Use the power of a power property to simplify the numeric expression.
(91/4)^7/2
Using the power property to simplify the expression (9¹⁺⁴)⁷⁺², we have 9^7/8
Given the expression
(9¹⁺⁴)⁷⁺²
To simplify this expression using the power of a power property, we need to multiply the exponents:
(9¹⁺⁴)⁷⁺² = 9(¹⁺⁴ ˣ ⁷⁺²)
Simplifying the exponents in the parentheses:
(9¹⁺⁴)⁷⁺² = 9⁷⁺⁸ or 9^7/8
Therefore, (9¹⁺⁴)⁷⁺² simplifies to 9^(7/8).
Read more about expression at
https://brainly.com/question/4344214
#SPJ1
Find the product of 3√20 and √5 in simplest form. Also, determine whether the result is rational or irrational and explain your answer.
Answer:
30, rational
Step-by-step explanation:
[tex]3\sqrt{20}\cdot\sqrt{5}=3\sqrt{4}\sqrt{5}\cdot\sqrt{5}=(3\cdot2)\cdot5=6\cdot5=30[/tex]
The result is rational because it can be written as a fraction of integers.
a water park sold 1679 tickets for total of 44,620 on a wa summer day..each adult tocket is $35 and each child ticket is $20. how many of each type of tixkwt were sold?
Therefore , the solution of the given problem of unitary method comes out to be the attraction sold 943 child tickets and 736 adult tickets on that particular day.
What is an unitary method?It is possible to accomplish the objective by using previously recognized variables, this common convenience, or all essential components from a prior malleable study that adhered to a specific methodology. If the expression assertion result occurs, it will be able to get in touch with the entity again; if it does not, both crucial systems will undoubtedly miss the statement.
Here,
Assume the attraction sold x tickets for adults and y tickets for kids.
Based on the supplied data, we can construct the following two equations:
=> x + y = 1679 (equation 1, representing the total number of tickets sold)
=> 35x + 20y = 44620 (equation 2, representing the total revenue generated)
Using the elimination technique, we can find the values of x and y.
When we divide equation 1 by 20, we obtain:
=> 20x + 20y = 33580 (equation 3)
Equation 3 is obtained by subtracting equation 2 to yield:
=> 15x = 11040
=> x = 736
When we enter x = 736 into equation 1, we obtain:
=> 736 + y = 1679
=> y = 943
As a result, the attraction sold 943 child tickets and 736 adult tickets on that particular day.
To know more about unitary method visit:
https://brainly.com/question/28276953
#SPJ1
According to Money magazine, Maryland had the highest median annual household income of any state in 2018 at $75,847.† Assume that annual household income in Maryland follows a normal distribution with a median of $75,847 and standard deviation of $33,800.
(a) What is the probability that a household in Maryland has an annual income of $90,000 or more? (Round your answer to four decimal places.)
(b) What is the probability that a household in Maryland has an annual income of $50,000 or less? (Round your answer to four decimal places.)
The required probability that a household in Maryland with annual income of ,
$90,000 or more is equal to 0.3377.
$50,000 or less is equal to 0.2218.
Annual household income in Maryland follows a normal distribution ,
Median = $75,847
Standard deviation = $33,800
Probability of household in Maryland has an annual income of $90,000 or more.
Let X be the random variable representing the annual household income in Maryland.
Then,
find P(X ≥ $90,000).
Standardize the variable X using the formula,
Z = (X - μ) / σ
where μ is the mean (or median, in this case)
And σ is the standard deviation.
Substituting the given values, we get,
Z = (90,000 - 75,847) / 33,800
⇒ Z = 0.4187
Using a standard normal distribution table
greater than 0.4187 as 0.3377.
P(X ≥ $90,000)
= P(Z ≥ 0.4187)
= 0.3377
Probability that a household in Maryland has an annual income of $90,000 or more is 0.3377(rounded to four decimal places).
Probability that a household in Maryland has an annual income of $50,000 or less.
P(X ≤ $50,000).
Standardizing X, we get,
Z = (50,000 - 75,847) / 33,800
⇒ Z = -0.7674
Using a standard normal distribution table
Probability that a standard normal variable is less than -0.7674 as 0.2218. This implies,
P(X ≤ $50,000)
= P(Z ≤ -0.7674)
= 0.2218
Probability that a household in Maryland has an annual income of $50,000 or less is 0.2218.
Therefore, the probability with annual income of $90,000 or more and $50,000 or less is equal to 0.3377 and 0.2218 respectively.
learn more about probability here
brainly.com/question/24111146
#SPJ4
The Nutty Professor sells cashews for $6.80 per pound and Brazil nuts for $4.20 per pound. How much of each type should be used to make a 35 pound mixture that sells for $5.31 per pound?
The Nutty Prοfessοr shοuld use apprοximately 14.94 pοunds οf cashews and 35 - 14.94 = 20.06 pοunds οf Brazil nuts tο make a 35 pοund mixture that sells fοr $5.31 per pοund.
Assume the Nutty Prοfessοr makes a 35-pοund mixture with x pοunds οf cashews and (35 - x) pοunds οf Brazil nuts.
The cashews cοst $6.80 per pοund, sο the tοtal cοst οf x pοunds οf cashews is $6.8x dοllars.
Similarly, Brazil nuts cοst $4.20 per pοund, sο (35 - x) pοunds οf Brazil nuts cοst 4.2(35 - x) dοllars.
