Answer:
x = 55°
Step-by-step explanation:
120° = x° + 65° (alternate interior angles are congruent)
Subtract 65 from each side
120° - 65° = x° + 65° - 65°
55° = x
Therefore,
x = 55°
 Estimate the correlation coefficient that would best describe the data below.
Answer:
First option
... -0.9 ...
Simplify the following, leaving your answer with a positive exponent:
x^-12/ x^-7
Answer:
[tex]\frac{1}{x^{5} }[/tex]
Step-by-step explanation:
x^-12/ x^-7
= x^(-12-(-7))
= x^-5
= 1/x^5
Please help with this question
Answer:
-3.662rad × 180/π = -209.8°
Step-by-step explanation:
Answer:
1 degree = .01745329 radians
1 radian = 57.2957877856 degrees
-209.8 degrees = .01745329 * -209.8 =
-3.66170024200 radians
Step-by-step explanation:
please help asap it's important!!!
Answer:
486cm^2
Step-by-step explanation:
Surface area of cube = (6a^2)
6×9×9=486.
If you apply the changes below to the absolute value parent function, 1(x) = 1X, what is the equation of the new function? Shift 8 units left. • Shift 3 units down. O A. g(x) = (x + 81 - 3 O B. g(x) B. g(x) = (x - 3| + 8 O c. g(x) = [X - 31- 8 D. g(x) = (x - 8 - 3
Answer:
A. g(x) = |x + 8| - 3Step-by-step explanation:
If the function is f(x), then shift 8 units left and 3 units down will result in:
g(x) = f(x + 8) - 3Apply to the given function to get:
g(x) = |x + 8| - 3Correct choice is A
Which of the binomials below is a factor of this trinomial? x² + 2x - 63 O A.X-3 OB. X+3 O C. X-9 O D. X + 9
Answer:
D. X + 9
Step-by-step explanation:
x² + 2x - 63
What 2 numbers multiply to -63 and add to 2
9 * -7 = -63
9+-7 = 2
(x+9)(x-7)
What are the solutions to the system of equations graphed below?
Answer:
The answer is B (4, 8) and (0, -8)
21 is 35% of what number (shown work)
Answer:
60
Step-by-step explanation:
Is means equals and of means multiply
21 = 35% * n
21 = .35*n
Divide each side by .35
21/.35 = .35n/.35
60 = n
Answer:
60
Step-by-step explanation:
35% of 60 is 21 its that simple
Help Me!
In the quadrilateral ABCD shown below, the sides AB and CD are parallel. M is the Mid point of the side BC.
The lines DM and AB extended, meet at N.
[tex]\large\sf\color{Aqua}\underline{Questions}[/tex]
i) Are the areas of ∠DCM and ∠BMN equal?why?
ii) What is the relation between the areas of the quadrilateral and the triangle ADN?
Answer:
Given:
DC ║ ABCM = MB as M is midpoint of BCi) Since DN and BC are transversals, we have:
∠DCM ≅ ∠NBM and∠CDM ≅ ∠BNM as alternate interior anglesAs two angles and one side is congruent, the triangles are also congruent:
ΔDCM ≅ ΔNBM (according to AAC postulate)So their areas are same.
ii)
The quadrilateral has area of:
A(ADCB) = A(ADMB) + A(DCM)And the triangle has area of:
A(ADN) = A(ADMB) + A(NBM)Since the areas of triangles DCM and NBM are same, the quadrilateral ADCB has same area as triangle ADN.
Answer:
I think I have proved it before you asked this question before also.
Step-by-step explanation:
SEE the image for solution.
HOPE it helps
Have a great day
The probability of drawing a red candy at random from a bag of 25 candies is 2/5. After 5 candies are removed from tehe bag, what is the probability of randomly drawing a red candy from the bag?
Given:
The probability of drawing a red candy at random from a bag of 25 candies is [tex]\dfrac{2}{5}[/tex].
To find:
The probability of randomly drawing a red candy from the bag after removing 5 candies from the bag.
