Answer: 24 square cm.
8*6=48
48/2=24
Answer:
24 cm^2
Step-by-step explanation:
(w*h)/2
You are given the exponential function g(x)=3^x. Which ootion below gives the formula for the new function h created by stretching g by a factor of 3 along the y-axis?
Answer:
h(x) = 3^(x + 1)
Step-by-step explanation:
The exponential function is;
g(x) = 3^(x)
Now, in transformation of exponential functions of say f(x) = b^(x), when the new function g(x) is created by stretching by a factor of say c along the y-axis, we have;
g(x) = c•b^(x)
In this question, we are told it is stretched by a factor of 3 along the y-axis.
Thus, new function h is;
h(x) = 3 × 3^(x)
Using law of indices, we have;
h(x) = 3^(x + 1)
Please help me with this one
Answer:
240
Step-by-step explanation:
well do *
so 8x6x5 = 240 there's your answer
Answer:
[tex]S.A=1/2(8+8)(9^{2})+8\times 6+8\times 5[/tex]
[tex]=26\times2+48+40[/tex]
[tex]=140 ~cm^{2}[/tex]
-------------------------
HOPE IT HELPS
HAVE A GREAT DAY!!
Write the equation of the line parallel to =12−6 that passes through (2,−3).
Answer:
y=2-3
Step-by-step explanation:
using a calculator
When Zero added to any integer, what is the result?
Answer:
answer will be the integer only which was added to zero
A wooden board 27 ft long is cut into two pieces so that the longer piece is 8
times as long as the shorter piece. Find the lengths of the two pieces.
Answer:
3ft and 24 ft.
Step-by-step explanation:
Let the length of the shorter piece be xThe longer piece is 8 times as long as shorter piece
therefore,
Length of longer piece = 8xTotal length of the wooden board = 27 ft.
27 = longer length + shorter length
27 = x + 8x
27 = 9x
dividing both sided by 9
3 = x
since x was the length of the shorter piece
shorter piece is 3 ft. long
and the longer piece was equal to 8x
longer piece is 24 ft. long
Help please guysss will mark as brainliest!
What is 8 x 3 + 10 - 13 x 2? Show your work.
Will give first answer brainliest
Hello!
8 × 3 + 10 - 13 × 2 =
= 24 + 10 - 13 × 2 =
= 24 + 10 - 26 =
= 34 - 26 =
= 8
Good luck! :)
Answer:
8
Step-by-step explanation:
According to bdmas rule
First multiply 8 and 3 or 13 and 2
Then, there will be 24 + 10 - 26
Then add 24 + 10, there will be 34
and again minus by 26
Then finally answer will be 8
There is money to send four of nine city council members to a conference in Honolulu. All want to go, so they decide to choose the members to go to the conference by a random process. How many different combinations of four council members can be selected from the nine who want to go to the conference
Answer:
126
Step-by-step explanation:
There are 9 city council members.
We have to choose 4 of them.
We have to use the combination as :
[tex]$^9C_4$[/tex]
where, 9 is the population size
4 is the sample size.
Therefore, the total number of possible samples without replacement is given as :
[tex]$^9C_4=\frac{9!}{4!(9-4)!}$[/tex]
[tex]$=\frac{9!}{5! \ 4!}$[/tex]
[tex]$=\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1}$[/tex]
= 126
Two friends enter a contest. Kelsey scored 200 more points than Jake. Together,
they collected a total of 1250 points. How many points did they each score?
