Given:
The two points on the graph.
To find:
The distance between the two points in simplest radical form.
Solution:
From the given graph, it is clear that the two points on the graph are (-9,3) and (-3,-2).
Distance formula:
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Using the distance formula, the distance between two points (-9,3) and (-3,-2) is:
[tex]d=\sqrt{(-3-(-9))^2+(-2-3)^2}[/tex]
[tex]d=\sqrt{(-3+9)^2+(-5)^2}[/tex]
[tex]d=\sqrt{(6)^2+(-5)^2}[/tex]
On further simplification, we get
[tex]d=\sqrt{36+25}[/tex]
[tex]d=\sqrt{61}[/tex]
Therefore, the distance between the given points is [tex]\sqrt{61}[/tex] units.
Sum of 5x^2+2x and 4-x^2
Answer:
4x^2 + 2x + 4
Step-by-step explanation:
5x^2 + 2x + 4 - x^2
4x^2 + 2x + 4
Answer:
2(2x^2 + x + 2)
Step-by-step explanation:
5x^2+2x + 4-x^2
Re arrange so like terms are next to each other
Keep the same symbol that is at the front of the term when moving it
5x^2 - x^2 + 2x + 4
We will just do the first part first
5x^2 - x^2
5x^2 - 1x^2 (is the same thing as above)
So because they are like terms (are both x^2)
We can just minus 1 from 5
5-1=4
So 4x^2
Now the equation is
4x^2 + 2x + 4
This is as small as it gets but you can also bring it to this
4, 2 and 4 all are divisible by 2 so
2(2x^2 + x + 2)
find the value of x. what is the relationship of these 2 angles? set up and solve an equation
As it is right angled, thus it will be equal to 90.
= 2x + 5 + x + 25 = 90
= 3x + 30 = 90
= 3x = 60
= x = 60/3
= x = 20
Answer:
x = 20°
Step-by-step explanation:
[tex]2x + 5 + x + 25 = 90 \\ 3x + 30 = 90 \\ 3x = 90 - 30 \\ 3x = 60 \\ x = \frac{60}{3} \\ x = 20 \\ [/tex]
In △CDE, DE=14, CE=9, and m∠E=71∘. What is the length of CD⎯⎯⎯⎯⎯⎯? Enter your answer, rounded to the nearest hundredth, in the box.
Answer:
13.96units
Step-by-step explanation:
To get the length of CD, we will use the cosine rule as shown:
CD² = DE²+CE²-2(DE)(CE)cos m<E
Substitute the given values
CD² = 14²+9²-2(14)(9)cos71
CD² = 196 + 81 - 252cos71
CD² =277 - 252cos71
CD² = 277 - 82.0431
CD² = 194.95682
CD = √194.95682
CD = 13.96 units
Hence the length of CD of 13.96units
Solve for X in the triangle. Round your answer to the nearest tenth
Answer:
[tex]\displaystyle x \approx 9.9[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightEquality Properties
Multiplication Property of Equality Division Property of Equality Addition Property of Equality Subtraction Property of EqualityTrigonometry
[Right Triangles Only] SOHCAHTOA[Right Triangles Only] sinθ = opposite over hypotenuseStep-by-step explanation:
Step 1: Define
Identify variables
Angle θ = 64°
Opposite Leg = x
Hypotenuse = 11
Step 2: Solve for x
Substitute in variables [sine]: [tex]\displaystyle sin(64^\circ) = \frac{x}{11}[/tex][Multiplication Property of Equality] Multiply 11 on both sides: [tex]\displaystyle 11sin(64^\circ) = x[/tex]Rewrite: [tex]\displaystyle x = 11sin(64^\circ)[/tex]Evaluate: [tex]\displaystyle x = 9.88673[/tex]Round: [tex]\displaystyle x \approx 9.9[/tex]62x+2.63x = 1
Solve
EN
Step-by-step explanation:
answer is in photo above
Answer:
-2/5
Step-by-step explanation:
You have one each of $0.05, $0.10, $0.25, $1.00 and $2.00 coins in your wallet. How many different sums of money could you form by reaching into your wallet and pulling out some coins?
Answer:
The correct answer is - 26 sums for pulling few coins.
Step-by-step explanation:
Given:
coins in the wallet = 5 ($0.05, $0.10, $0.25, $1.00 and $2.00)
Different sums of money = ?
Formula: Different combination of items can be calculated with the help of a formula of combination that is -
nCr = n! / ((n – r)! r!)
where, n = total number of items
r = number of item in a set
solution:
In this question number of set is not given only few mention so the sets could be 2 coins, 3 coins, 4 coins and 5 coins.
a. for set of 2 coins
= 5! / ((5 – 2)! 2!)
