Answer:
we need a picture to help
Solve |6k + 12| + 9=9 for k
Answer:
k= -2
Step-by-step explanation:
When plotting points on the coordinate plane below, which point would lie on the y-axis?
(0, 1)
(7, 0)
(6, 8)
(8, 2)
Answer:
(0,1)
Step-by-step explanation:
i got it right
A 6-sided die is rolled three times. What is the probability of rolling a 4 each time?
A 0.00463
B. 0.99537
C 0.16667
D. 0.00231
Answer:
a
Step-by-step explanation:
math
What is the median for the given set of data?
[40, 54, 22, 30, 55, 13, 33}
A)
32
B)
33
C)
40
D)
42
Solve for a given 2e^a =4b
Answer:
a = ln (2b)
Step-by-step explanation:
2e^a =4b
Divide each side by 2
2/2 e^a =4/2b
e^a = 2b
Take the natural log of each side
ln(e^a) = ln(2b)
a = ln (2b)
what is (4 to the square root of 81)5?
Answer:
1310720
Step-by-step explanation:
Find out the frist part "4 to the square root of 81" 262144
then times it by 5
to get 1310720
Round 0.378 to the place underlined digit 3
Answer:
0.38
Step-by-step explanation:
7 is the 3rd digit, so 8 is greater then 5, so you round up, if it is correct, can you give brainiest
Answer:
0.40
Step-by-step explanation:
this is because the number before it is up to five and even more than 5 so we round it up by adding one to the next number and the remaining digit to zero
The formula A=12(b+c)h. Write the equation in term of c?
Answer:
[tex]c = \frac{A}{12h} - b[/tex]
Step-by-step explanation:
Okay, so the goal is to isolate c on one side with all the other terms on the other side. So, let's start by dividing both sides with 12h. After we do that, we will be left with [tex]\frac{A}{12h} = b+c[/tex]. Now, we can subtract both sides by b, and we will be left with [tex]\frac{A}{12h} - b = c[/tex]. Yay! We've now isolated c and that is our final answer!
Hope this helped! :)
Which types of triangles can be formed by taking the cross-section of a rectangular prism like the one shown above?
Answer: Equilateral, isosceles and scalene.
Step-by-step explanation:
Harris Interactive® conducted a poll of American adults in August of 2011 to study the use of online medical information. Of the 1,019 randomly chosen adults, 60% had used the Internet within the past month to obtain medical information. Use the results of this survey to create an approximate 95% confidence interval estimate for the percentage of all American adults who have used the Internet to obtain medical information in the past month.
Answer:
[tex]0.60 - 1.96\sqrt{\frac{0.60(1-0.60)}{1019}}=0.570[/tex]
[tex]0.60 + 1.96\sqrt{\frac{0.60(1-0.60)}{1019}}=0.630[/tex]
The 95% confidence interval for the true proportion would be given by (0.570;0.630) .
And if we convert this into % we got (57.0%, 63.0%)
Step-by-step explanation:
The information given we have the following info given:
[tex] n = 1019[/tex] represent the sampel size
[tex] \hat p=0.6[/tex] represent the sample proportion of interest
The confidence level is 95%, our significance level would be given by [tex]\alpha=1-0.95=0.05[/tex] and [tex]\alpha/2 =0.025[/tex]. And the critical value would be given by:
[tex]z_{\alpha/2}=-1.96, z_{1-\alpha/2}=1.96[/tex]
The confidence interval for the mean is given by the following formula:
[tex]\hat p \pm z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]
Replacing the info given we got:
[tex]0.60 - 1.96\sqrt{\frac{0.60(1-0.60)}{1019}}=0.570[/tex]
[tex]0.60 + 1.96\sqrt{\frac{0.60(1-0.60)}{1019}}=0.630[/tex]
The 95% confidence interval for the true proportion would be given by (0.570;0.630) .
