9514 1404 393
Answer:
117.9°
Step-by-step explanation:
Solving the Law of Cosines equation for C, we get ...
C = arccos((a² +b² -c²)/(2ab))
Filling in the values from the figure, we find the angle X to be ...
X = arccos((y² +z² -x²)/(2yz)) = arccos((55² +50² -90²)/(2·55·50))
X = arccos(-2575/5500) ≈ 117.9°
A die is rolled 20 times and the number of twos that come up is tallied. Find the probability of getting the given result. [Binomail Probability] Less than four twos
Answer:
0.5665 = 56.65% probability of less than four twos.
Step-by-step explanation:
For each roll, there are only two possible outcomes. Either it is a two, or it is not a two. The probability of a roll ending up in a two is independent of any other roll, which means that the binomial probability distribution is used.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
A die is rolled 20 times
This means that [tex]n = 20[/tex]
One out of six sides is 2:
This means that [tex]p = \frac{1}{6} = 0.1667[/tex]
Probability of less than four twos:
This is:
[tex]P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]
So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{20,0}.(0.1667)^{0}.(0.8333)^{20} = 0.0261[/tex]
[tex]P(X = 1) = C_{20,1}.(0.1667)^{1}.(0.8333)^{19} = 0.1043[/tex]
[tex]P(X = 2) = C_{20,2}.(0.1667)^{2}.(0.8333)^{18} = 0.1982[/tex]
[tex]P(X = 3) = C_{20,3}.(0.1667)^{3}.(0.8333)^{17} = 0.2379[/tex]
So
[tex]P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.0261 + 0.1043 + 0.1982 + 0.2379 = 0.5665[/tex]
0.5665 = 56.65% probability of less than four twos.
Select the correct answer.
The Richter scale measures the magnitude, M, of an earthquake as a function of its intensity, I, and the intensity of a reference earthquake,
M= log (I/I)
.Which equation calculates the magnitude of an earthquake with an intensity 10,000 times that of the reference earthquake?
Answer:
[tex]M = \log(10000)[/tex]
Step-by-step explanation:
Given
[tex]M = \log(\frac{I}{I_o})[/tex]
[tex]I = 10000I_o[/tex] ---- intensity is 10000 times reference earthquake
Required
The resulting equation
We have:
[tex]M = \log(\frac{I}{I_o})[/tex]
Substitute the right values
[tex]M = \log(\frac{10000I_o}{I_o})[/tex]
[tex]M = \log(10000)[/tex]
The equation that calculates the magnitude of an earthquake with an intensity 10,000 times that of the reference earthquake is A. M = ㏒10000
Since the magnitude of an earthquake on the Richter sscale is M = ㏒(I/I₀) where
I = intensity of eartquake and I₀ = reference earthquake intensity.Since we require the magnitude when the intensity is 10,000 times the reference intensity, we have that I = 10000I₀.
Magnitude of earthquakeSo, substituting these into the equation for M, we have
M = ㏒(I/I₀)
M = ㏒(10000I₀./I₀)
M = ㏒10000
So, the equation that calculates the magnitude of an earthquake with an intensity 10,000 times that of the reference earthquake is A. M = ㏒10000
Learn more about magnitude of an earthquake here:
https://brainly.com/question/3457285
establish this identity
Answer:
see explanation
Step-by-step explanation:
Using the identities
tan x = [tex]\frac{sinx}{cosx}[/tex] , sin²x = 1 - cos²x
sin2x = 2sinxcosx
Consider left side
cosθ × sin2θ
= [tex]\frac{sin0}{cos0}[/tex] × 2sinθcosθ ( cancel cosθ )
= 2sin²θ
= 2(1 - cos²θ)
= 2 - 2cos²θ
= right side , then established
The starting salaries of individuals with an MBA degree are normally distributed with a mean of $40,000 and a standard deviation of $5,000. What percentage of MBA's will have starting salaries of $34,000 to $46,000
Answer:
The correct answer is "76.98%".
Step-by-step explanation:
According to the question,
⇒ [tex]P(34000<x<46000) = P[\frac{34000-40000}{5000} <\frac{x- \mu}{\sigma} <\frac{46000-40000}{5000} ][/tex]
[tex]=P(-1.2<z<1.2)[/tex]
[tex]=P(z<1.2)-P(z<-1.2)[/tex]
[tex]=0.8849-0.1151[/tex]
[tex]=0.7698[/tex]
or,
[tex]=76.98[/tex]%
HELP PLEASE I CANNOT FAIL PLEASE!!!!!!!
Which statement correctly compares the two functions?
A.
They have the same y-intercept and the same end behavior as x approaches ∞.
B.
They have the same x- and y-intercepts.
C.
They have the same x-intercept but different end behavior as x approaches ∞.
D.
They have different x- and y-intercepts but the same end behavior as x approaches ∞.