Solution:
Let n be the number of red candies in the bag. Then, the probability of getting a red candy is:
[tex]P(Red)=\dfrac{\text{Number of red candies}}{\text{Total candies}}[/tex]
[tex]\dfrac{2}{5}=\dfrac{n}{25}[/tex]
[tex]\dfrac{2}{5}\times 25=n[/tex]
[tex]10=n[/tex]
After removing the 5 candies from the bag, the number of remaining candies is [tex]25-5=20[/tex] and the number of remaining red candies is [tex]10-5=5[/tex].
Now, the probability of randomly drawing a red candy from the bag is:
[tex]P(Red)=\dfrac{5}{20}[/tex]
[tex]P(Red)=\dfrac{1}{4}[/tex]
Therefore, the required probability is [tex]\dfrac{1}{4}[/tex].
ASAPPPPPPPPPPPPPPPPPPPPPPP P P P P P P P P P P P P P P P P P P P P
Answer:
5 trees per day
Step-by-step explanation:
Answer:
5 trees per day
Step-by-step explanation:
(1, 5)
(2,10)
the day increases by 1 and the trees increase by 5
enter the repeating digit
[tex] \frac{9}{11} [/tex]
Answer:
Step-by-step explanation:
[tex]\frac{9}{11}=0 .818181....[/tex]
__
= 0.81
please help me!!! :)
Answer:
C
Step-by-step explanation:
f(x) = x-8 when x>3, f(7)=7-8=-1
Solve for a.
-4a – 2a – 7 = 11
a =
[?]
Answer:
or, -4a - 2a -7 = 11
or, -4a -2a =11 +7
or, - 6a = 18
or, a= 18÷ -6
a= -3
what do you mean by Transformation?
Instructions: Find the value of the trigonometric ratio. Make sure to
simplify the fraction if needed.
Х
40
32
N
24
Y
Tan Z
Answer:
tan Z = 4/3
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
tan theta= opp / adj
tan Z = 32/24
Divide top and bottom by 8
tan Z = 4/3
The access code for a cars security system consists of 4 digits. The first digit cannot
be 0 and the last digit nust be even. How many different codes are available?
Answer:
4500
Step-by-step explanation:
The first digit can't be 0. so it will be a number from 1000 to 9999. That's a total of 9000 numbers (9999-1000+1=9000). Since the last digit must be an even number that is one half of the 9000 numbers which is 4500.
find the length of a line joining the point ( 4,3 ) and origin .
Answer:
i think you have to count till you get to 4 or 3 then the remaining you plus with the 3
Answer:
[tex]d=5[/tex]
Step-by-step explanation:
you have to use the distance formula, making the origin (0,0) the 1st point and (4,0) the second point.
[tex]d=\sqrt{(x_{2} -x_{1})^{2} + (y_{2} -y_{1})^{2} }[/tex]
[tex]d=\sqrt{(4-0)^{2}+(3-0)^2 }[/tex]
[tex]d=\sqrt{(4)^2+(3)^2}[/tex]
[tex]d=\sqrt{16+9}[/tex]
[tex]d=\sqrt{25}[/tex]
[tex]d=5[/tex]
Which is the graph of y = RootIndex 3 StartRoot x EndRoot?
Given:
The equation is:
[tex]y=\sqrt[3]{x}[/tex]
To find:
The graph of the given equation.
Solution:
We have,
[tex]y=\sqrt[3]{x}[/tex]
The table of values is:
x y
-8 -2
-1 -1
0 0
1 1
8 8
Plot these points on a coordinate plane and connect them by a free hand curve as shown in the below graph.
Answer:
D
Step-by-step explanation:
edge 2020
A vehicle is travelling from rest. After 10 seconds its velocity will be 20ms find acceleration?
Initial velocity (u) = 0m/s
Final velocity (v) = 20m/s
Time (t) = 10 s
Acceleration (a)
= (v - u)/t
= [(20m/s) - (0m/s)]/10s
= (20m/s)/10s
= (20m/s²)/10
=> 2m/s²
Need help with this pls help
Answer:
Step-by-step explanation:
a car can complete journey of 300 km with the average speed of 60 km per hour how long does it take to complete the journey what is the speed of the car if it covers only 200 km in the same interval of the time
please I need help urgent
Answer:
a. 5 hours
b. 40 kph
Step-by-step explanation:
300 km ÷ 60 km = 5 hours
200 km ÷ 5 hours = 40 kilometers per hour
Select the correct answer. Consider this system of equations, where function f is quadratic and function g is linear:
y = f(x)
y = g(x)
Which statement describes the number of possible solutions to the system?
