Answer:
x=7.23
Step-by-step explanation:
Brainliest please
Please help explanation if possible
Answer:
N=18
Step-by-step explanation:
Hope it will help you
If it does pls give me Brainlest
Have a nice day
Answer:
18
Step-by-step explanation:
use the concept of similarity and enlargement.
[tex] \frac{15}{n} = \frac{5}{6 } [/tex]
[tex]n = \frac{15 \times 6}{5} [/tex]
[tex]n = 18[/tex]
Use the graph to complete the statement. O is the origin. r(180°,O) ο Ry−axis : (2,5)
A. ( 2, 5)
B. (2, -5)
C. (-2, -5)
D. (-2, 5)
9514 1404 393
Answer:
B. (2, -5)
Step-by-step explanation:
Reflection across the y-axis is the transformation ...
(x, y) ⇒ (-x, y)
Rotation 180° about the origin is the transformation ...
(x, y) ⇒ (-x, -y)
Applying the rotation after the reflection, we get ...
(x, y) ⇒ (x, -y)
(2, 5) ⇒ (2, -5)
_____
Additional comment
For these transformations, the order of application does not matter. Either way, the net result is a reflection across the x-axis.
Answer:
(2,-5)
Step-by-step explanation:
Betadine solution is a 10% povidone-iodine solution. Express this strength both as a fraction and as a ratio.
Step-by-step explanation:
Fraction =
[tex] \frac{10}{100} = \frac{1}{10} [/tex]
Ratio is 1 : 10
Assume the sample is a random sample from a distribution that is reasonably normally distributed and we are doing inference for a sample mean
(a) Find endpoints of a t-distribution with 5 % beyond them in each tail if the sample has size n = 12.
(b) Find endpoints of a t-distribution with 1% beyond them in each tail if the sample has size n=20.
Answer:
a) Hence the endpoints of a t-distribution with 5% beyond them in each tail if the sample has size n=12 is ± 1.796.
b) Hence the endpoints of a t-distribution with 1% beyond them in each tail if the sample has size n=20 is ± 2.539.
Step-by-step explanation:
Here the answer is given as follows,
Calculate a high estimate for each. Show your work?81×37
Step-by-step explanation:
2997
81
×
37
=2997
it just a simple calculation just multiply the numbers
PLEASE HELP!!!
Evaluate each expression.
(252) =
Answer:
1/5
Step-by-step explanation:
What is the remainder when () = 3 − 11 − 10 is divided by x+3
Answer:
-18/x+3
Step-by-step explanation:
The least-squares regression equation
y = 8.5 + 69.5x can be used to predict the monthly cost for cell phone service with x phone lines. The list below shows the number of phone lines and the actual cost.
(1, $90)
(2, $150)
(3, $200)
(4, $295)
(5, $350)
Calculate the residuals for 2 and 5 phone lines, to the nearest cent.
The residual for 2 phone lines is $___
The residual for 5 phone lines is $___
Answer:
First one: 2.5
Second: -6
8.5+69.5(5) = 147.5
150 - 147.5 = 2.5
8.5 + 69.5(5) = 356
350 - 356 = -6
ED2021
The residual for 2 phone lines is $2.5.
The residual for 5 phone lines is -$6.
What is the residual in a least-square regression equation?
The residual is the vertical distance separating the observed point from your expected y-value, or more simply put, it is the difference between the actual y and the predicted y.
How to solve the question?In the question, we are asked to find the residual for 2 and 5 lines using the least-squares regression equation y = 8.5 + 69.5x and the actual costs given to us.
We know that the residual is the vertical distance separating the observed point from your expected y-value, or more simply put, it is the difference between the actual y and the predicted y.
Thus for 2 phone lines:-
Actual Cost = $150.
Predicted Cost, y = 8.5 + 69.5*2 = 147.5.
Residual = Actual Cost - Predicted Cost = 150 - 147.5 = $2.5.
Thus, the residual for 2 phone lines is $2.5.
Thus for 5 phone lines:-
Actual Cost = $350.
Predicted Cost, y = 8.5 + 69.5*2 = 356.
Residual = Actual Cost - Predicted Cost = 350 - 356 = -$6.
Thus, the residual for 2 phone lines is -$6.
Learn more about the residual in a least-square regression equation at
https://brainly.com/question/20165292
#SPJ2
A kite is a ........... quadrilateral
Answer:
yes
Step-by-step explanation:
The complete sentence is,
A kite is a convex quadrilateral.
We have to given that,
To find a kite is which type of a quadrilateral.
We know that,
A quadrilateral known as a kite has four sides that may be divided into two pairs of neighboring, equal-length sides.
