9514 1404 393
Answer:
(a) 21
Step-by-step explanation:
The product of the lengths to the near and far circle intercepts are the same for the two lines. For the tangent, the near and far intercepts are the same point, so we have ...
(36)(36) = (27)(27+x)
48 = 27+x . . . . . . . . . . divide by 27
x = 21 . . . . . . . . subtract 27
Please ignore the writing in blue as I tried to work it out but couldn’t
Answer:
[tex]k=35[/tex]°
Step-by-step explanation:
The degree measure of a straight line is (180) degrees. Therefore, when a line intersects another line, the sum of angle measures on any one side of the line is (180). One can apply this here to find the supplement (the angle on the same side of the line) of the angle with a measure of (130) degrees, and (85) degrees.
[tex]130 + (unknown_1)=180\\unknown_1=50\\\\85+(unknown_2)=180\\unknown_2=95[/tex]
The sum of angle measures in a triangle is (180) degrees, one can apply this here by stating the following;
[tex](unknown_1)+(unknown_2)+(k)=180[/tex]
Substitute,
[tex]50+95+k=180[/tex]
Simplify,
[tex]50+95+k=180\\\\145+k=180\\\\k=35[/tex]
[tex]\sf \bf {\boxed {\mathbb {TO\:FIND :}}}[/tex]
The measure of angle [tex]k[/tex].
[tex]\sf \bf {\boxed {\mathbb {SOLUTION:}}}[/tex]
[tex]\implies {\blue {\boxed {\boxed {\purple {\sf {k\:=\:35°}}}}}}[/tex]
[tex]\sf \bf {\boxed {\mathbb {STEP-BY-STEP\:\:EXPLANATION:}}}[/tex]
We know that,
[tex]\sf\pink{Sum\:of\:angles\:on\:a\:straight\:line\:=\:180°}[/tex]
➪ [tex]x[/tex] + 85° = 180°
➪ [tex]x[/tex] = 180° - 85°
➪ [tex]x[/tex] = 95°
Also,
Exterior angle of a triangle is equal to sum of two opposite interior angles.
And so we have,
➪ 130° = [tex]k[/tex] + [tex]x[/tex]
➪ [tex]k[/tex] + 95° = 130°
➪ [tex]k[/tex] = 130°- 95°
➪ [tex]k[/tex] = 35°
Therefore, the value of [tex]k[/tex] is 35°.
[tex]\sf \bf {\boxed {\mathbb {TO\:VERIFY :}}}[/tex]
[tex]\sf\blue{Sum\:of\:angles\:of\:a\:triangle\:=\:180°}[/tex]
➪ 50° + 35° + 95° = 180°
( where 50° = 180° - 130°)
➪ 180° = 180°
➪ L. H. S. = R. H. S.
Hence verified.
(Note: Kindly refer to the attached file.)
[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{ヅ}}}}}[/tex]
What is the smallest 6-digit- palindrome (a number that reads the same forward and backward) divisible by 99
Answer:
108801
Step-by-step explanation:
Palindrome as defined in the given question as a number which reads the same forward and backward. Examples are: 1001, 20202, 1331 etc.
Thus, to determine the smallest 6-digit palindrome divisible by 99 without a remainder, the digits should be in the form of abccba.
Therefore, the smallest 6-digit palindrome that can be divided by 99 is 108801.
So that,
108801 ÷ 99 = 1099
A service station has both self-service and full-service islands. On each island, there is a single regular unleaded pump with two hoses. Let X denote the number of hoses being used on the self-service island at a particular time, and let Y denote the number of hoses on the full-service island in use at that time. The joint pmf of X and Y appears in the accompanying tabulation.
Y
p(x,y) 0 1 2
x 0 0.10 0.04 0.02
1 0.08 0.20 0.06
2 0.06 0.14 0.30
a. What is P(X = 1 and Y = 1)?
b. Compute P(X ≤ 1 and Y ≤ 1).
c. Give a word description of the event {X ≠ 0 and Y ≠ 0}, and compute the probability of this event.
d. Compute the marginal pmf of X and of Y. Using pX(x), what is P(X ≤ 1)?
e. Are X and Y independent rv’s? Explain.