= 20/2
= 10 combination of sums
b. for the set of 3 coins
= 5! / ((5 – 3)! 3!)
= 10
C. for 4
= 5! / ((5 – 4)! !)
= 5
d. for 5 coins
only 1 sum
thus, the total types of different sums = 10+10+5+1
= 26.
Steve Ballmer, the current CEO of Microsoft, used to be the manager of his college football team. Among his duties, he had to be sure the players were hydrated. When nearby construction forced a water shut off, Steve went to the Star Market to purchase bottles of water. He needed a total of 80 liters of water. Star Market sold water in two liter bottles and in half liter bottles. What possible combinations of the small and large bottles might he purchase in order to bring 80 liters to the football team?
a. Write an equation that models the possible combinations of half liter bottles and two liter bottles that would total 80 liters. (Be sure to define the variables.)
b. What is the x-intercept and what does it represent?
c. What is the y-intercept and what does it represent?
9514 1404 393
Answer:
a. x + 4y = 160
b. 160
c. 40
Step-by-step explanation:
a. We can define the variables as ...
x = number of 1/2-liter bottles
y = number of 2-liter bottles
For the total number of liters to be 80, we require
1/2x + 2y = 80
We can multiply this by 2 to eliminate the fraction.
x + 4y = 160
__
b. The x-intercept is 160. It is the number of 1/2-liter bottles required when no 2-liter bottles are used.
__
c. The y-intercept is 40. It is the number of 2-liter bottles required when no 1/2-liter bottles are used.
I need help badly please with number 2 ...help me .. please no links or I will report you
9514 1404 393
Answer:
$62.74
Step-by-step explanation:
The annuity formula can be used to find the payment needed. Fill in the known values and solve for the unknown.
The future balance due to a series of payments is given by ...
A = P(n/r)((1 +r/n)^(nt) -1)
where A is the account balance P is the payment made each period, n is the number of periods per year, r is the annual interest rate, and t is the number of years.
You have A = $20,000, r = 0.041, n = 12, t = 18 and you want to find P
P = A(r/n)/((1 +r/n)^(nt) -1)
P = $20,000(0.041/12)/((1 +0.041/12)^(12·18) -1) ≈ $62.74
A monthly payment of $62.74 is required.
What is the area of the parallelogram shown?
Answer:
Area = 96 square m
Step-by-step explanation:
[tex]Area = base \times height = 12 \times 8 = 96 \ m^2[/tex]
Answer:
The area of parallelogram is 96 m ².
Step-by-step explanation:
According to the question , we have given a parallelogram with base 12 m and height is 8 m. We need to find the area of parallelogram.
Solution :-Using Formula
Area of parallelogram = Base × Height
Substitute the values into this formula
Area of parallelogram = 12 m × 8 m
multiply, we get
Area of parallelogram = 96 m²
Therefore, The area of parallelogram is 96 m ².
Bill can hit a bucket of 323 golf balls in 17 hours.
How many golf balls can Bill hit in 23 hours?
Yevgenia walks 8 x 2/3 miles every week which fraction represents the number of miles that Yevgenia walks each
Answer:
16/3
Step-by-step explanation:
When multiplyin fractions by whole numbers, you can make the whole number a fraction by simply making the denominator 1, than you will multiply numerators by numerators and denominators by denominators, therefore
8 x 2 = 16
1 x 3 = 3
16/3
Use the graph to answer the question.
What is [tex]\frac{AD}{AB}[/tex] in simplest form?
A. [tex]\frac{10}{3}[/tex]
B. [tex]\frac{1}{3}[/tex]
C. [tex]\frac{17}{5}[/tex]
D. 3
Answer:
D. 3
Step-by-step explanation:
Distance between A and D = AD = 9 units
Distance between A and B = AB = 3 units
[tex] \frac{AD}{AB} = \frac{9}{3} [/tex]
Simplify by dividing
[tex] \frac{AD}{AB} = \frac{3}{1} [/tex]
[tex] \frac{AD}{AB} = 3 [/tex]
The answer is 3
A store manager timed Janette
Answer:
more information please.
Step-by-step explanation:
factorize for me
y + 3y + 2-sin2x=0
Answer:
−(−4y−2+sin2(x))=0
Step-by-step explanation:
What is the awnsers helppppp
Answer: 0.77
Step-by-step explanation:
Answer:
0.23
Step-by-step explanation:
the chart adds up to 1 as a whole so 23% chose football and there is a 23% chance the next person will also choose football.