Answer:
B
Step-by-step explanation:
they have the same intercepts
Coordinate plane with quadrilaterals EFGH and E prime F prime G prime H prime at E 0 comma 1, F 1 comma 1, G 2 comma 0, H 0 comma 0, E prime negative 1 comma 2, F prime 1 comma 2, G prime 3 comma 0, and H prime negative 1 comma 0. F and H are connected by a segment, and F prime and H prime are also connected by a segment. Quadrilateral EFGH was dilated by a scale factor of 2 from the center (1, 0) to create E'F'G'H'. Which characteristic of dilations compares segment F'H' to segment FH
Answer:
[tex]|F'H'| = 2 * |FH|[/tex]
Step-by-step explanation:
Given
[tex]E = (0,1)[/tex] [tex]E' = (-1,2)[/tex]
[tex]F = (1,1)[/tex] [tex]F' = (1,2)[/tex]
[tex]G = (2,0)[/tex] [tex]G' =(3,0)[/tex]
[tex]H = (0,0)[/tex] [tex]H' = (-1,0)[/tex]
[tex](x,y) = (1,0)[/tex] -- center
[tex]k = 2[/tex] --- scale factor
See comment for proper format of question
Required
Compare FH to F'H'
From the question, we understand that the scale of dilation from EFGH to E'F'G'H is 2;
Irrespective of the center of dilation, the distance between corresponding segment will maintain the scale of dilation.
i.e.
[tex]|F'H'| = k * |FH|[/tex]
[tex]|F'H'| = 2 * |FH|[/tex]
To prove this;
Calculate distance of segments FH and F'H' using:
[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]
Given that:
[tex]F = (1,1)[/tex] [tex]F' = (1,2)[/tex]
[tex]H = (0,0)[/tex] [tex]H' = (-1,0)[/tex]
We have:
[tex]FH = \sqrt{(1- 0)^2 + (1- 0)^2}[/tex]
[tex]FH = \sqrt{(1)^2 + (1)^2}[/tex]
[tex]FH = \sqrt{1 + 1}[/tex]
[tex]FH = \sqrt{2}[/tex]
Similarly;
[tex]F'H' = \sqrt{(1 --1)^2 + (2 -0)^2}[/tex]
[tex]F'H' = \sqrt{(2)^2 + (2)^2}[/tex]
Distribute
[tex]F'H' = \sqrt{(2)^2(1 +1)}[/tex]
[tex]F'H' = \sqrt{(2)^2*2}[/tex]
Split
[tex]F'H' = \sqrt{(2)^2} *\sqrt{2}[/tex]
[tex]F'H' = 2 *\sqrt{2}[/tex]
[tex]F'H' = 2\sqrt{2}[/tex]
Recall that:
[tex]|F'H'| = 2 * |FH|[/tex]
So, we have:
[tex]2\sqrt 2 = 2 * \sqrt 2[/tex]
[tex]2\sqrt 2 = 2\sqrt 2[/tex] --- true
Hence, the dilation relationship between FH and F'H' is::
[tex]|F'H'| = 2 * |FH|[/tex]
Answer:NOTT !! A segment in the image has the same length as its corresponding segment in the pre-image.
Step-by-step explanation:
MFP15017010 2021 Question 2 2.1 Calculate the following 2- and 3-digit numbers using strategic doubling: 34 2.1.2 340 2.13 277 214 00 (10) 2.15 500
Answer:
plz check ur school solution down.
Step-by-step explanation:
Muhammad lives twice as far from the school as Hita. Together, the live a total of 12 km
from the school. How far away drom the school does each of them live?
Answer:
Muhammad lives 8 km away from the school.
Hita lives 4 km away from the school.
Step-by-step explanation:
First of all, find a number that, when you double that number and add both numbers, you will get 12. That number is 4. So double 4 and get 8. Then add both to get 12.
A professor has learned that nine students in her class of 35 will cheat on the exam. She decides to focus her attention on ten randomly chosen students during the exam. a. What is the probability that she finds at least one of the students cheating
Answer:
[tex]\frac{73,331}{75,516}\approx 97.11\%[/tex]
Step-by-step explanation:
The probability that she will find at least one student cheating is equal to the probability that she finds no students cheating subtracted from 1.
Each time she randomly chooses a student the probability she will catch a cheater is equal to the number of cheaters divided by the number of students.
Therefore, for the first student she chooses, there is a [tex]\frac{9}{35}[/tex] chance that the student chosen is a cheater and therefore a [tex]\frac{26}{35}[/tex] chance she does not catch a cheater. For the second student, there are only 34 students to choose from. If we stipulate that the first student chosen was not a cheater, then there is a [tex]\frac{9}{34}[/tex] chance she will catch a cheater and a [tex]\frac{25}{34}[/tex] chance she does not catch the cheater.