Answer:
a. 0.2
b. 0.42
c. 0.7
d. the solution is in the explanation
e. x and y are not independent
Step-by-step explanation:
a. from the joint probability mass function table,
p(x=1) and p(Y= 1)
= p(1,1) = 0.2
b. prob(0,0)+prob(0,1)+prob(1,0)+prob(1,1)
= 0.10 + 0.04 + 0.08 + 0.20
= 0.42
P(X ≤ 1 and Y ≤ 1) = 0.42
c. prob {X ≠ 0 and Y ≠ 0}
= prob(1,1) + prob(1,2) + prob(2,1) + prob(2,2)
= 0.20 + 0.06 + 0.14 + 0.30
= 0.7
d. we have to calculate the marginal pmf of x and y here.
we have the x values as 0,1,2
prob(x=0) = 0.1 + 0.04 + 0.02
= 0.16
prob(x=1) = 0.08 + 0.2 + 0.06
= 0.34
prob(x=2) = 0.06+0.14+0.3
= 0.50
we have y values as 0,1,2
prob(y=0) = .1+.08+.06
= 0.24
prob(y=1) = .04+.2+.14
= 0.38
prob(y = 2) = 0.02+0.06+0.3
= 0.38
P(X ≤ 1) = prob(x=0)+prob(x=1)
= 0.34+0.16
= 0.50
e. from the joint table we have this,
prob(1,1) = 0.2
prob(x=1) = 0.34
prob(y=1) = 0.38
then prob(x=1)*prob(y=1)
= 0.34*0.38
= 0.1292
therefore prob(1,1) is not equal to prob(x=1)*prob(y=1)
0.2≠0.1292
x and y are not independent
You work as an office assistant who does data entry for a large survey company. Data entry is performed in two-person teams: one person types and the other checks that person's work for errors. Each two-person team, on average, can enter the data of 520 surveys per day. A huge collection of 7,540 surveys will arrive tomorrow and must be entered by the end of the day. In order to enter all of the survey data, how many total employees, working in two-person teams, must work tomorrow?
Answer:
you just gave your self the answer because you just need to multiply
Step-by-step explanation:
15080 is the answer
The annual salaries of employees in a large company are approximately normally distributed with a mean of $50,000 and a standard deviation of $2000. What is the probability of randomly selecting one employee who earned less than or equal to $45,000
Answer:
The probability of randomly selecting one employee who earned less than or equal to $45,000=0.00621
Step-by-step explanation:
We are given that
Mean,[tex]\mu=50000[/tex]
Standard deviation,[tex]\sigma=2000[/tex]
We have to find the probability of randomly selecting one employee who earned less than or equal to $45,000.
[tex]P(x\leq 45000)=P(\frac{x-\mu}{\sigma}\leq \frac{45000-50000}{2000})[/tex]
[tex]P(x\leq 45000)=P(Z\leq-\frac{5000}{2000})[/tex]
[tex]P(x\leq 45000)=P(Z\leq -2.5)[/tex]
[tex]P(x\leq 45000)=0.00621[/tex]
Hence, the probability of randomly selecting one employee who earned less than or equal to $45,000=0.00621
Suppose the mean income of firms in the industry for a year is 95 million dollars with a standard deviation of 11 million dollars. If incomes for the industry are distributed normally, what is the probability that a randomly selected firm will earn less than 114 million dollars
Answer:
95.73%
Step-by-step explanation:
Given data:
mean μ= 95
standard deviation, σ = 11
to calculate, the probability that a randomly selected firm will earn less than 114 million dollars;
Use normal distribution formula
[tex]P(X<114)=P(Z<\frac{X-\mu}{\sigma} )[/tex]
Substitute the required values in the above equation;
[tex]P(X<114)=P(Z<\frac{114-95}{11} )\\P(X<114)=P(Z<1.7272)\\P(X<114)=0.9573[/tex]
Therefore, the probability that a randomly selected firm will earn less than 114 million dollars = 95.73%
A cylinder has a radius of 2.5 inches (in.) and a height of 11 in., as shown.
2.5 in.
11 in.
What is the surface area, in square inches, of the cylinder?
