex]\displaystyle \frac{d}{dx} = \frac{(x^\bigg{\frac{1}{2}})\frac{d}{dx}[3x + 5] - \frac{d}{dx}[x^\bigg{\frac{1}{2}}](3x + 5)}{(x^\bigg{\frac{1}{2}})^2}[/tex]Simplify [Exponential Rule - Powering]: [tex]\displaystyle \frac{d}{dx} = \frac{(x^\bigg{\frac{1}{2}})\frac{d}{dx}[3x + 5] - \frac{d}{dx}[x^\bigg{\frac{1}{2}}](3x + 5)}{x}[/tex]Basic Power Rule [Derivative Property - Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx} = \frac{(x^\bigg{\frac{1}{2}})(3x^{1 - 1} + 0) - (\frac{1}{2}x^\bigg{\frac{1}{2} - 1})(3x + 5)}{x}[/tex]Simplify: [tex]\displaystyle \frac{d}{dx} = \frac{3x^\bigg{\frac{1}{2}} - (\frac{1}{2}x^\bigg{\frac{-1}{2}})(3x + 5)}{x}[/tex]Rewrite [Exponential Rule - Rewrite]: [tex]\displaystyle \frac{d}{dx} = \frac{3x^\bigg{\frac{1}{2}} - (\frac{1}{2x^{\frac{1}{2}}})(3x + 5)}{x}[/tex]Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle \frac{d}{dx} = \frac{3\sqrt{x} - (\frac{1}{2\sqrt{x}})(3x + 5)}{x}[/tex]Simplify [Rationalize]: [tex]\displaystyle \frac{d}{dx} = \frac{3x - 5}{2x^\bigg{\frac{3}{2}}}[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
51
What is the inverse of the function f(x) = 2x + 1?
Oh(x) =
1
2x-
o h«x)= kx +
- 3x-2
Oh(x) =
Oh(x) =
Mark this and return
Save and Exit
Next
Submit
Type here to search
81
O
10:49 AM
^ D 0x
mamman
Answer:
let inverse f(x) be m:
[tex]m = \frac{1}{2x + 1} \\ 2x + 1 = \frac{1}{m} \\ 2x = \frac{1 - m}{m} \\ x = \frac{1 - m}{2m} [/tex]
substitute x in place of m:
[tex]{ \bf{ {f}^{ - 1}(x) = \frac{1 - x}{2x } }}[/tex]
HELP PLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
Answer:
12
Step-by-step explanation:
10 - 1/2 x = 12-4/3x
60 - 3x = 72-2x
-12 = - x
find the value of...
Answer:
1
Step-by-step explanation:
tan(1)tan(2)....tan(89)=?
Recall tan(90-x)=cot(x) and cot(x)tan(x)=1.
tan(89)=tan(90-1)=cot(1)
tan(88)=tan(90-2)=cot(2)
tan(87)=tan(90-3)=cot(3)
...
tan(46)=tan(90-44)=cot(44)
tan(45)=tan(90-45)=cot(45)
So we can replace the last half of the factors with cotangent of the angles in the first half.
The only one that doesn't get a partner is the exact middle factor which is tan(45).
So this is whar we have:
tan(1)tan(2)tan(3)....tan(45)....cot(3)cot(2)cot(1)
So you should see that cot(1)tan(1)=1 and cot(2)tan(2)=1 and so on....
So the product equals tan(45) and tan(45)=1 using unit circle.
Solve by graphing. Round each answer to the nearest tenth.
6x2 = −19x − 15
a: −2, 1.7
b: −1.7, −1.5
c: −1.5, 1.5
d: −1.5, 1.7
9514 1404 393
Answer:
b: -1.7, -1.5
Step-by-step explanation:
The graph is shown below. We have annotated the x-intercepts for the equivalent equation ...
6x^2 +19x +15 = 0
At a hockey game, a vender sold a combined total of 228 sodas and hot dogs. The number of sodas sold was two times the number of hot dogs sold. Find the number of sodas and the number of hot dogs sold.