And if we convert this into % we got (57.0%, 63.0%)
Write the expanded form of h(3k-12.4)
Answer:3hk - 12.4h
Step-by-step explanation:
h(3k-12.4)
h x 3k - h x 12.4
3hk - 12.4h
On the first day of school, each student is given $0.50 to attend. On day two, each student earns $1.00. on day 3, $2.00, etc. How much do students earn on the 9th day
Answer:
255.50
Step-by-step explanation:
If each day the number is doubled, then all you must do is keep on doubling to the ninth day and then add it all together
What is volume of a cylinder with base area 64pi cm² and a height equal to twice the radius? Give your answer in terms of pi.
512 pi
256 pi
1024 pi
4096 pi
Answer:
1024 pi
Step-by-step explanation:
The area formula is ...
A = πr^2
So, the radius is ...
r = √(A/π)
For the given area, the radius of the cylinder is ...
r = √(64π/π) = 8 . . . . cm
The height is said to be twice this value, so is 16 cm.
__
The volume of the cylinder is found from ...
V = Bh
where B is the base area and h is the height. Our cylinder has a volume of ...
V = (64π cm^2)(16 cm) = 1024π cm^3
How to find the area of the seating area
Parallelogram area is base times height. Base of 14, height of 10,
Answer: A = (14 ft)(10 ft) second choice
Answer:
choice B
Step-by-step explanation:
Which of the following statements is FALSE? The correlation coefficient equals the proportion of data points that lie on a straight line. The correlation coefficient will be +1.0 only if all the data lie on an upward-tilting straight line. The correlation coefficient is undefined if all the data lie on a perfectly horizontal straight line. The correlation coefficient is a unitless number and must always lie between –1.0 and +1.0, inclusive.
Answer:
The first one is False.
Step-by-step explanation:
If the correlation coefficient can also be -1 if the data lies on an upward tilting straight line.
Please help ASAP! Will give BRAINLIEST! Please read the question THEN answer correctly! No guessing.
Giving brainliest to CORRECT answer.
Answer:
D
If you put the equation into a calculator, it will show a graph of it.
Ana has a rectangular garden with a width of 2.3 meters and a length of 2.8 meters. She makes the model below to help her determine the area of her garden. What is the area of Ana's garden?
Answer:
6.44 m2
Step-by-step explanation:
GIVING BRANLIEST Which prism has a greater surface area?
2 prisms. A rectangular prism has a length of 12 inches, height of 8 inches, and width of 6 inches. A triangular prism has a rectangular base with a length of 6 inches and height of 12 inches. 2 rectangular sides are 12 inches by 10 inches. The triangular sides have a base of 6 inches an height of 8 inches.
The rectangular prism has a greater surface area by 72 square inches.
The rectangular prism has a greater surface area by 88 square inches.
The triangular prism has a greater surface area by 72 square inches.
The triangular prism has a greater surface area by 88 square inches.
Answer:
Rectangular prism
Step-by-step explanation:
Collete mapped her vegetable garden on the graph below. Each unit represents 1 foot.
Collete plants an 8-foot row of lettuce in the garden. Which points could tell where the row of
lettuce starts and ends?
(-4,-1) and (-4,7)
| (-1, –4) a (
74)
(-1,-6) and (8,-6)
(-6, -1) and (-6,8)
Answer:
(-4,-1) and (-4,7)Step-by-step explanation:
If Collete planted a row of lettuce, that means their coordinates must have the same vertical coordinate, or the same horizontal coordinate. Another important characteristic is that between those points, there must have 8 units of separation, because it's an 8-foot row.
Only the first choice offers these characteristic to properly represent the row of plants with 8 feet distance between the first and the last plant.
Therefore, the answer is (-4,-1) and (-4,7)
Answer:
(-4, -1) and (-4, 7)
Step-by-step explanation:
I did the quiz
Find the radius of Circle M, if the area of a sector is 36.07 cm^2 and the central angle of that sector is 58º. Round your answers to the hundredths place if necessary
Answer:
r = 5.97 cm
Step-by-step explanation:
The area of the sector is given by the following equation:
[tex]A = r*S = 2\pi*r^{2}*\frac{58}{360}[/tex]
Where:
r: is the radius
A: is the area
The radius is:
[tex]r = \sqrt{\frac{A}{2*\pi*58/360}} = \sqrt{\frac{36.07 cm^{2}}{2*\pi*58/360}} = 5.97 cm[/tex]
Therefore, the radius of Circle M is 5.97 cm.