Subtract the amount Kelsey got more than Jake from the total:
1250 - 200 = 1050
Divide by 2:
1050/2 = 525
Jake got 525
Kelsey got 525 + 200 = 725
can anyone help me here asapp,, I am in this question for nearly an hour
Answer:
See below
Step-by-step explanation:
Let side AB equal x. Since triangle ABC is equilateral, sides AB, BC, and Ac are all the same length, x. In any isosceles triangle(equilateral is a type of isosceles triangle) the median is the same as the altitude and angle bisector. This means we can say that AD is also a median. A median splits a side into two equal sections, so we can say BD = DC = x / 2. We are given that DC = CE, so we can also say CE = DC = x / 2. Now, we can use the pythagorean theorem to find the length of AD. So we get the equation:
AB^2 - BD^2 = AD^2
We have the values of AB and BD, so we can substitute them and solve for AD:
x^2 - (x/2)^2 = AD^2
x^2 - x^2 / 4 = AD^2
AD^2 = 3x^2 / 4
AD = x√3 / 2
DE is equal to the sum of DC and CE because of segment addition postulate, so we can say DE = DC + CE = x / 2 + x/ 2 = x. We can again use the pythagorean theorem to find the length of AE:
AD^2 + DE^2 = AE^2
(x√3 / 2)^2 + x^2 = AE^2
3x^2 / 4 + x^2 = AE^2
AE^2 = 7x^2 / 4
AE = x√7 / 2
Now, we know(from before) that AE squared is 7x^2 / 4. We can say EC squared is x^2 / 4 because EC is x / 2 and x / 2 squared is x^2 / 4. We can also notice that AE squared is 7 times EC squared because 7x^2 / 4 = 7 * x^2 / 4
Therefore, we can come to the conclusion AE^2 = 7 EC^2
What is the solution to the equation One-fourth x + 2 = negative StartFraction 5 Over 8 EndFraction x minus 5?
x = negative 8
x = negative 7
pls hurry
x = 7
x = 8
Answer:
c = 24
Step-by-step explanation:
someone help me please with this algebra problem
Answer:
D.
Step-by-step explanation:
She cannot buy a negative number of notebooks. She can buy 0 notebooks, or 1 notebook, or 2, or 3, etc. The number of notebooks she buys must be a non-negative integer.
Answer: D.
Six liters of paint will cover 50 square meters. How many square meters will nine liters cover?
Answer:
75 m²Step-by-step explanation:
Six liters of paint will cover 50 square meters.
6L ⇒ 50m²
then,
1L ⇒ 50/6 m²
9L ⇒ 50 × [tex]\frac{9}{6}[/tex] m²
⇒ 75 m²
Solve for x. Round to the nearest tenth, if necessary.
5 + 3bc =
9a + b =
cd + bc =
Answer:
You can't answer these questons
sorry
Hope This Helps!!!
measured the volume of an object and recorded it as 46 cubic cm
which was 15% high from the actual volume. Find the actual volume.
Answer:
[tex]40\ cm^3[/tex]
Step-by-step explanation:
Let the actual volume is V.
The measured volume of an object is 46 cubic cm which was 15% high from the actual volume.
According to the given condition,
[tex]V+\dfrac{15V}{100}=46\\\\\dfrac{115V}{100}=46\\\\V=\dfrac{4600}{115}\\\\V=40\ cm^3[/tex]
So, the actual volume was [tex]40\ cm^3[/tex].
The daily listening audience of an AM radio station is five times as large as that of its FM sister station. If 144,000 people listen to these two radio stations, how many listeners does the FM station have?
Answer:
The number of FM listereners are 24000.
Step-by-step explanation:
Let the listeners of FM are p and thus the istereners of AM are 5p.
According to the question,
p + 5 p = 144000
6 p = 144000
p = 24000
The number of FM listereners are 24000.
Find the values of x and y from the following equal ordered pairs. a) (x,-2) = (4,y) b) (3x, 4) = (6, 2y) c) (2x-1, y + 2) = (-1,2) d) (2x + 4, y + 5) = (3x + 3,6) e) (x + y,y + 3) = (6, 2y) f) (x + y, x - y) - (8,0)
Answer:
a)
x=4, y=-2
b)
x=2, y=2
c)
x=0, y=0
d)
x=1, y=1
e)
x=3, y=3
f)
x=4, y=4
Step-by-step explanation:
a) (x,-2) = (4,y)
x=4
y=-2
b) (3x, 4) = (6, 2y)
3x=6 => x=2
2y=4 => y=2
c) (2x-1, y + 2) = (-1,2)
2x-1 =-1 => x=0
y+2 = 2 => y=0
d) (2x + 4, y + 5) = (3x + 3,6)
2x+4 = 3x+3 => x=1
y+5 = 6 => y=1
e) (x + y,y + 3) = (6, 2y)
x+y = 6 => x+3 = 6 => x=3
y+3 = 2y => y=3
f) (x + y, x - y) - (8,0)
x+y = 8 => 2x=8 => x=4
x-y = 0 => x=y => y=4
using quadratic equation:
help me solve it
[tex]10x - \frac{1}{x } = 3[/tex]
Answer:
[tex]10x - \frac{1}{x} = 3 \\ 10x = 3 + \frac{1}{x} \\ 10x = \frac{3x + 1}{x} \\ 10x \times x = 3x + 1 \\ 10 {x}^{2} = 3x + 1 \\ 10 {x}^{2} - 3x - 1 = 0 \\ 10 {x}^{2} - 5x + 2x - 1 = 0 \\ 5x(2x - 1) + 1(2x - 1) = 0 \\ (5x + 1)(2x - 1) = 0 \\ \\ 5x + 1 = 0 \\ 5x = - 1 \\ x = \frac{ - 1}{5} \\ \\ 2x - 1 = 0 \\ 2x = 1 \\ x = \frac{1}{2} [/tex]
hope this helps you.