9514 1404 393
Answer:
152 sodas76 hot dogsStep-by-step explanation:
Of the items sold, sodas were 2/(2+1) = 2/3 of the total.
(2/3)(228) = 152 . . . sodas were sold
152/2 = 76 . . . . hot dogs were sold
Complete this sentence: The longest side of a triangle is always opposite the
• A. angle with the smallest measure
O B. angle with the greatest measure
O C. shortest side
D. second-longest side
Answer:
B. angle with the greatest measure
opposite the largest angle
Compute the total cost per year of the following pair of expenses. Then complete the sentence: On an annual basis, the first set of expenses is _______% of the second set of expenses.
Vern buys seven lottery tickets each week at a cost of $3 each and spends $900 per year on his textbooks.
Answer:
So 912$ is 58% of 1584 $
Step-by-step explanation:
if sine Theta is less than 0 and tan Theta is greater than 0 then
Answer:
Sine Theta is a negative number, Tan Theta is a greater number then zero.
Step-by-step explanation:
If Sine Theta is less then zero, she is a negative number. So 0 - y = -y.
So if Tan Theta is a greater number than zero, her number is not negative. So 0 + y = y
I hope this helped! I didn’t really understand the question though.
Each side of a square is increasing at a rate of 4 cm/s. At what rate (in cm2/s) is the area of the square increasing when the area of the square is 25 cm2
Answer:
The area of the square is increasing at a rate of 40 square centimeters per second.
Step-by-step explanation:
The area of the square ([tex]A[/tex]), in square centimeters, is represented by the following function:
[tex]A = l^{2}[/tex] (1)
Where [tex]l[/tex] is the side length, in centimeters.
Then, we derive (1) in time to calculate the rate of change of the area of the square ([tex]\frac{dA}{dt}[/tex]), in square centimeters per second:
[tex]\frac{dA}{dt} = 2\cdot l \cdot \frac{dl}{dt}[/tex]
[tex]\frac{dA}{dt} = 2\cdot \sqrt{A}\cdot \frac{dl}{dt}[/tex] (2)
Where [tex]\frac{dl}{dt}[/tex] is the rate of change of the side length, in centimeters per second.
If we know that [tex]A = 25\,cm^{2}[/tex] and [tex]\frac{dl}{dt} = 4\,\frac{cm}{s}[/tex], then the rate of change of the area of the square is:
[tex]\frac{dA}{dt} = 2\cdot \sqrt{25\,cm^{2}}\cdot \left(4\,\frac{cm}{s} \right)[/tex]
[tex]\frac{dA}{dt} = 40\,\frac{cm^{2}}{s}[/tex]
The area of the square is increasing at a rate of 40 square centimeters per second.
So for this problem I got the scientific notation however I can not seem to figure out the standard notation. I thought it is the same answer but it is not. Can someone please help me out here please?
Answer:
567000000
Step-by-step explanation:
Standard is the actual number. Multiply 5.67 and 10^8.
How many outcomes (sample points) for a deal of two cards from a 52-card deck are possible? Report your answer as an integer.
Answer:
1326
Step-by-step explanation:
[tex]{52\choose2}=\frac{52!}{(52-2)!2!}=\frac{52!}{50!*2!}=1326[/tex]
We deposit $12000 into an account carning 3 % interest compounded continuously, How many years will it take
for the account to grow to $16800? Round to 2 decimal places,
Answer:
The answer is 13.33 year
Step-by-step explanation:
P = $12000
Rate = 3%
Amount = $16800
so,
I = A-P
= $16800 - $12000
= $4800
So,
T = (I × 100)/P×R
= (4800×100)/P×R
= 480000/($12000×3)
= 480000/36000
= 480/36
= 13.33 year
In 1980, the average cost of a pack of cigarettes was $0.88. In 2000, the average cost was $5.31 per pack.
What is the average rate of change of the cost of a pack of cigarettes? What is another name for the average rate of change?
Round your answer to the nearest cent.
Answer:
The average rate of change of the cost of a pack is 22 cents per year.