I hope it helps you!
Find the area of the shaded region and choose the appropriate result?
Answer:
Option B
Step-by-step explanation:
The figures are made out of squares.
[tex]\text {Formula for area of a square: } A =s^2\\s-\text {Length of side.}[/tex]
Square 1 (the gray square):
The side measure is 4 cm.
[tex]A = 4^2 = 16cm^2[/tex]
Square 2 (white square):
The side measure is 2 cm.
[tex]A=2^2=4cm^2[/tex]
Subtract the area of the white square from the gray square to get the area of the shaded region:
[tex]16 - 4 =12[/tex]
The shaded region is [tex]12cm^2[/tex].
Option B should be the correct answer.
Brainilest Appreciated!
1.] What is the probability of choosing a king
from a standard deck of playing cards?
Answer:
1/13
Step-by-step explanation:
there are 4 kings in a deck of 52 cards.
4/52 = 1/13
The lengths of pregnancies are normally distributed with a mean of 250 days and a standard deviation of 15 days.
a. Find the probability of a pregnancy lasting 308 days or longer?
b. If we stipulate that a baby is premature if the length of the pregnancy is in the lowest 8% (8th percentile), find the length that separates premature babies from those who are not premature.
Answer:
a) 0.005% probability of a pregnancy lasting 308 days or longer
b) The pregnancy length that separates premature babies from those who are not premature is 229 days.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 250, \sigma = 15[/tex]
a. Find the probability of a pregnancy lasting 308 days or longer?
This is 1 subtracted by the pvalue of Z when X = 308. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{308 - 250}{15}[/tex]
[tex]Z = 3.87[/tex]
[tex]Z = 3.87[/tex] has a pvalue of 0.99995
1 - 0.99995 - 0.00005
0.005% probability of a pregnancy lasting 308 days or longer
b. If we stipulate that a baby is premature if the length of the pregnancy is in the lowest 8% (8th percentile), find the length that separates premature babies from those who are not premature.
The 8th percentile is X when Z has a pvalue of 0.08. So it is X when Z = -1.405.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.405 = \frac{X - 250}{15}[/tex]
[tex]X - 250 = -1.405*15[/tex]
[tex]X = -1.405*15 + 250[/tex]
[tex]X = 229[/tex]
The pregnancy length that separates premature babies from those who are not premature is 229 days.
When you cough,the radius of your trachea (windpipe) decreases,affecting the speed S of the air in the trachea. If r0 is the normal radius of the trachea, the relationship between the speed S of the air and the radius r of the trachea during a cough is given by a function of the form
S(r) = (r0 - r) ar^2
where a is positive constant. Find the radius r for which the speed of the air is greatest.
Answer: 2r(0)/3.
Step-by-step explanation:
So, we are given one Important data or o or parameter in the question above and that is the function of the form which is given below(that is);
S(r) = (r0 - r) ar^2 -----------------------------(1).
We will now have to differentiate S(r) with respect to r, so, check below for the differentiation:
dS/dr = 2ar (r0 - r ) + ar^2 (-1 ) ---------;(2).
dS/dr = 2ar(r0) - 2ar^2 - ar^2.
dS/dr = - 3ar^2 + 2ar(r0) ------------------(3).
Note that dS/dr = 0.
Hence, - 3ar^2 + 2ar(r0) = 0.
Making ra the subject of the formula we have;
ra[ - 3r + 2r(0) ] = 0. -------------------------(4).
Hence, r = 0 and r = 2r(0) / 3.
If we take the second derivative of S(r) too, we will have;
d^2S/dr = -6ar + 2ar(0). -------------------(5).
+ 2ar(0) > 0 for r = 0; and r = 2r(0)/3 which is the greatest.