The two sets of equal-length sides of a parallelogram, however, are opposite one another as opposed to being contiguous.
Hence, The complete sentence is,
A kite is a convex quadrilateral.
Learn more about quadrilateral visit:
https://brainly.com/question/23935806
#SPJ7
The sum of the two numbers is 66. The larger number is 10 more than the smaller number. What are the numbers?
Answer:
28 and 38
Step-by-step explanation:
a+b = 66
a + 10 = b
using substitution, a + (a+10) = 66
2a = 56
a = 28
28 + 10 = 38
b = 38
write your answer in simplest radical form
Answer:
[tex]s=6\sqrt{3}[/tex]
Step-by-step explanation:
In any 30-60-90 triangles, the sides are in ratio [tex]x:x\sqrt{3}:2x[/tex], where [tex]x[/tex] is the side opposite to the 30 degree angle and [tex]2x[/tex] is the hypotenuse of the triangle.
In the given diagram, the hypotenuse is marked as 12 miles. Therefore, the side opposite to the 30 degree angle must be [tex]12 \div 2=6[/tex] miles. The final leg, [tex]s[/tex], must then represent the [tex]x\sqrt{3}[/tex] part of our ratio, hence [tex]\implies \boxed{6\sqrt{3}}[/tex]
The question is in the screenshot
Answer:
AC is about 4.29
Step-by-step explanation:
we need to use simple trigonometry for this problem
the tangent of an angle is the ratio between the opposite side and the adjacent side
so the tangent of the angle 35º is BC / AC
tan(35) is about 0.7
this means that BC / AC = 0.7
we know BC is 3
so 3 / AC = 0.7
3 = 0.7(AC)
AC is about 4.29
Given the following matrices, what 3 elements make up the first column of the product matrix DA?
We have to figure out what the product of DA is,
[tex]\begin{bmatrix}-1&2&3\\8&-4&0\\6&7&1\\ \end{bmatrix}\begin{bmatrix}1\\3\\5\\ \end{bmatrix}=\begin{bmatrix}a\\b\\c\\ \end{bmatrix}[/tex]
We know that,
[tex]\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\\\end{bmatrix}\begin{bmatrix}x\\y\\z\\\end{bmatrix}=\begin{bmatrix}ax+by+cz\\dx+ey+fz\\gx+hy+iz\\\end{bmatrix}[/tex]
So,
[tex]a=-1\cdot1+2\cdot3+3\cdot5=-1+6+15=20[/tex]
[tex]b=8\cdot1+(-4)\cdot3+0\cdot5=8-12=-4[/tex]
[tex]c=6\cdot1+7\cdot3+1\cdot5=6+21+5=32[/tex]
So the solution is,
[tex]a,b,c=\boxed{20,-4,32}[/tex]
Hope this helps :)
2
7) through: (-3,0), slope
3
Answer:
Step-by-step explanation:
Point-slope equation for line of slope m that passes through (x₀, y₀):
y-y₀ = m(x-x₀)
Slope =3 and (x₀, y₀)=(-3,0)
y = 3(x+3)
y = 3x+ 9
:::::
Slope-intercept equation for line of slope m and y-intercept b:
y = mx+b
m=1 and b= -4:
y = x-4
The figure to the right shows the graphs of the cost and revenue functions for a
company that manufactures and sells small radios. The solid red line represents the
revenue function, R(x) = 55x; the dashed blue line represents the cost function,
C(x) = 15,000 + 30x. Use the formulas to find R(300) - C(300). Describe what this means for the company
(Type integers or decimals.)
R(300) - C(300) = ???
which represents a $ ???
loss for the company
B. R(300) - C(300) = ??
which represents a ??
gain for the company
From the formula R(300) - C(300) we understand that is loss of 7500 for the company.
The given functions are R(x) = 55x and C(x) = 15,000 + 30x.
What is the function?Functions are the fundamental part of the calculus in mathematics. The functions are the special types of relations. A function in math is visualized as a rule, which gives a unique output for every input x.
The given function is R(300) - C(300).
Now, R(300) = 55 × 300 = 16500
C(300) = 15,000 + 30 × 300
=15,000 + 9000
= 24,000
Now, R(300) - C(300) = 16500-24000
= -7,500
Therefore, from the formula R(300) - C(300) we understand that is loss of 7500 for the company.
To learn more about the function visit:
https://brainly.com/question/12426369.
#SPJ
CAN SOMEBODY ANSWER MY QUESTIONS !!!!
9514 1404 393
Answer:
A''(-1, 2)B''(3, 5)C''(4, 3)Step-by-step explanation:
Reflection over the line x=a is the transformation ...