Have a nice day!
I need who help .. who can be my lifesaver
Answer:
Q = G
Step-by-step explanation:
We are already given that angle P = angle H
We are also given that side QP = side GH
Remember if two sides are congruent then so are their opposite angles meaning that the opposite angle of GH ( which would be angle F ) would be congruent to the opposite angle of QP ( which would be angle R )
The remaining angles would be angle q and angle g so the additional information needed would be G = Q
A student draws two parabolas on graph paper. Both parabolas cross the x-axis at (-4, 0) and (6.0). The y-intercept of
the first parabola is (0,–12). The y-intercept of the second parabola is (0, -24). What is the positive difference between
the a values for the two functions that describe the parabolas ? Write your answer as a decimal rounded to the nearest
tenth.
Answer:
∆a = 1/2
Step-by-step explanation:
parabolas cross the x-axis at (-4, 0) and (6, 0)
y = a(x + 4)(x - 6)
At the y-intercept x = 0
y = a(0 + 4)(0 - 6)
y = -24a
-----------------------
y-intercept of the first parabola is (0,–12)
-12 = -24a
a = 1/2
-----------------------
y-intercept of the second parabola is (0, -24)
-24 = -24a
a = 1
----------------------
What is the positive difference between the a values
∆a = 1 - 1/2
∆a = 1/2
Someone please help me with this math problem?
Answer:
(C) 0.3(10 + 4h) = 0.25(6h)
Step-by-step explanation:
Here's what we know about Fernando's fees:
$10 is the initial fee
$4 is the hourly fee (h)
Saves 30% (also written as 0.3) of the total cost (includes initial and hourly fee)
Here's what we know about Brenna's fees:
No initial fee
$6 is the hourly fee (h)
Saves 25% (also written as 0.25) of the total cost (just the hourly fee because she doesn't have an initial fee)
We want to find which hour Fernando and Brenna will have saved the same amount of money.
To do this, let's first set up an equation for Fernando and Brenna separately:
Fernando's equation:
0.3(10 + 4h) = how much money he saves from the total cost
Brenna's equation:
0.25(6h) = how much money she saves from the total cost
Now we set them equal to each other:
0.3(10 + 4h) = 0.25(6h)
There's your answer!
Hope it helps (●'◡'●)
Find all possible values of α+
β+γ when tanα+tanβ+tanγ = tanαtanβtanγ (-π/2<α<π/2 , -π/2<β<π/2 , -π/2<γ<π/2)
Show your work too. Thank you!