A. The system may have no, 1, 2, or infinite solutions.
B. The system may have no, 1, or infinite solutions.
C. The system may have 1 or 2 solutions.
D. The system may have no, 1, or 2 solutions
Answer:
C is the answer
Step-by-step explanation:
Quadratic equations have at most 2 solution, and linear equations only have 1 solution, and since y is equal to both of them, it can only have 1 or 2 solutions.
The correct answer is option D. The system may have no, 1, or 2 solutions
What is quadratic equation?A quadratic equation is a second-order polynomial equation in a single variable x , ax²+bx+c=0. with a ≠ 0 .
f(x) is a quadratic function and g(x) is linear function
y=f(x)
y=g(x)
Quadratic equations have at most 2 solution
linear equations only have 1 solution,
f(x)=g(x)=y
y is equal to both of them, it can only have 1 or 2 solutions.
A line and a parabola can intersect zero, one, or two times
Therefore, a linear and quadratic system can have zero, one, or two solutions
Hence, the correct answer is option D. The system may have no, 1, or 2 solutions
To learn more on Quadratic equation click:
https://brainly.com/question/17177510
#SPJ2
Demonstrate on the whiteboard how to find the center and radius of a circle using an equation.
Answer:
Step-by-step explanation:
Equation for a circle of radius r, centered at (h,k):
(x-h)² + (y-k)² = r²
Alonso overdrew his bank account and his account balance showed -$50. He spent an
additional $37 going out to the movies with friends. Write an expression and draw a line
number to determine Alfonso's current bank account balance.
Answer:
-$87
Step-by-step explanation:
SEE THE IMAGE FOR SOLUTION
HOPE IT HELPS
HAVE A GREAT DAY
Jeremy is making a trail mix containing raisins and peanuts. Raisins cost $1.50 per pound. Peanuts cost $2.50 per pound. Jeremy spends $10.50 to make 5 pounds of trail mix. He uses the table below to organize this information. A Table titled Trail Mix showing Pounds, Cost, and Total. The first row shows Raisins, with r, 150, and 1.5 r. The second row shows Peanuts, with 5 minus r, 2.50, and 2.5 left-parenthesis 5 minus r right parenthesis. The last row shows Mixture, with 5, blank, and 10.50. Which equation can Jeremy use to determine the amount of raisins in the trail mix? r + 1.50 = 1.5r r + (5 – r) = 5 1.5r + 2.5(5 – r) = 10.50 1.5r + 2.5(5 – r) = 5
Answer:
The answer us Option C
Step-by-step explanation:
Hope this helps!!
Answer:
C
Step-by-step explanation:
arrange0.2,¼,30%,10%in ascending and descending order
Answer:
Ascending- 10%, 0.2, 1/4, 30%
Descending- 30%, 1/4, 0.2, 10%
Step-by-step explanation:
0.2 = 2/10 = 4/20
1/4 = 5/20
30% = 30/100 = 6/20
10% = 10/100 = 2/20
Ascending
-2/20, 4/20, 5/20, 6/20
- 10%, 0.2, 1/4, 30%
Descending
- 6/20, 5/20, 4/20, 2/20
- 30%, 1/4, 0.2, 10%
what is the answer to 7b-7-8b= -15
Answer:
b=8
Step-by-step explanation:
7b-7-8b=-15
Combine like terms
-b-7=-15
Add 7 on both sides
-b=-15+7
-b=-8
Divide by -1
b = 8
Answer: b = 8
Step-by-step explanation:
Given
7b - 7 - 8b = -15
Combine like terms
-b - 7 = -15
Add 7 on both sides
-b - 7 + 7 = -15 + 7
-b = -8
Divide -1 on both sides
-b / -1 = -8 / -1
b = 8
Hope this helps!! :)
Please let me know if you have any questions
In a large midwestern university (the class of entering freshmen being on the order of 6000 or more students), an SRS of 100 entering freshmen in 1999 found that 20 finished in the bottom third of their high school class. Admission standards at the university were tightened in 1995. In 2001 an SRS of 100 entering freshmen found that 10 finished in the bottom third of their high school class. The proportion of all entering freshmen in 1999 and 2001, who graduated in the bottom third of their high school class, are p1 and p2, respectively.Is there evidence that the proportion of freshmen who graduated in the bottom third of their high school class in 2001 has been reduced, as a result of the tougher admission standards adopted in 2000, compared to the proportion in 1999? To determine this, you test the hypothesesH0 : p1 = p2 , Ha : p1 > p2.The P-value of your test isA. 0.976.B. 0.024.C. 0.048.D. 0.001.