(x, y) ⇒ (2a -x, y)
Then the double reflection over x=a and x=b is the transformation ...
(x, y) ⇒ (2b -(2a -x), y) = (2(b-a) +x, y)
That is, the result is translation by twice the distance between the lines. For a=1 and b=3, the transformation is ...
(x, y) ⇒ (x +4, y) . . . . . . . translation to the right by 4 units.
A(-5, 2) ⇒ A''(-1, 2)
B(-1, 5) ⇒ B''(3, 5)
C(0, 3) ⇒ C''(4, 3)
Please send only answer
Want to bring a metal rod to assemble a toy frame. All long metal rods must be used at least. How much to assemble the frame as shown in the picture
Answer:
how many times should u use the metal rod ??
Helppppp plzzzzzzz!!!!!!!!!!! 15+ PTS and brainliest!!!!!!!!
Write the equation of the line with slope of 0, and y-intercept of 9.
Answer:
y=0x+9. Hope this helped.
Step-by-step explanation:
slope intercept form: y=mx+b
m represents slope
b represents the y intercept. Please give me the brainliest:)
Write an equation that has the zero's x={−1,−6}
Answer:
Step-by-step explanation:
If a zero is x = -1, then the factor, going one step backwards, is (x + 1) = 0; if the other zero is x = -6, then the factor is (x + 6) = 0. Now, going backwards one step further, we FOIL those out:
(x + 1)(x + 6) to get x-squared + 6x + 1x + 6 which combines to
[tex]x^2+7x+6=y[/tex]
FOILing those factors together is the opposite of factoring. Factoring gets you the factors, while FOILing puts them back together in the original equation.
HELPPP!!!
find the area of a triangle with a height of 9cm and a base of 5 cm
Answer:
A = 22.5 cm^2
Step-by-step explanation:
The area of a triangle is
A = 1/2 bh where b is the base and h is the height
A = 1/2(5)(9)
A = 45/2
A = 22.5 cm^2
[tex]\begin{gathered} {\underline{\boxed{ \rm {\red{Area \: \: of \: \: triangle \: = \: \frac{1}{2} \: \times \: base \: \times \: height}}}}}\end{gathered}[/tex]
Base of triangle = 5 cm.Height of triangle is 9 cm.Solution[tex]\bf \longrightarrow \:Area \: \: of \: \: triangle \: = \: \frac{1}{2} \: \times \: 5 \: cm \: \times \: 9 \: cm[/tex]
[tex]\bf \longrightarrow \:Area \: \: of \: \: triangle \: = \: \frac{1}{2} \: \times \: 45 \: cm[/tex]
[tex]\bf \longrightarrow \:Area \: \: of \: \: triangle \: = \: \frac{45 \: {cm}^{2} }{2} \: \\ [/tex]
[tex]\bf \longrightarrow \:Area \: \: of \: \: triangle \: = \: \cancel\frac{45}{2} \: \: ^{22.5 \: {cm}^{2} } \: \\ [/tex]
[tex]\bf \longrightarrow \:Area \: \: of \: \: triangle \: = \: 22.5 \: {cm}^{2} [/tex]
Hence , the area of triangle is 22.5 cm²
The average score of all golfers for a particular course has a mean of 65 and a standard deviation of 4.5 . Suppose 81 golfers played the course today. Find the probability that the average score of the golfers exceeded 66 . Round to four decimal places.
Answer:
Answer:
The probability that the average score of the 49 golfers exceeded 62 is 0.3897
Step-by-step explanation:
Please Help!!! Thank you!
find x
Answer:
If the hypotenuse of the 30 60 90 triangle is 7 sqrt 3, then the length of the longer side is equal to 7 x 3, or 21.
Now going to the 45 45 90 triangle, we can see that x is equal to 21[tex]\sqrt{2}[/tex]. This is because the hypotenuse of a 45 45 90 triangle is equal to the side length times sqrt 2.
So our answer is, 21[tex]\sqrt{2}[/tex].
Let me know if this helps!
How do we solve this?