Therefore, the probability she does not catch a single cheater after randomly choosing ten students is equal to:
[tex]\frac{26}{35}\cdot \frac{25}{34}\cdot \frac{24}{33}\cdot \frac{23}{32}\cdot \frac{22}{31}\cdot \frac{21}{30}\cdot \frac{20}{29}\cdot \frac{19}{28}\cdot \frac{18}{27}\cdot \frac{17}{26}[/tex]
Subtract this from one to get the probability she finds at least one of the students cheating after randomly selecting nine students. Let event A occur when the professor finds at least one student cheating after randomly selecting ten students from a group of 35 students.
[tex]P(A)=1-\frac{26}{35}\cdot \frac{25}{34}\cdot \frac{24}{33}\cdot \frac{23}{32}\cdot \frac{22}{31}\cdot \frac{21}{30}\cdot \frac{20}{29}\cdot \frac{19}{28}\cdot \frac{18}{27}\cdot \frac{17}{26},\\\\P(A)=1-\frac{2,185}{75,516},\\\\P(A)=\boxed{\frac{73,331}{75,516}}\approx 0.97106573441\approx \boxed{97.11\%}[/tex]
If P(x) = 2x2 – 3x + 7 and Q(x) = 8 - x), find each function value.
15. P(-3)
16. Q(2)
17. P(4)
18. Q(-3)
Answer:
15. 52
16. 6
17. 59
18. 11
Step-by-step explanation:
PLEASE HEP ME
PLEASE HELP AND BE CORRECT BEFORE ANSWERING
9514 1404 393
Answer:
TrueTrueStep-by-step explanation:
The center of dilation (point D) is a point that doesn't move. Any line not through that point will be moved to a parallel location when a dilation factor is applied.
Any line through the center of dilation will still go through the center of dilation. Its slope does not change, so the line will appear to be the same.
AB ║ A'B' — True
AD ≅ A'D' — True
_____
You can see these relationships in the attached figure.
If a square root parent function is vertically compressed by a factor of 1/6,
what is the equation of the new function, G(x)?
O A. G(x)=1/6square root of x
B. G(x) = Square root of 6x
C. G(x) = 6 square root of x
D. G(x) = -6 square root of x
Answer:
the answer could be B i think cause that makes total sense
Question 4 4 pts Lori buys a $1500 certificate of deposit (CD) that earns 6% interest that compounds monthly. How much will the CD be worth in: 5 years? 10 years? 486 months?
Answer:
Step-by-step explanation:
5 years
[tex]1500(1+\frac{.06}{12})^{12*5}=2023.275229[/tex]
10 years
[tex]1500(1+\frac{.06}{12})^{10*12}=2729.095101[/tex]
486 months:
[tex]1500(1+\frac{.06}{12})^{486}=16935.47074[/tex]
round those as you please
find all the missing measurement
Answer:
find all the missing measurementTwo balls are picked at random from a box containing 5 red balls and 3 green balls. What is the probability that 1 red ball and 1 green ball are selected?
Answer:
Step-by-step explanation:
Answer:
3/8 x 5/8= 15/64
Step-by-step explanation:
help I was never taught how to do this im confused
Answer:
36
Step-by-step explanation:
Area of a triangle = (bh)/2
Where b = base length and h = height
Given base length: 18ft
Given height: 4ft
This being known let's define the variables
b = 18
h = 4
Now to find the area we simply plug in these values into the formula
Area = (18)(4)/2
Simplify multiplication 18 * 4 = 72
Area = 72/2
Simplify division
Area = 36
Denver's elevation is 5280 feet above sea level. Death Valley is -282 feet. Is Death Valley located above sea level or below sea level???
(plz answer, due date is semtemper)
9514 1404 393
Answer:
below
Step-by-step explanation:
When signed numbers are used to represent elevation with respect to sea level, positive signs are used for values above sea level, and negative signs are used for values below sea level. The given elevation of Death Valley indicates it is 282 feet below sea level.
1. One half of a number added to a second
number equals 4. One half of the first
number decreased by the second number
equals zero. Find the two numbers.
Answer:
(4, 2)
Step-by-step explanation:
½x + y = 4
y = 4 - ½x
½x - y = 0
½x - (4 - ½x) = 0
½x - 4 + ½x = 0
x = 4
y = 4 - ½(4)
y = 2
The degree of this expression 2x+3y=4
Answer:
1st degree
Step-by-step explanation:
You look at the largest exponet, right here, there are none so it would be 1st degree.
Answer:
1
Step-by-step explanation:
The degree of an expression with multiple exponents is the highest exponent in it. In this expression, there is no expression, so the answer will be 1 because there is no exponent and every variable and number has an invisible 1 as its exponent.
Hope this helps.
Clear parentheses by applying the distributive property.