Answer:
[tex]\rm\displaystyle 0,\pm\pi [/tex]
Step-by-step explanation:
please note that to find but α+β+γ in other words the sum of α,β and γ not α,β and γ individually so it's not an equation
===========================
we want to find all possible values of α+β+γ when tanα+tanβ+tanγ = tanαtanβtanγ to do so we can use algebra and trigonometric skills first
cancel tanγ from both sides which yields:
[tex] \rm\displaystyle \tan( \alpha ) + \tan( \beta ) = \tan( \alpha ) \tan( \beta ) \tan( \gamma ) - \tan( \gamma ) [/tex]
factor out tanγ:
[tex]\rm\displaystyle \tan( \alpha ) + \tan( \beta ) = \tan( \gamma ) (\tan( \alpha ) \tan( \beta ) - 1)[/tex]
divide both sides by tanαtanβ-1 and that yields:
[tex]\rm\displaystyle \tan( \gamma ) = \frac{ \tan( \alpha ) + \tan( \beta ) }{ \tan( \alpha ) \tan( \beta ) - 1}[/tex]
multiply both numerator and denominator by-1 which yields:
[tex]\rm\displaystyle \tan( \gamma ) = - \bigg(\frac{ \tan( \alpha ) + \tan( \beta ) }{ 1 - \tan( \alpha ) \tan( \beta ) } \bigg)[/tex]
recall angle sum indentity of tan:
[tex]\rm\displaystyle \tan( \gamma ) = - \tan( \alpha + \beta ) [/tex]
let α+β be t and transform:
[tex]\rm\displaystyle \tan( \gamma ) = - \tan( t) [/tex]
remember that tan(t)=tan(t±kπ) so
[tex]\rm\displaystyle \tan( \gamma ) = -\tan( \alpha +\beta\pm k\pi ) [/tex]
therefore when k is 1 we obtain:
[tex]\rm\displaystyle \tan( \gamma ) = -\tan( \alpha +\beta\pm \pi ) [/tex]
remember Opposite Angle identity of tan function i.e -tan(x)=tan(-x) thus
[tex]\rm\displaystyle \tan( \gamma ) = \tan( -\alpha -\beta\pm \pi ) [/tex]
recall that if we have common trigonometric function in both sides then the angle must equal which yields:
[tex]\rm\displaystyle \gamma = - \alpha - \beta \pm \pi [/tex]
isolate -α-β to left hand side and change its sign:
[tex]\rm\displaystyle \alpha + \beta + \gamma = \boxed{ \pm \pi }[/tex]
when is 0:
[tex]\rm\displaystyle \tan( \gamma ) = -\tan( \alpha +\beta \pm 0 ) [/tex]
likewise by Opposite Angle Identity we obtain:
[tex]\rm\displaystyle \tan( \gamma ) = \tan( -\alpha -\beta\pm 0 ) [/tex]
recall that if we have common trigonometric function in both sides then the angle must equal therefore:
[tex]\rm\displaystyle \gamma = - \alpha - \beta \pm 0 [/tex]
isolate -α-β to left hand side and change its sign:
[tex]\rm\displaystyle \alpha + \beta + \gamma = \boxed{ 0 }[/tex]
and we're done!
Answer:
-π, 0, and π
Step-by-step explanation:
You can solve for tan y :
tan y (tan a + tan B - 1) = tan a + tan y
Assuming tan a + tan B ≠ 1, we obtain
[tex]tan/y/=-\frac{tan/a/+tan/B/}{1-tan/a/tan/B/} =-tan(a+B)[/tex]
which implies that
y = -a - B + kπ
for some integer k. Thus
a + B + y = kπ
With the stated limitations, we can only have k = 0, k = 1 or k = -1. All cases are possible: we get k = 0 for a = B = y = 0; we get k = 1 when a, B, y are the angles of an acute triangle; and k = - 1 by taking the negatives of the previous cases.
It remains to analyze the case when "tan "a" tan B = 1, which is the same as saying that tan B = cot a = tan(π/2 - a), so
[tex]B=\frac{\pi }{2} - a + k\pi[/tex]
but with the given limitation we must have k = 0, because 0 < π/2 - a < π.
On the other hand we also need "tan "a" + tan B = 0, so B = - a + kπ, but again
k = 0, so we obtain
[tex]\frac{\pi }{2} - a=-a[/tex]
a contradiction.
Answer qn in attachment
Answer:
[tex]\implies \dfrac{ -4x+7}{2(x-2) }[/tex]
Step-by-step explanation:
The given expression to us is ,
[tex]\implies \dfrac{\frac{ 3}{x-1} -4 }{ 2 -\frac{2}{x-1}}[/tex]
Now take the LCM as ( x - 1 ) and Simplify , we have ,
[tex]\implies \dfrac{\frac{ 3 -4(x-1) }{x-1} }{ \frac{2-2(2x-1)}{x-1}}[/tex]
Simplifying further , we get ,
[tex]\implies \dfrac{ -4x+7}{2(x-2) }[/tex]
Hence the second option is correct .
Step-by-step explanation:
[tex] \frac{ \frac{3}{x - 1} - 4}{2 - \frac{2}{x - 1} } \\ = \frac{ \frac{3 - 4(x - 1)}{x - 1} }{ \frac{2(x - 1) - 2}{x - 1} } \\ = \frac{3 - 4x + 4}{2x - 2 - 2} \\ = \frac{7 - 4x}{2x - 4} = \frac{ - 4x - 7}{2(x - 2)} \\ thank \: you[/tex]
[tex]option \: b \\ thank \: you[/tex]
If z varies jointly as x and y and inversely as w^2?, and
z = 72 when x = 80, y = 30 and
w=5, then find z when x = 20, y = 60 and w=9.