Answer:
212.06
Step-by-step explanation:
can't really explain since the formula is fricking long but trust me that's uts 212.06 in²
In any triangle ABC,Prove by vector method c^2=a^2+b^2-2abcosC
Answer:
Let be [tex]\vec A[/tex], [tex]\vec B[/tex] and [tex]\vec C[/tex] the vector of a triangle so that [tex]\vec C = \vec A + \vec B[/tex]. By definition of Dot Product:
[tex]\vec C \,\bullet\,\vec C = (\vec A + \vec B) \,\bullet \vec C[/tex]
[tex]\vec C \,\bullet \,\vec C = (\vec A\,\bullet \,\vec C) + (\vec B \,\bullet \,\vec C)[/tex]
[tex]\|\vec C\|^{2} = [\vec A \,\bullet \,(\vec A + \vec B)] + [\vec B\,\bullet \,(\vec A + \vec B)][/tex]
[tex]\|\vec C\|^{2} = \vec A \,\bullet \, \vec A + \vec B\,\bullet \vec B + 2\cdot (\vec A \,\bullet \, \vec B)[/tex]
[tex]\|\vec C\|^{2} = \|\vec A\|^{2} + \|\vec B\|^{2} + 2\cdot \|\vec A\|\cdot \|\vec B\|\cdot \cos\theta_{C}[/tex]
Step-by-step explanation:
Let be [tex]\vec A[/tex], [tex]\vec B[/tex] and [tex]\vec C[/tex] the vector of a triangle so that [tex]\vec C = \vec A + \vec B[/tex]. By definition of Dot Product:
[tex]\vec C \,\bullet\,\vec C = (\vec A + \vec B) \,\bullet \vec C[/tex]
[tex]\vec C \,\bullet \,\vec C = (\vec A\,\bullet \,\vec C) + (\vec B \,\bullet \,\vec C)[/tex]
[tex]\|\vec C\|^{2} = [\vec A \,\bullet \,(\vec A + \vec B)] + [\vec B\,\bullet \,(\vec A + \vec B)][/tex]
[tex]\|\vec C\|^{2} = \vec A \,\bullet \, \vec A + \vec B\,\bullet \vec B + 2\cdot (\vec A \,\bullet \, \vec B)[/tex]
[tex]\|\vec C\|^{2} = \|\vec A\|^{2} + \|\vec B\|^{2} + 2\cdot \|\vec A\|\cdot \|\vec B\|\cdot \cos\theta_{C}[/tex]
You play basketball at your school's
indoor stadium. You have two payment
options. Option A is to buy a membership
card for $20 and pay $2 each time you
go to the gym, t. Option B is to pay $4
each time you go. Write a a linear
equation to show how many trips to the
gym would the cost be the same?
Answer:
20 + 2x = 4x
Step-by-step explanation:
So you are setting the two expressions equal to each other.
buying a membership card and paying each time looks like this: 20 + 2x where x is the number of times you go to the gym. 20 dollars base then 2 each time you go.
4 each time you go is just 4x
so just set the two equal to each other.
20 + 2x = 4x
If you solve it you will get x = something, which would be the number of times to make the two equal.
hello can anyone help with this?
Answer:
<2 and <13 are alternate exterior angles.
In simple form, alternate exterior angles are the opposite angle on the opposing parallel line. So, to make you understand better, <4 and <15 are alternate exterior angles.
Hope this helps :D
Quadrilateral A'B'C'D'A
′
B
′
C
′
D
′
A, prime, B, prime, C, prime, D, prime is the result of dilating quadrilateral ABCDABCDA, B, C, D about point AAA by a scale factor of \dfrac{1}{2}
2
1
start fraction, 1, divided by, 2, end fraction.
Answer:
[tex]A' = (2,0)[/tex]
Step-by-step explanation:
Given
See attachment for ABCD
[tex]k = \frac{1}{2}[/tex] --- the scale factor
Required
The coordinates of A'
From the attachment, we have:
[tex]A = (4,0)[/tex]
So:
[tex]A' = k * A[/tex]
[tex]A' = \frac{1}{2} * (4,0)[/tex]
[tex]A' = (2,0)[/tex]
Answer:
on khan, both are false
Step-by-step explanation:
Suppose your dean of admissions is considering surveying high school seniors about their perceptions of your school to design better informational brochures for them. What are the advantages and disadvantages of doing (a) telephone interviews and (b) an Internet survey of seniors who have requested information about the school
Answer and explanation:
Advantages of telephone interviews:
They are more convenient than face to face interviews
They are alot more cost-effective
There is a wider geographical access as you can reach people in other countries too
Disadvantages of telephone interviews:
Questions become has limited complexity as opposed to face to face interviews
It may be somewhat intrusive for customers and there could also be interference from noise in the background. Also bad connection issues.
Advantages of internet survey:
Increased geographical access leading to high response rate.
Alot more convenient and flexible than face to face interviews
Low cost advantages
Disadvantages of internet survey:
Inability for individuals who are not online to participate
Non response bias
Limited complexity of questions, usually close ended questions
In the following diagram HI || JK.