Question 16 of 20
If a study estimated that 22% of students ride their bikes to school, and the
error range is +2%, what percentage of students might actually ride their bikes
to school?
O A. 22% -24%
O B. 2% - 22%
O C. 20% - 22%
ОО
D. 20% - 24%
SUBMIT
PREVIOUS
Answer:
D) 20%-24%
Step-by-step explanation:
The margin of error is ±2%, which means that the true proportion it can be 2% above the average proportion or 2% below the average proportion. Therefore, the percentage of students that might actually ride their bikes to school is 20%-24%.
Answer: A. 22%-24%
Step-by-step explanation: There's a +2% error range, so you just add 2% to the existing percentage to get your range of 22% (the original percentage) through 24% (the percentage you get after adding 2%)
given a group of six students consisting of four female and two male how many different three member committee can be chosen from this group probability question
Given:
Total number of students = 6
Number of female students = 4
Number of male students = 2
To find:
Total number of outcomes if 3 students are chosen at random (Should i find the probability of something?)
Steps:
To find the total number of outcomes, we need to list the outcomes
Outcomes = {M,M,F} , {M,F,F} , {F,F,F}
Therefore, the total number of outcomes if 3 students are chosen at random is 3, if we don't consider order.
Could you elaborate the question a bit more if i made a mistake of what to find.
Margot surveyed a random sample of 180 people from the United States about their favorite sports to watch. Then she sent separate, similar, survey to a random sample of 180 people from the United Kingdom. Here are the results:
Favorite sport to watch United States United kingdom Total
Basketball 60 51 111
Football 67 14 81
Soccer 28 86 114
Tennis 25 29 54
Total 180 180 360
Margot wants to perform a x^2 test of homogeneity on these results. What is the expected count for the cell corresponding to people from the United Kingdom whose favorite sports to watch is tennis?
Answer:
27
Step-by-step explanation:
The expected count in a χ² test can be obtained thus :
Expected count for each each point in a two way table ::
(row total * column total) / total
Therefore, expected count for cell corresponding to people from United Kingdom whose favorite sport is tennis :
Row total = (51+14+86+29) = 180
Column total = (25 + 29) = 54
Total = 360
Hence,
Expected count = (180 * 54) / 360
Expected count = 27
Pls help ASAP!!!!!!!!!!! I NEED HELP IMMEDIATELY!!!
Jaime had ten posters, but only five could fit on his closet door. How many different ways can he arrange the five posters out of the ten on his closet door?
A. 252
B. 648
C. 6,048
D. 30,240
Answer:
its c
Step-by-step explanation:
It take 6 Pounds of flour to make 36 cakes. How much flour is needed to make 9 cakes?
Answer:
54 pounds
Step-by-step explanation:
To find out how much flour is needed to make 9 cakes, we first need to find out how much much flour is needed to make 1 cake. For that, we need to divide 6 by 36. That will give you 6. Now that we know how much flour is needed to make 1 cake, we will just have to multiply 6 by 9 to find out how much flour is needed to make 9 cakes. That will give you 54 pounds, which is your final answer.
solve the system of equations y=x-7 y=x^2-9x+18
9514 1404 393
Answer:
(x, y) = (5, -2)
Step-by-step explanation:
Equating expressions for y, we have ...
x^2 -9x +18 = x -7
x^2 -10x +25 = 0 . . . . . add 7-x to both sides
(x -5)^2 = 0 . . . . . . . . factor
The value of x that makes the factor(s) zero is x=5. The corresponding value of y is ...
y = x -7 = 5 -7 = -2
The solution is (x, y) = (5, -2).
I was wondering if someone could answer this :)
Answer:
17
Step-by-step explanation:
2a+30 = 4a-4
+4 +4
2a+34 = 4a
-2a -2a
34 = 2a
÷2 ÷2
a=17
Hope this helps! :)
Answer:
A = 17
Step-by-step explanation:
Opposite angles are congruent in a parallelogram
Hence 2a + 30 = 4a - 4
( Note that we've just created an equation that we can use to solve for a)
We now solve for a
2a + 30 = 4a - 4
Add 4 to both sides
2a + 34 = 4a
Subtract 2a from both sides
34 = 2a
Divide both sides by 2
a = 17
All the edges of the object in the diagram are equal in length. The object is cut by a vertical plane containing A and B and bisecting two of the horizontal edges. What
is the shape of the cross-section resulting from the cut?
СА.
an equilateral triangle
B.
a square
C.
a rhombus
D.
a regular hexagon
Answer:
The shape from the cross-section resulting from the cut would be a Rhombus
Step-by-step explanation:
Edmentum Plato users!