Answer:
[tex] = - \frac{1}{36(6x + 1) ^{6} } + c[/tex]
I hope I helped you^_^Answer:
[tex]-\frac{1}{36\left(6x+1\right)^6} +C[/tex]
Step-by-step explanation:
we're going to us u substitution
[tex]\int (6x+1)^-7 dx[/tex]
[tex]u=6x+1[/tex]
[tex]\int\frac{1}{6u^7} du[/tex]
take out the constant, [tex]\frac{1}{6}[/tex]
[tex]\frac{1}{6}[/tex] · [tex]\int u^-7du[/tex]
next use the power rule, [tex]\int x^adx=\frac{x^{a+1}}{a+1},\:\quad \:a\ne -1[/tex]
[tex]\frac{1}{6}\cdot \frac{u^{-7+1}}{-7+1}[/tex]
simplify by substituting [tex]6x+1[/tex] for [tex]u[/tex]
[tex]\frac{1}{6}\cdot \frac{(6x+1)^{-7+1}}{-7+1} = -\frac{1}{36\left(6x+1\right)^6}[/tex]
add a constant, [tex]C[/tex]
[tex]-\frac{1}{36\left(6x+1\right)^6} +C[/tex]
find the measure of x
Answer:
[tex]B)\ x=43[/tex]
Step-by-step explanation:
One is given a circle with many secants within the circle. Please note that a secant refers to any line in a circle that intersects the circle at two points. A diameter is the largest secant in the circle, it passes through the circle's midpoint. One property of a diameter is, if a triangle inscribed in a circle has a side that is a diameter of a circle, then the triangle is a right triangle. One can apply this to the given triangle by stating the following:
[tex]x+47+90=180[/tex]
Simplify,
[tex]x+47+90=180[/tex]
[tex]x+137=180[/tex]
Inverse operations,
[tex]x+137=180[/tex]
[tex]x=43[/tex]
Type an equation for the
following pattern.
x
1 -2
2
4
3
-6
y=[? ]x+[ ]
4
-8
S
- 10
Answer:
y=-2x
Step-by-step explanation:
first find the slope: (-2-(-4))/(1-2)=2/-1=-2 so m=-2
now we have y=-2x+b, to find b we plug in any of the points
-2=-2(1)+b-2=-2+b b=0so the equation is y=-2x
En la tira están escritos los números de 1 a 40. Corta la tira en pedazos, de tal forma gue en cada uno de ellos queden a lo más dos números primos , Icośntos contes hiciste
Se debe realizar 6 cortes sobre la tira.
Una Tira es una pieza de papel cuya longitud es mucho mayor que su anchura. Un Número Primo es un Número Natural que solo es divisible por 1 y por sí mismo, mientras que un Número Compuesto se compone de Números Primos y es divisible además por otros números, tanto Primos como Compuestos.
Realizamos el ejercicio siguiendo las siguientes consideraciones:
1) Escribimos los primeros 40 Números Naturales en orden ascendente.
2) El primer número del primer segmento de tira es el 1 y contiene a lo sumo dos Números Primos y termina en el Número Natural inmediatamente precedente a un Número Primo.
3) El resto de segmentos de tira comienza con un Número Primo, contiene a lo sumo dos Números Primos y termina en el Número Natural inmediatamente precedente a un Número Primo.
Los números primos entre 1 y 40 son 3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 33, 37.
Los segmentos de tira son los siguientes:
1) 1, 2, 3, 4 (1 número primo)
2) 5, 6, 7, 8, 9, 10 (2 números primos)
3) 11, 12, 13, 14, 15, 16 (2 números primos)
4) 17, 18, 19, 20 (2 números primos)
5) 21, 22, 23, 24, 25, 26, 27,28 (2 números primos)
6) 29, 30, 31, 32 (2 números primos)
7) 33, 34, 35, 36, 37, 38, 39, 40 (2 números primos)
El número de cortes ([tex]n[/tex]) se determina mediante la siguiente fórmula:
[tex]n = s - 1[/tex] (1)
Donde [tex]s[/tex] es el número de segmentos de tiras.
Si sabemos que hay 7 segmentos de tiras, entonces se debe realizar 6 cortes.
Preguntas relacionadas: https://brainly.com/question/1885560
what value of x is in the solution set of 8x-6>12+2x
Answer:
x>3
Step-by-step explanation:
8x - 2x > 12+ 6
-> 6x > 18
-> x > 3
[tex] \: \: \: \huge \rm{answer: \blue{ \boxed{ \rm{ \pink{x > 3}}}}}[/tex]
➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖
[tex] \huge \blue{ \boxed{ \pink{\boxed{ \rm{ \blue{armed }\: account}}}}}[/tex]
➙[tex] \huge \rm8x-6>12+2x \\ \rm \huge8x-2x>12+6 \\ \huge\rm6x>18 \\ \huge \boxed{\rm{x>3}}[/tex]
➖➖➖➖➖➖➖➖➖➖➖➖➖➖
I hope you understood!✏
➖➖➖➖➖➖➖➖➖➖➖➖➖➖
Step-by-step explanation:
[tex] \huge \boxed{ \boxed{\rm{Hope \: this \: helps}}}[/tex]
Given two dependent random samples with the following results: Population 1 30 35 23 22 28 39 21 Population 2 45 49 15 34 20 49 36 Use this data to find the 90% confidence interval for the true difference between the population means. Assume that both populations are normally distributed. Step 1 of 4: Find the point estimate for the population mean of the paired differences. Let x1 be the value from Population 1 and x2 be the value from Population 2 and use the formula d=x2−x1 to calculate the paired differences. Round your answer to one decimal place.