HELP MATES PLEASE WILL GIVE 15 POINTS
What is the measure of Zx?
Angles are not necessarily drawn to scale.
67°
H
K
46°
2°
I
A
Answer:
m∠ x = 67
Step-by-step explanation:
∠AJK = ∠AHI = 67 Corresponding Angles
180 - 67 - 46 = x
x = 67
Triangle Sum Theory - the sum of all angles in a triangle = 180
Also, when you see parallel lines look for Corresponding,
Alternate Interior or Same side Interiors.
What is the following product? Assume d>0 3vd•3vd•3vd
Answer:
A. d
Step-by-step explanation:
If you find the 3rd square root or whatever its called, and multiply it by itself again 3 times, You end up with d again.
Examine the two normal probability curves and complete the statements.
The mean of the shorter normal curve is ["equal to", "greater than", "less than"] the mean of the taller normal curve.
The standard deviation of the shorter normal curve is ["less than", "greater than", "equal to"] the standard deviation of the taller normal curve.
The area under the shorter normal curve is ["equal to", "greater than", "less than"] the area under the taller normal curve.
Answer: hello the two normal probability curves are missing
answer:
a) equal to
b) greater than
c) equal to
Step-by-step explanation:
a) The mean of the shorter normal curve is equal to The mean of the taller normal curve is
b) The standard deviation of the shorter normal curve is greater than the standard deviation of the taller normal curve
c) The area under the shorter normal curve is equal to the area under the taller normal curve
1.3 hectoliters is how many liters
Answer: 130 liters
Step-by-step explanation:
1 hectoliter = 100 liters
1.3 hectoliters = 1.3 · 100 = 130 liters
For an analysis of variance comparing three treatment means, H0 states that all three population means are the same and H1 states that all three population means are different.
A. True
B. False
Answer:
False
Step-by-step explanation:
The analysis of variance may be described as an hypothesis test which is used to make comparison between variables of two or more independent groups. The null hypothesis is always of the notion that there is no difference in the means. While the alternative hypothesis is the opposite, for two independent groups, the alternative hypothesis is that both means are different, or not equal or not the same. However. When we have more than 2 independent groups, then the alternative hypothesis is stated as : 'the means are not all equal'. This means that the means of each group does not all have to be different, but the mean of one group may be different from that of the other groups or the mean of two groups are different from the other groups and so on.
If m and n are positive integers and m^2 - n^2 = 9, which of the following could be the value of
n?
A) 1
B) 16
C) 9
D) 4
Answer:
4
Problem:
If m and n are positive integers and m^2 - n^2 = 9, which of the following could be the value of
n?
A) 1
B) 16
C) 9
D) 4
Step-by-step explanation:
One approach would be to plug in the choices and see.
If n=1, then we have m^2-1=9.
This would give m^2=10 after adding 1 on both sides. There is no integer m when squared would give us 10. ( Square root of 9 is a decimal )
If n=16, then we would have m^2-256=9.
This would give m^2=265 after adding 256 on both sides. There is no integer m when squared would give us 265. ( Square root of 265 is a decimal )
If n=9, then we would have m^2-81=9.
This would give m^2=90 after adding 81 on both sides. There is no integer m when squared would give us 90. ( Square root of 90 is a decimal )
If n=4, then we would have m^2-16=9.
This would give m^2=25 after adding 16 on both sides. There is an integer m when squared would give us 25. ( Square root of 25 is a 5)
convert 65 kg into gram .
Answer:
65000
Step-by-step explanation:
65x 1000
1000 because 1kg= 1000
2x+2y=38 y=x+3 solve by the solution
Answer:
x = 8 , y = 11
Step-by-step explanation:
[tex]2x + 2y = 38 => x + y = 19 - -- ( 1 ) \\\\y = x + 3 ---- ( 2 ) \\\\Substitute \ ( 2 ) \ in \ ( 1) :\\\\ x + y = 19\\\\x + ( x+ 3) = 19\\\\2x + 3 = 19\\\\2x = 19 - 3 \\\\2x = 16 \\\\x = \frac{16}{2} = 8\\\\Substitute \ x = 8 \ in \ ( 1 ) : \\\\x + y = 19\\\\8 + y = 19\\\\y = 19 - 8 = 11[/tex]
A plumber charges $50 for the first visit plus $8 per hour of work. If the total bill is $290, how many hours did the plumber work?
30 hours
40 hours
80 hours
None of these choices are correct.