The shape of the cross-section resulting from the cut is C. Rhombus.
What is a rhombus?A rhombus simply means a shape that has opposite sides to be parallel and the sides are equal.
Here, the information states that the edges of the object in the diagram are equal in length and that the object is cut by a vertical plane containing A and B and bisecting two of the horizontal edges.
Therefore, the shape of the cross-section resulting from the cut is a rhombus.
Learn more about rhombus on:
https://brainly.com/question/20627264
SEE ATTACHED IMAGE, THANK YOU!
Answer:
a)
X P[X]
0 5/14
1 15/28
2 3/28
b)
The expected value is 0.75
Step-by-step explanation:
Ok, we know that out of 8 cameras, 3 are defective.
So first let's find the probability for a camera randomly selected to be defective.
This is just the quotient between the number of defective cameras and the total number of cameras.
p = 3/8
then the probability that a camera is not defective is:
q = 5/8.
Ok, now we draw 2 cameras at random from the box.
We can define X as the number of defective cameras in these two drawn, we can have 3 possible values of X.
X = 0 (neither of the cameras is defective)
X = 1 (one of the cameras is defective)
X = 2 (both of the cameras is defective).
Let's find the probabilities for each case.
X = 0.
In this case, we first draw a non-defective camera, with a probability of:
P = 5/8.
The second camera drawn must be also non-defective, but now there are 4 non-defective cameras in the box and a total of 7 cameras (because one was already drawn).
Then the probability now is:
Q = 4/7
The joint probability is the product of the two individual probabilities:
P[0] = P*Q = (5/8)*(4/7) = (5/14)
X = 1
Here we have two cases:
the first is defective and the second is non-defective
the first is non-defective and the second is defective
So we just have a factor of 2, to consider both cases
Assuming the first case
Probability of drawing first a defective camera is equal to the quotient between the number of defective cameras and the total number of cameras:
P = 3/8
For the second draw we want to get a non-defective camera, here the probability is equal to the number of non-defective cameras remaining (5) and the total number of cameras (7, because we drawn one)
Q = 5/7
The joint probability, taking in account the permutation, is
P[1] = 2*P*Q = 2*(3/8)*(5/7) = (15/28)
finally, for X = 2
This is the case where we draw two defective cameras, we can use a similar approach as the one used in the first case:
For the first camera:
P = 3/8
For the second camera:
Q = 2/7
Joint probability:
P[2] = (3/8)*(2/7) = 3/28
then we have the table:
X P[X]
0 5/14
1 15/28
2 3/28
b)
The expected value for an event that has the outcomes:
{x₁, x₂, ..., xₙ}
Each one with the correspondent probability
{p₁, p₂, ..., pₙ}
is defined as:
EV = x₁*p₁ + x₂*p₂ + ... + xₙ*pₙ
Then in our case, the expected value is just:
EV = 0*P[0] + 1*P[1] + 2*P[2]
EV = 0 + 15/28 + 2*3/28
EV = (15 + 6)/28 = 21/28 = 0.75
How do I solve this math problem? The answer is: x = a^2/a-3
Answer:
I love algebra anyways
the ans is in the picture with the steps
(hope it helps can i plz have brainlist :D hehe)
Step-by-step explanation:
6 +7 ( □ +7 5) = 1
help me pls
Answer:
Can't be possible.
Step-by-step explanation:
Given:
6+7(x+75)=1
So according to given equation it can't be possible because when we add some value in 6 their result will be always greater than 1.
I need big help on this one
What is the value of z in the equation 3z+9=z?
Find the solution set of the inequality
\qquad8x - 8 \leq -72.8x−8≤−72.
Step-by-step explanation:
- 8 is the ans .hope this help you. mark me as brainliest
Simplify:{x(6x - 1
A)
B)
2x-1
9
2x
x-
2x7.5
D
[tex]\implies {\blue {\boxed {\boxed {\purple {\sf {D. \:= 2 {x}^{2} - \frac{1}{3} x}}}}}}[/tex]
[tex]\sf \bf {\boxed {\mathbb {STEP-BY-STEP\:EXPLANATION:}}}[/tex]
[tex] \frac{1}{3} x \: ( \: 6x - 1 \: )\\[/tex]
[tex] = \frac{x \: ( \: 6x - 1 \: )}{3}\\[/tex]
[tex] = \frac{6 {x}^{2} - x}{3} \\[/tex]
[tex] = \frac{6 {x}^{2} }{3} - \frac{x}{3}\\ [/tex]
[tex] = 2 {x}^{2} - \frac{1}{3} x\\[/tex]
[tex]\red{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \: \: Mystique35♛}}}}}[/tex]