Another name for the average rate of change is slope.
Step-by-step explanation:
The average rate of change of the cost of a pack ([tex]r[/tex]), in monetary units per year, is equal to the change in the average cost of a pack ([tex]\Delta c[/tex]), in monetary units, divided by the change in time ([tex]\Delta t[/tex]), in years. Then, the average rate of change is:
[tex]r = \frac{\$\,5.31-\$\,0.88}{2000-1980}[/tex]
[tex]r = \$\,0.22\,\frac{1}{yr}[/tex]
The average rate of change of the cost of a pack is 22 cents per year.
Another name for the average rate of change is slope.
Based on the graph, find the set of all x-values for which the points P(x,y) are on the graph y>0. Enter your answer using interval notation
Answer:
The solution set is: (-1,3)
We want to find the set of the x-values of the points that belong to the given graph and have an y-value larger than zero.
The set is: s = (-1, 3)
To find the set, we need to see the x-values of the points on the graph such that y > 0.
y > 0 means that we only look at the region of the graph that is above the x-axis.
We can see that this region goes from x =-1 to x = 3
Then for all the x-values between x = -1 and x = 3 the points p(x, y) on the graph have an y-value larger than zero.
Notice that because the value must be larger than zero, then the particular x-values:
x = -1 and x = 3 are not in the set.
So the set must be written as:
s = (-1, 3)
This is the set in the interval notation.
If you want to learn more, you can read:
https://brainly.com/question/24600195
Domain and range
O Function
O Not a function
Answer:
Radiation 1- Function
Radiation 2- Not a function
Radiation 3- function
Radiation 4- function
Answer:
1 - Function
2 - Not a function
3 - function
4 - function
Step-by-step explanation:
The cost of renting a car is $46/week plus $0.25/mile traveled during that week. An equation to represent the cost would be y = 46 + 0.25x, where x is the number of miles traveled.
what is your cost if you travel 59 miles
cost: 60.75
if your cost Is $66.00, how many miles were you charged for traveling?
miles: ?
you have a max of $100 to spend on a car rental. what would be the maximum number of miles you could Travel?
max miles: ?
Answer:
If your cost Is $66.00, how many miles were you charged for traveling?
y = cost = $66[tex]66=46+0.25x\\66-46=0.25x\\20=0.25x\\x=\frac{20}{0.25} =80[/tex]80 miles
You have a max of $100 to spend on a car rental. what would be the maximum number of miles you could Travel?
y = cost = $100[tex]100=46+0.25x\\100-46=0.25x\\54=0.25x\\x=\frac{54}{0.25} =216[/tex]216 miles
A sociologist claims the probability that a person picked at random in Times Square in New York City is visiting the area is 0.83. You want to test to see if the claim is correct. State the null and alternative hypotheses.
Answer:
The answer is:
[tex]H_0: p=0.83\\\\H_a: p \neq 0.83[/tex]
Step-by-step explanation:
Now, we're going to test if sociologists claim to be have visited a region of 0.83 by a person picked randomly on Time In New York City.
Therefore, null or other hypotheses are:
[tex]H_0: p=0.83\\\\H_a: p \neq 0.83[/tex]
Joe's Auto Insurance Company customers sometimes have to wait a long time to speak to a
customer service representative when they call regarding disputed claims. A random sample
of 25 such calls yielded a mean waiting time of 22 minutes with a standard deviation of 6
minutes. Construct a 95% and 99% confidence interval for the population mean of such
waiting times. Explain what these interval means.
Answer:
The 95% confidence interval for the population mean of such waiting times is between 19.5 and 24.5 minutes. This means that we are 95% sure that the true mean waiting time of all calls for this company is between 19.5 and 24.5 minutes.
The 99% confidence interval for the population mean of such waiting times is between 18.6 and 25.4 minutes. This means that we are 99% sure that the true mean waiting time of all calls for this company is between 18.6 and 25.4 minutes.