Answer:
Step-by-step explanation:
50 + 8x = 290
8x = 240
x = 30 hours
Brian, the gorilla, was planning a party for his zoo friends. He sent his elves Jamie and Nancy into the North Pole exhibit to count the penguins and reindeer. Jamie said there were 40 legs and Nancy said there were 14 heads. How many penguins and reindeer were in the exhibit?
Answer:
There are 8 penguins and 6 reindeers.
Step-by-step explanation:
Since Brian, the gorilla, was planning a party for his zoo friends, and he sent his elves Jamie and Nancy into the North Pole exhibit to count the penguins and reindeer, and Jamie said there were 40 legs and Nancy said there were 14 heads To determine how many penguins and reindeer were in the exhibit, the following calculation must be performed:
Penguins: 1 head and 2 legs
Reindeers: 1 head and 4 legs
40 - (14 x 2) = X
40 - 28 = X
12 = X
12/2 = 6
14 - 6 = 8
8 x 2 + 6 x 4 = X
16 + 24 = X
40 = X
Therefore, there are 8 penguins and 6 reindeers.
Question 8 of 9
Use a calculator to find the correlation coefficient of the data set.
х
у
2
15
6
13
7.
9
8
on 0
12 5
O A. -0.909
OB. 0.909
Ο Ο Ο
O C. 0.953
D. -0.953
Actual data table :
X __ y
2 15
6 13
7 9
8 8
12 5
Answer:
0.953
Step-by-step explanation:
The question isnt well formatted :
The actual data:
X __ y
2 15
6 13
7 9
8 8
12 5
Using a correlation Coefficient calculator, the correlation Coefficient obtained by fitting the data is 0.953 which depicts a strong linear correlation between the x and y variable. This shows that the value of y increases with a corresponding increase in x values and vice versa.
add 7/8 + 2 3/24 + 6 1/6
Answer:
9 4/24 or 9 1/6
Find the LCM(lowest common multiple) of 8, 24 and 6.The LCM of 8, 24 and 6 is 24.We now want to turn all the denominators into 24 so we are going multiply 7/8 by 3 and 1/6 by 4. We won't need to turn the denominator of 3/24 into 24 because it's already 24Whatever you do to the denominator you have to do to the numerator, so you also have to multiply the numerator of 7/8 by 3 and the numerator of 1/6 by 4That now results in 21/8 + 2 3/24 + 6 4/24Now you have to add all the fractions together which is going to equal to 28/24Because 28/24 is more than the whole, subtract 28 from 24 which gives us 4. That 4 is now our new numeratorWe are now going to all the whole numbers 6+2+1=9. Incase you're wondering, the '1' came from the 28/24The answer you should get should be 9 4/24 or if it should be simplified it would be 9 1/6
Last year Nancy weighted 37 5/8 pounds. This year she weighed 42.7 pounds. How much did she gain?
Answer:
Nancy gained 5.075 pounds.
Step-by-step explanation:
5/8=0.625
37.625
42.7-37.625=5.075
what are the following proof triangle LMN equals triangle OPQ
Answer:
D. SSS
Step-by-step explanation:
Was given to us that the corresponding sides are congruent so is SSS.
Side Side Side Theorem tells us that if am the sides of a triangle are having the same measurement with the corresponding sides of another triangle then the two triangles are congruent.
Find the distance between the two points.
(3,-9) and (-93,-37)
Answer:
d(A,B)=100
Step-by-step explanation:
The distance between two points A([tex]x_A,y_A[/tex]) and B=([tex]x_B,y_B[/tex]) is:
d(A,B)=[tex]\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}[/tex]
In this case:
[tex]x_B = - 93\\x_A = 3\\y_B = -37\\y_A = -9[/tex]
In this case:
[tex]d(A,B)=\sqrt{( - 93 -3)^2+( - 37 - (-9))^2} =\\=\sqrt{( - 96)^2+(-28)^2} =\\=\sqrt{9.216+784} \\=\sqrt{10000}=\\=\sqrt{10^4} =\\=100[/tex]
A copy machine makes 44 copies per minute. How many copies does it make in 3 minutes and 45 seconds?