Answer:
(-14.8504 ; 0.5644)
Step-by-step explanation:
Given the data:
Population 1 : 30 35 23 22 28 39 21
Population 2: 45 49 15 34 20 49 36
The difference, d = population 1 - population 2
d = -15, -14, 8, -12, 8, -10, -15
The confidence interval, C. I ;
C.I = dbar ± tα/2 * Sd/√n
n = 7
dbar = Σd/ n = - 7.143
Sd = standard deviation of d = 10.495 (using calculator)
tα/2 ; df = 7 - 1 = 6
t(0.10/2,6) = 1.943
Hence,
C.I = - 7.143 ± 1.943 * (10.495/√7)
C.I = - 7.143 ± 7.7074
(-14.8504 ; 0.5644)
Write 33/100 in a decimal
Answer:
it is .33
Step-by-step explanation:
take 33 and for each 0 move the decimal point like so
33.
3.3
.33
keep learning (:
According to Zimmels (1983), the sizes of particles used in sedimentation experiments often have a uniform distribution. In sedimentation involving mixtures of particles of various sizes, the larger particles hinder the movements of the smaller ones. Thus, it is important to study both the mean and the variance of particle sizes. Suppose that spherical particles have diameters that are uniformly distributed between 0.02 and 0.08 centimeters. Find the mean and variance of the volumes of these particles. (Recall that the volume of a sphere is (4/3) πr3) Round your answers to four decimal places.
E(Y)= ___ x10−5 cm3
V(Y) = ___ x10−9
The expected value of a normal distribution is the mean of the distribution, while the variance measures the squared deviation of a value from the expected value. The expected value and the variance are: [tex]13.6190 \times 10^{-5}[/tex] and [tex]580.8000 \times 10^{-9}[/tex]
Given that, the diameters are:
[tex]d_1 = 0.02[/tex]
[tex]d_2 = 0.08[/tex]
The radius is:
[tex]r = \frac{d}{2}[/tex]
So, we have:
[tex]r_1 = \frac{0.02}{2} = 0.01[/tex]
[tex]r_2 = \frac{0.08}{2} = 0.04[/tex]
The volume of the sphere is:
[tex]V = \frac{4}{3} \times \pi \times r^3[/tex]
For [tex]r_1 = 0.01[/tex], the volume is:
[tex]V_1 = \frac{4}{3} \times \frac{22}{7} \times 0.01^3 = 0.419047 \times 10^{-5}[/tex]
For [tex]r_2 = 0.04[/tex], the volume is
[tex]V_2 = \frac{4}{3} \times \frac{22}{7} \times 0.04^3 = 26.819047 \times 10^{-5}[/tex]
The mean of a uniform distribution is:
[tex]E(y) = \frac{a + b}{2}[/tex]
In this case, the mean is:
[tex]E(y) = \frac{V_1 + V_2}{2}[/tex]
So, we have:
[tex]E(y) = \frac{0.419047 \times 10^{-5} + 26.819047 \times 10^{-5}}{2}[/tex]
[tex]E(y) = \frac{27.238094\times 10^{-5} }{2}[/tex]
[tex]E(y) = 13.619047 \times 10^{-5}[/tex]
Approximate
[tex]E(y) = 13.6190 \times 10^{-5}[/tex]
The variance of a uniform distribution is:
[tex]V(y) = \frac{(b-a)^2}{12}[/tex]
In this case, the volume is:
[tex]V(y) = \frac{(V_2-V_1)^2}{12}[/tex]
So, we have:
[tex]V(y) = \frac{(26.819047 \times 10^{-5}- 0.419047 \times 10^{-5})^2}{12}[/tex]
[tex]V(y) = \frac{(26.4 \times 10^{-5})^2}{12}[/tex]
[tex]V(y) = \frac{(696.96 \times 10^{-10})}{12}[/tex]
[tex]V(y) = 58.08000 \times 10^{-10}[/tex]
Rewrite as:
[tex]V(y) = 580.8000 \times 10^{-9}[/tex]
Hence, the expected value and the variance of the sphere are:[tex]13.6190 \times 10^{-5}[/tex] and [tex]580.8000 \times 10^{-9}[/tex]
Learn more about expected values and variance at:
https://brainly.com/question/4470015