-(-4s + 9t + 7)
Answer:
4s-9t-7
Step-by-step explanation:
multiply the negative one with all terms inside the bracket, since they are all unlike terms the answer remains the same
Certify Completion Icon Tries remaining:2 A town recently dismissed 10 employees in order to meet their new budget reductions. The town had 7 employees over 50 years of age and 18 under 50. If the dismissed employees were selected at random, what is the probability that exactly 5 employees were over 50
Answer:
0.055 = 5.5% probability that exactly 5 employees were over 50.
Step-by-step explanation:
The employees are removed from the sample without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question:
7 + 18 = 25 employees, which means that [tex]N = 25[/tex]
7 over 50, which means that [tex]k = 7[/tex]
10 dismissed, which means that [tex]n = 10[/tex]
What is the probability that exactly 5 employees were over 50?
This is P(X = 5). So
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 5) = h(5,25,10,7) = \frac{C_{7,5}*C_{18,5}}{C_{25,10}} = 0.055[/tex]
0.055 = 5.5% probability that exactly 5 employees were over 50.
Solve the equation 10 + y√ = 14
9514 1404 393
Answer:
y = 16
Step-by-step explanation:
Perhaps you want to solve ...
10 +√y = 14
√y = 4 . . . . . . subtract 10
y = 4² = 16 . . . square both sides
Last question pls help me
Answer:
Step-by-step explanation:
684 dollars
Absolute Value Equations
Answer:
4 is E, 5 is A
Step-by-step explanation:
4) Divide both sides by 5 to get |2x + 1| = 11, then solve for x to get 5 and -6.
5) Add 7 to both sides to get ½|4x - 8| = 10. Multiply both sides by 2 to get |4x - 8| = 20, then solve for x to get 7 and -3.
Need help due tomorrow
Answer:
[tex]Given:[/tex] Δ ABC ≈ ΔDEF
[tex]therefor:[/tex] A(ΔABC)/A(ΔDEF)=(BC)²/(EF)²
⇒ 34/A(ΔDEF)=9²/(13.5)²
⇒34/A(ΔDEF)=81/182.25
⇒A(ΔDEF)=34×182.25/81
⇒Area of ΔDEF=76.5 cm²
----------------------------------
Hope it helps...
Have a great day!!!
determine a simplified expression
Answer:
For Task B: [tex]3x^4 - 2x^3[/tex]
Step-by-step explanation:
Given that Volume = l*w*h, we can plug in the values on the diagram, so we get the equation (3x-2)([tex]\frac{1}{2}x[/tex])([tex]2x^2[/tex]) = [tex](\frac{3}{2} x^2 - x)(2x^2) = 3x^4-2x^3[/tex]. Hope this helps!!!
write the equation of a line of a line passing through the points (3,1) and (6,3).
Answer:
i think its 2 1
Step-by-step explanation:
Answer:
y =2/3x-1
Step-by-step explanation:
First find the slope
m = ( y2-y1)/(x2-x1)
= ( 3-1)/ (6-3)
= 2/3
The slope intercept form of a line is
y = mx+b where m is the slope and b is the y intercept
y = 2/3x +b
Using a point
3 = 2/3(6)+b
3 = 4+b
3-4 =b
-1=b
y =2/3x-1
If you have a right triangle with legs a =6 and b= 8, what is the value of the hypotenuse? show work.
Answer:
10
Step-by-step explanation:
1. [tex]6^{2} + 8^{2} = c^{2}[/tex]
2 [tex]100 = c^{2}[/tex]
3. c = 10
Write a linear equation in point slope form that passes through the points (-2,18) and (1,9)
Answer:
y-18=-3(x+2)
Step-by-step explanation:
The Slope-intercept form is -3x+12
Perform the following series of rigid transformations on ∆ABC: Translate ∆ABC by moving it 5 units to the right and 2 units up. Draw the line y = -x, and reflect ∆A'B'C' across the line. Rotate ∆A''B''C'' counterclockwise about the origin by 270°.
Answer:
The answer is below
Step-by-step explanation:
Transformation is the movement of a point from its initial location to a new location. Types of transformation are rotation, reflection, translation and dilation.
If a point A(x, y) is translated a units right and b units up, the new point is at A'(x + a, y + b).
If a point A(x, y) is reflected across the line y = -x, the new point is at A'(-y, -x).
If a point A(x, y) is rotated counterclockwise by 270 degrees, the new point is at A'(y, -x).
Let us assume that triangle ABC has vertices at A(-6, -1), B(-3, -3) and C(-1, -2).
If it is moved 5 units to the right and 2 units up, the new point is at A'(-1, 1), B'(1, -1) and C'(3, 0). If it is reflected across the line y = -x, the vertices are at A"(-1, 1), B"(1, -1) and C"(0, -3). If it is then rotated counterclockwise about the origin by 270°, the new point is at A'"(-1, -1), B"'(1, 1), C"'(3, 0)