Answer:
Step-by-step explanation:
z = (k*x*y) / w²
Where,
k = constant of proportionality
z = 72 when x = 80, y = 30 and w = 5
z = (k*x*y) / w²
72 = (k * 80 * 30) / 5²
72 = 2400k / 25
Cross product
72 * 25 = 2400k
1800 = 2,400k
k = 2,400/1800
k = 24/18
= 4/3
k = 1 1/3
k = 1.33
find z when x = 20, y = 60 and w=9
z = (k*x*y) / w²
z = (1.33 * 20 * 60) / 9²
z = (1596) / 81
Cross product
81z = 1596
z = 1596/81
z = 19.703703703703
Approximately,
z = 19.7
What conversion ratio was skipped in this multiple-step conversion?
Answer:
B
Step-by-step explanation:
B was missed. You have to convert this from hours into minutes before you can deal with seconds.
Solve the equation to find a positive value of c: 3^2 + 4^2 = c^2
Answer:
The answer is c=5,-5
please help me for 5 points
Answer:
275 adults
130 children
Step-by-step explanation:
Answer:
275 adults, 130 children
Step-by-step explanation:
Which set of ordered pairs does not represent a function? \{(5, -9), (6, -6), (-3, 8), (9, -6)\}{(5,−9),(6,−6),(−3,8),(9,−6)} \{(-6, -4), (4, -8), (-6, 9), (1, -3)\}{(−6,−4),(4,−8),(−6,9),(1,−3)} \{(1, -1), (-5, 7), (4, -9), (-9, 7)\}{(1,−1),(−5,7),(4,−9),(−9,7)} \{(8, -9), (-3, -6), (-4, 4), (1, -5)\}{(8,−9),(−3,−6),(−4,4),(1,−5)}
Answer:
[tex]\{(-6, -4), (4, -8), (-6, 9), (1, -3)\}[/tex]
Step-by-step explanation:
Given
[tex]\{(5, -9), (6, -6), (-3, 8), (9, -6)\}[/tex]
[tex]\{(-6, -4), (4, -8), (-6, 9), (1, -3)\}[/tex]
[tex]\{(1, -1), (-5, 7), (4, -9), (-9, 7)\}[/tex]
[tex]\{(8, -9), (-3, -6), (-4, 4), (1, -5)\}[/tex]
Required
Which is not a function
An ordered pair is represented as:
[tex]\{(x_1,y_1),(x_2,y_2),(x_3,y_3),..........,(x_n,y_n)\}[/tex]
However, for the ordered pair to be a function; all the x values must be unique (i.e. not repeated)
From options (a) to (d), option (b) has -6 repeated twice. Hence, it is not a function.
Please help, im confused ;w;
Answer:
[tex]x=7\text{ and } m\angle KLM = 34^\circ[/tex]
Step-by-step explanation:
We are given ethat KM and JN are parallel.
And we want to find the value of x.
Notice that ∠JKM and ∠LKM form a linear pair. Linear pairs total 180°. Therefore:
[tex]m\angle JKM + m\angle LKM = 180[/tex]
We know that ∠JKM measures (14x + 8). Substitute:
[tex](14x+8)+m\angle LKM =180[/tex]
Solve for ∠LKM:
[tex]m\angle LKM = 172-14x[/tex]
Next, since KM and JN are parallel, by the Corresponding Angles Theorem:
[tex]\angle JNM \cong \angle KML[/tex]
Since we know that ∠JNM measure (10x + 2), we can conclude that:
[tex]m\angle KML = 10x+2[/tex]
Next, recall that the three interior angles of a triangle must total 180°. Therefore:
[tex]m\angle KLM + m\angle LKM + m\angle KML = 180[/tex]
Substitute:
[tex](5x-1)+(172-14x)+(10x+2)=180[/tex]
Solve for x. Rewrite:
[tex](5x-14x+10x)+(-1+172+2)=180[/tex]
Combine like terms:
[tex](1x)+(173)=180[/tex]
Therefore:
[tex]x=7[/tex]
To find ∠KLM, substitute in 7 for x and evaluate. So:
[tex]m\angle KLM = 5(7) - 1 =34^\circ[/tex]