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 25 - 1 = 24
95% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 24 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.95}{2} = 0.975[/tex]. So we have T = 2.0639
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 2.0639\frac{6}{\sqrt{25}} = 2.5[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 22 - 2.5 = 19.5 minutes
The upper end of the interval is the sample mean added to M. So it is 22 + 2.5 = 24.5 minutes
The 95% confidence interval for the population mean of such waiting times is between 19.5 and 24.5 minutes. This means that we are 95% sure that the true mean waiting time of all calls for this company is between 19.5 and 24.5 minutes.
99% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 24 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.99}{2} = 0.995[/tex]. So we have T = 2.797
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 2.797\frac{6}{\sqrt{25}} = 3.4[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 22 - 3.4 = 18.6 minutes
The upper end of the interval is the sample mean added to M. So it is 22 + 3.4 = 25.4 minutes
The 99% confidence interval for the population mean of such waiting times is between 18.6 and 25.4 minutes. This means that we are 99% sure that the true mean waiting time of all calls for this company is between 18.6 and 25.4 minutes.
Find a linear function that models the cost, C, to produce x toys given the rate of change and initial output value. The cost to produce plastic toys increases by 90 cents per toy produced. The fixed cost is 40 dollars. C(x) = dollars Write a linear model for the amount of usable fabric sheeting, F, manufactured in t minutes given the rate of change and initial output value. Fabric sheeting is manufactured on a loom at 7.25 square feet per minute. The first five square feet of the fabric is unusable. F(t) = ft^2 is the amount of usable fabric sheeting manufactured in t minutes.
Answer:
C(x) = $40 + 0.9x
F(t) = 7.25t - 5
Step-by-step explanation:
Given that :
C(x) = Cost model to produce x toys
Fixed cost of production = $40
Rate of change = 90 cent per toy produced.
A linear model will take the form :
F(x) = bx + c ;
Where ; b = rate of change or slope ; c = intercept or initial value
Therefore, a linear cost model will be :
Cost model to produce x toys = fixed cost + (rate of change * number of toys)
C(x) = $40 + 0.9x
2.)
F(t) = amount of usable factory sheets manufactured in t minutes :
Rate of production = 7.25 ft² / minute
Number of unusable fabric sheeting = 5 ft²
The function, F(t) :
F(t) = 7.25t - 5
Which point is the center of the circle?
w
Opoint w
O point X
o point Y
O point Z
Answer:
X o punto Y O punto z
Step-by-step explanation:
What is the minimum of y=1/3 x^2 + 2x + 5
Answer:
min at x = -3
Step-by-step explanation:
steps are in the pic above.
Please answer!<333 xx
12. X= 6
14. B= -11
16. N= 15
Answer:
q12. [tex]x=6[/tex]
q14. [tex]b=-11[/tex]
q16. [tex]n=15[/tex]
Step-by-step explanation:
Q12.
[tex]-1=\frac{x}{-6}[/tex]
Flip the equation:
[tex]\frac{x}{-6} =-1[/tex]
Multiply both sides by 6/(-1)
[tex](\frac{6}{-1} )[/tex] × [tex](\frac{-1}{6}x )[/tex] = [tex](\frac{6}{-1} )[/tex] × [tex](-1)[/tex]
[tex]x=6[/tex]
Q14.
[tex]5b=-55[/tex]
[tex]b=\frac{-55}{5}[/tex]
[tex]b=-11[/tex]
Q16.
[tex]-3n=-45[/tex]
[tex]n=\frac{-45}{-3}[/tex]
[tex]n=15[/tex]
hope this helps.....
You have been doing research for your statistics class on the prevalence of severe binge drinking among teens. You have decided to use 2011 Monitoring the Future (MTF) data that have a scale (from 0 to 14) measuring the number of times teens drank 10 or more alcoholic beverages in a single sitting in the past 2 weeks.
a. According to 2011 MTF data, the average severe binge drinking score, for this sample of 914 teens, is 1.27, with a standard deviation of 0.80. Construct the 95% confidence interval for the true averse severe binge drinking score.
b. On of your classmates, who claims to be good at statistics, complains about your confidence interval calculation. She or he asserts that the severe binge drinking scores are not normally distributed, which in turn makes the confidence interval calculation meaningless. Assume that she or he is correct about the distribution of severe binge drinking scores. Does that imply that the calculation of a confidence interval is not appropriate? Why or why not?