Answer:
B. 0.024
The p-value of the test is 0.024 < 0.05(standard significance level), which means that there is enough evidence that the proportion of freshmen who graduated in the bottom third of their high school class in 2001 has been reduced.
Step-by-step explanation:
Before testing the hypothesis, we need to understand the central limit theorem and subtraction of normal variables.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Subtraction between normal variables:
When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.
1999:
Of 100, 20 were in the bottom thid. So
[tex]p_B = \frac{20}{100} = 0.2[/tex]
[tex]s_B = \sqrt{\frac{0.2*0.8}{100}} = 0.04[/tex]
2001:
Of 100, 10 were in the bottom third, so:
[tex]p_A = \frac{10}{100} = 0.1[/tex]
[tex]s_A = \sqrt{\frac{0.1*0.9}{100}} = 0.03[/tex]
To determine this, you test the hypotheses H0 : p1 = p2 , Ha : p1 > p2.
Can also be rewritten as:
[tex]H_0: p_B - p_A = 0[/tex]
[tex]H_1: p_B - p_A > 0[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{s}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, and s is the standard error.
0 is tested at the null hypothesis:
This means that [tex]\mu = 0[/tex]
From the sample:
[tex]X = p_B - p_A = 0.2 - 0.1 = 0.1[/tex]
[tex]s_A = \sqrt{s_A^2+s_B^2} = \sqrt{0.03^2+0.04^2} = 0.05[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{s}[/tex]
[tex]z = \frac{0.1 - 0}{0.05}[/tex]
[tex]z = 2[/tex]
P-value of the test and decision:
The p-value of the test is the probability of finding a difference of proportions of at least 0.1, which is 1 subtracted by the p-value of z = 2.
Looking at the z-table, z = 2 has a p-value of 0.976.
1 - 0.976 = 0.024, so the p-value is given by option B.
The p-value of the test is 0.024 < 0.05(standard significance level), which means that there is enough evidence that the proportion of freshmen who graduated in the bottom third of their high school class in 2001 has been reduced.
Two points, A and B, are on opposite sides of a building. A surveyor chooses a third point, C, 80 yd from B and 104 yd from A, with angle ACB
measuring 51.2º. How far apart are A and B (to the nearest yard)?
HURRYYY GIVING 20 POINTS!!
Answer:
Step-by-step explanation:
The law of cosine helps us to know the third side of a triangle when two sides of the triangle are already known the angle opposite to the third side is given. The distance between A and B is 85.6 yds.
What is the Law of Cosine?The law of cosine helps us to know the third side of a triangle when two sides of the triangle are already known the angle opposite to the third side is given. It is given by the formula,
[tex]c =\sqrt{a^2 + b^2 -2ab\cdot Cos\theta}[/tex]
where
c is the third side of the triangle
a and b are the other two sides of the triangle,
and θ is the angle opposite to the third side, therefore, opposite to side c.
The three points A, B, and C will form a triangle. Therefore, using the law of cosine the measure of the third side AB can be written as,
[tex]AB =\sqrt{(AC)^2 + (BC)^2 -2(AC)(BC)\cdot \cos(51.2^o)}\\\\AB =\sqrt{(80)^2 + (104)^2 -2(80)(104)\cdot \cos(51.2^o)}\\\\AB = \sqrt{6400+10816-16640\cos51.2^o}\\\\AB = \sqrt{7328.4}\\\\AB=85.6\rm\ yd[/tex]
Hence, the distance between A and B is 85.6 yds.
Learn more about the Law of Cosine:
https://brainly.com/question/17289163
#SPJ2