Answer:
[tex]r =\frac{2r_{0}}{3}[/tex]
Step-by-step explanation:
We need to take the derivative of S(r) and equal to zero to maximize the function. In this conditions we will find the radius r for which the speed of the air is greatest.
Let's take the derivative:
[tex]\frac{dS}{dr}=a(2r(r_{0}-r)+r^{2}(-1))[/tex]
[tex]\frac{dS}{dr}=a(2r*r_{0}-2r^{2}-r^{2})[/tex]
[tex]\frac{dS}{dr}=a(2r*r_{0}-3r^{2})[/tex]
[tex]\frac{dS}{dr}=ar(2r_{0}-3r)[/tex]
Let's equal it to zero, to maximize S.
[tex]0=ar(2r_{0}-3r)[/tex]
We will have two solutions:
[tex]r = 0[/tex]
[tex]r =\frac{2r_{0}}{3}[/tex]
Therefore the value of r for which the speed of the air is greatest is [tex]r =\frac{2r_{0}}{3}[/tex].
I hope it helps you!
If h = 85 cm and 1 = 36 cm, what is the length of g?
A. 77 cm
B.
92 cm
C
49 cm
D
75 cm
Answer:A
Step-by-step explanation:
h=85 f=36
Since it is a right angled triangle we can apply Pythagoras principle to get g
g=√(h^2 - f^2)
g=√(85^2 - 36^2)
g=√(85x85 - 36x36)
g=√(7225 - 1296)
g=√(5929)
g=77
Express this number in scientific notation 0.0008235
Which goes with which
Factorise 2y^2 + y + 6xy + 9x - 3
Answer: (2y+3)(3x+y-1)
Step-by-step explanation:
First regroup the terms.
6xy+9x+2y^2+y-3
Second factor 3x out of 6xy+9x
3x(2y)+9x+2y^2+y-3
3x(2y)+3x(3)+2y^2+y-3
And you get
3x(2y+3)+2y^2+y-3
Third factor by grouping
Prob-4 Pressurized air are being used in a manufacturing company in its daily operation. There are three compressors in service; two-screw type compressors, (S1 ,S2) and one-reciprocal type compressor,(R). Each compressor, at any given time, is either off (0), or on (1) . Assume that event A is denoted to reciprocal compressor (R) that is always off . Event B is denoted that at least one of the screw type of compressor is always on. Assume that all outcomes in event B are equally likely. If P(A∩B)=45% and P(A∪B)=93%. Compute the probability that all compressors are off
Answer:
The probability that all compressors are off = P(A ∩ B') = 0.18
Step-by-step explanation:
Event A is denoted to reciprocal compressor (R) that is always off.
Event B is denoted that at least one of the screw type of compressor is always on.
P(A) = Probability that the reciprocal compressor is off.
P(A') = Probability that the reciprocal compressor is on.
P(B) = Probability that at least one of the screw type of compressor is on.
P(B') = Probability that at least one of the screw type of compressor is off.
P(A ∩ B) = 45% = 0.45
P(A ∪ B) = 93% = 0.93
P(U) = P(A ∪ B) + P(A' ∩ B')
1 = 0.93 + P(A' ∩ B')
P(A' ∩ B') = 1 - 0.93 = 0.07
The probability that all compressors are off is given as P(A ∩ B')
P(A) = P(A n B') + P(A n B)
P(B) = P(A n B) + P(A' n B)
The question asks us to assume that all outcomes in event B are equally likely.
The possible outcomes in event B include
- The two compressors are on
- First compressor is on, second compressor is off
- Second compressor is on, first compressor is off
- both compressors are off
Since all the outcomes are equally likely, the probability that at least one of the two compressors is on = (3/4) = 0.75 = P(B)
P(B) = P(A n B) + P(A' n B)
0.75 = 0.45 + P(A' n B)
P(A' n B) = 0.75 - 0.45 = 0.30
P(A ∪ B) = P(A ∩ B') + P(A' ∩ B) + P(A ∩ B)
0.93 = P(A ∩ B') + 0.30 + 0.45
P(A ∩ B') = 0.93 - 0.30 - 0.45 = 0.18
Hope this Helps!!!