Answer:
(1.218 ; 1.322)
the confidence interval is appropriate
Step-by-step explanation:
The confidence interval :
Mean ± margin of error
Sample mean = 1.27
Sample standard deviation, s = 0.80
Sample size, n = 914
Since we are using tbe sample standard deviation, we use the T table ;
Margin of Error = Tcritical * s/√n
Tcritical at 95% ; df = 914 - 1 = 913
Tcritical(0.05, 913) = 1.96
Margin of Error = 1.96 * 0.80/√914 = 0.05186
Mean ± margin of error
1.27 ± 0.05186
Lower boundary = 1.27 - 0.05186 = 1.218
Upper boundary = 1.27 + 0.05186 = 1.322
(1.218 ; 1.322)
According to the central limit theorem, sample means will approach a normal distribution as the sample size increases. Hence, the confidence interval is valid, the sample size of 914 gave a critical value at 0.05 which is only marginally different from that will obtained using a normal distribution table. Hence, the confidence interval is appropriate
Evaluate:
11x - 8(x - y)
Answer:
11x-8x+8y
3x+8y SEEESH IN DEEZ NU TS
Step-by-step explanation:
Which expression is equivalent to -28xy + 35y?
o 7y(-4xy + 5y)
O 7x{-4x+ 5y)
o 7xl-4y+54)
O 7y(-4x+5)
Answer:
[tex]-28xy+35y[/tex]
[tex]GCF ~is~ 7y[/tex]
[tex]=7y(-4+5)[/tex]
The equivalent expression: [tex]7y(-4x+5)[/tex]
-------------------------
hope it helps...
have a great day!!
Question 1
Points 3
Rese
A carpet is in the shape of a right triangle. The longer leg
measures 8 feet. The hypotenuse is 4 feet more than the
length of the shorter leg. How long is the shorter leg?
Reset
after
assess
Answer:
6 feetStep-by-step explanation:
Given right triangle with:
Legs s and 8, and hypotenuse s + 4Use Pythagorean and solve for s:
(s + 4)² = s² + 8²s² + 8s + 16 = s² + 648s = 64 - 168s = 48s = 6Please help I’m really stuck this is my last attempt
What is the mode for the set of data?
Ages
Stem Leaves
5 0, 4, 6
6 0, 2, 3, 4, 8, 8, 9
7 0, 2, 3, 4, 4, 4, 8, 9
8 4, 5, 6, 8
5|0 = 50 years old
33
68
4
74
Answer:
I THINK IT IS 74 NOT 4
I HOPE THIS HELPS!!!!!
The owners of a baseball team are building a new baseball field for their team and must determine the number of seats to include. The average game is attended by 6,500 fans, with a standard deviation of 450 people. Suppose a random sample of 35 games is selected to help the owners decide the number of seats to include. Identify each of the following and be sure to round to the nearest whole number:
Provide your answer below:
μ =------------
μx=-----------
σx=-----------
σ=------------
n=------------
Answer:
μ = 6500
μx= 6500
σx= 76
σ= 450
n= 35
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
The average game is attended by 6,500 fans, with a standard deviation of 450 people.
This means that [tex]\mu = 6500, \sigma = 450[/tex]
35 games:
This means that [tex]n = 35[/tex]
Distribution of the sample mean:
By the Central Limit Theorem, we have [tex]\mu_x = \mu = 6500[/tex] and the standard deviation is:
[tex]\sigma_x = \frac{450}{\sqrt{35}} = 76[/tex]
A five-question multiple-choice quiz has five choices for each answer. Use the random number table provided, with O's representing Incorrect answers
and 1's representing correct answers, to answer the following question:
What is the probability of correctly guessing at random exactly one correct answer? Round to the nearest whole number.
Answer:
Step-by-step explanation:
jnow colata