Answer:
in 3 minutes ;
44 × 3 = 132 copies
and 45 soconds;
[tex]45 \: seonds \: = \frac{3}{4} \: mınutes[/tex]
44 × ¾ = 33 copies
132 + 33 copies = 165 copiesHAVE A NİCE DAY
Step-by-step explanation:
GREETİNGS FROM TURKEY ツ
Use cylindrical shells to find the volume of the solid generated when the region
R under y = x2 over the interval (0,2) revolved about the line y = -1
Answer:
[tex]\displaystyle V = \frac{176 \pi}{15}[/tex]
General Formulas and Concepts:
Pre-Algebra
Equality PropertiesAlgebra I
Terms/CoefficientsExpandingFunctionsFunction NotationGraphingExponential Rule [Root Rewrite]: [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]Calculus
Integrals
Definite IntegralsArea under the curveIntegration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Shell Method:
[tex]\displaystyle V = 2\pi \int\limits^b_a {xf(x)} \, dx[/tex]
[Shell Method] x is the radius[Shell Method] 2πx is the circumference[Shell Method] 2πxf(x) is the surface area[Shell Method] 2πxf(x)dx is the volumeStep-by-step explanation:
Step 1: Define
Identify
Graph of region
y = x²
x = 2
y = 4
Axis of Revolution: y = -1
Step 2: Sort
We are revolving around a horizontal line.
[Function] Rewrite in terms of y: x = √y[Graph] Identify bounds of integration: [0, 4]Step 3: Find Volume Pt. 1
[Shell Method] Find distance of radius x: [tex]x = y + 1[/tex][Shell Method] Find circumference variable f(x) [Area]: [tex]\displaystyle f(x) = 2 - \sqrt{y}[/tex][Shell Method] Substitute in variables: [tex]\displaystyle V = 2\pi \int\limits^4_0 {(y + 1)(2 - \sqrt{y})} \, dy[/tex][Integral] Rewrite integrand [Exponential Rule - Root Rewrite]: [tex]\displaystyle V = 2\pi \int\limits^4_0 {(y + 1)(2 - y^\bigg{\frac{1}{2}})} \, dy[/tex][Integral] Expand integrand: [tex]\displaystyle V = 2\pi \int\limits^4_0 {(-y^\bigg{\frac{3}{2}} + 2y - y^\bigg{\frac{1}{2}} + 2)} \, dy[/tex][Integral] Integrate [Integration Rule - Reverse Power Rule]: [tex]\displaystyle V = 2\pi \bigg( \frac{-2y^\bigg{\frac{5}{2}}}{5} + y^2 - \frac{2y^\bigg{\frac{3}{2}}}{3} + 2y \bigg) \bigg| \limits^4_0[/tex]Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle V = 2\pi (\frac{88}{15})[/tex]Multiply: [tex]\displaystyle V = \frac{176 \pi}{15}[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Applications of Integration
Book: College Calculus 10e
Quality control. As part of a quality control process for computer chips, an engineer at a factory randomly samples 212 chips during a week of production to test the current rate of chips with severe defects. She finds that 27 of the chips are defective.
(a) What population is under consideration in the data set?
(b) What parameter is being estimated?
(c) What is the point estimate for the parameter?
(d) What is the name of the statistic can we use to measure the uncertainty of the point estimate?
(e) Compute the value from part (d) for this context.
(f) The historical rate of defects is 10%. Should the engineer be surprised by the observed rate of defects
during the current week?
(g) Suppose the true population value was found to be 10%. If we use this proportion to recompute the value in part (e) using p = 0.1 instead of pˆ, does the resulting value change much?
Answer:
See Explanation
Step-by-step explanation:
According to the Question,
Given That, As part of a quality control process for computer chips, an engineer at a factory randomly samples 212 chips during a week of production to test the current rate of chips with severe defects. She finds that 27 of the chips are defective.(a) The sample is from all computer chips manufactured at the factory during the week of production. We might be tempted to generalize the population to represent all weeks, but we should exercise caution here since the rate of defects may change over time.
(b) The fraction of computer chips manufactured at the factory during the week of production that had defects.
(c) Estimate the parameter using the data: phat = 27/212 = 0.127.
(d) Standard error (or SE).
(e) Compute the SE using phat = 0.127 in place of p:
SE ≈ √(phat(1−phat)/n) = 0.023.
(f) The standard error is the standard deviation of phat. A value of 0.10 would be about one standard error away from the observed value, which would not represent a very uncommon deviation. (Usually beyond about 2 standard errors is a good rule of thumb.) The engineer should not be surprised.
(g) Recomputed standard error using p = 0.1: SE = 0.021. This value isn't very different, which is typical when the standard error is computed using relatively similar proportions (and even sometimes when those proportions are quite different!).