The tοtal cοst οf the mixture equals the sum οf the cashew and Brazil nut cοsts, which is:
6.8x + 4.2(35 - x) (35 - x)
When we simplify, we get:
6.8x + 147 - 4.2x
2.6x + 147
The mixture sells fοr $5.31 per pοund, sο the tοtal revenue frοm selling 35 pοunds οf the mixture is:
35(5.31) = 185.85
When we divide the tοtal cοst οf the mixture by the tοtal revenue, we get:
2.6x + 147 = 185.85
Subtractiοn οf 147 frοm bοth sides yields:
2.6x = 38.85
When we divide by 2.6, we get:
x ≈ 14.94
Tο make a 35-pοund mixture that sells fοr $5.31 per pοund, the Nutty Prοfessοr shοuld use apprοximately 14.94 pοunds οf cashews and 35 - 14.94 = 20.06 pοunds οf Brazil nuts.
To know more pοunds visit:
https://brainly.com/question/29145297
#SPJ1
given :√9+25 : π-4 : ³√-27 : 2÷3 : 18÷2 : √-27
√9+25 = 28
π-4 = -0.8571
³√-27 = -3
2 / 3 = 0.6667
18÷2 = 9
√-27 = 5.196
What is surdsIn mathematics, a surd is a term used to describe an irrational number that is expressed as the root of an integer. Specifically, a surd is a number that cannot be expressed exactly as a fraction of two integers, and is usually written in the form of a radical (e.g. √2, √3, √5, etc.).
We have √9+25 = 28
find the square root of 9 = 3
3 + 25 = 28
π-4 = 3.14 - 4
= -0.8571
³√-27 = ³√3³
= 3
2÷3 = 0.6667
18÷2 = 9
Read more on surds here:https://brainly.com/question/840021
#SPJ1
question:
given :√9+25 : π-4 : ³√-27 : 2÷3 : 18÷2 : √-27
find the value of the terms
What gravitational force does the moon produce on the Earth if their centers are 3.88x108 m apart and the moon has a mass of 7.34x1022 kg?
The gravitational force that the moon produces on the Earth is approximately [tex]1.98 \times 10^{20}\ \mathrm{N}$.[/tex]
What is gravitational force?
Gravitational force is the force of attraction that exists between any two objects in the universe with mass. This force is directly proportional to the masses of the objects and inversely proportional to the square of the distance between their centers.
The gravitational force that the moon produces on the Earth can be calculated using the formula:
[tex]F = G \cdot \frac{m_1 \cdot m_2}{r^2}[/tex]
where:
[tex]G$ = gravitational constant = $6.67430 \times 10^{-11}\ \mathrm{N(m/kg)^2}$[/tex]
[tex]m_1$ = mass of the moon = $7.34 \times 10^{22}\ \mathrm{kg}$[/tex]
[tex]m_2$ = mass of the Earth = $5.97 \times 10^{24}\ \mathrm{kg}$ (approximate)[/tex]
[tex]r$ = distance between the centers of the Earth and the moon = $3.88 \times 10^8\ \mathrm{m}$[/tex]
Substituting these values into the formula, we get:
[tex]F &= 6.67430 \times 10^{-11} \cdot \frac{7.34 \times 10^{22} \cdot 5.97 \times 10^{24}}{(3.88 \times 10^8)^2} \&= 1.98 \times 10^{20}\ \mathrm{N}[/tex]
Therefore, the gravitational force that the moon produces on the Earth is approximately [tex]1.98 \times 10^{20}\ \mathrm{N}$.[/tex]
To learn more about gravitational force visit:
https://brainly.com/question/29328661
#SPJ1
If A B C are three matric such that AB=AC such that A=C then A is
Answer:
invertible
Step-by-step explanation:
If A is invertible then ∣A∣ =0
Marcia Gadzera wants to retire in San Diego when she is 65 years old. Marcia is now 50 and believes she will need $90,000 to retire comfortably. To date, she has set aside no retirement money. If she gets interest of 10% compounded semiannually, how much must she invest today to meet her goal of $90,000?
Answer:
Step-by-step explanation:
We can use the formula for the future value of an annuity to determine how much Marcia needs to invest today to meet her retirement goal of $90,000. The formula for the future value of an annuity is:
FV = PMT x [(1 + r/n)^(n*t) - 1] / (r/n)
where:
FV = future value of the annuity
PMT = payment (or deposit) made at the end of each compounding period
r = annual interest rate
n = number of compounding periods per year
t = number of years
In this case, we want to solve for the PMT (the amount Marcia needs to invest today). We know that:
Marcia wants to retire in 15 years (when she is 65), so t = 15
The interest rate is 10% per year, compounded semiannually, so r = 0.10/2 = 0.05 and n = 2
Marcia wants to have $90,000 in her retirement account
Substituting these values into the formula, we get:
$90,000 = PMT x [(1 + 0.05/2)^(2*15) - 1] / (0.05/2)
Simplifying the formula, we get:
PMT = $90,000 / [(1.025)^30 - 1] / 0.025
PMT = $90,000 / 19.7588
PMT = $4,553.39 (rounded to the nearest cent)
Therefore, Marcia needs to invest $4,553.39 today in order to meet her retirement goal of $90,000, assuming an interest rate of 10% per year, compounded semiannually.
Parts A-D. What is the value of the sample mean as a percent? What is its interpretation? Compute the sample variance and sample standard deviation as a percent as measures of rotelle for the quarterly return for this stock.
The sample mean is 2.1, the sample variance is 212.5% and the standard deviation is 14.57%
What is the sample mean?a. The sample mean can be computed as the average of the quarterly percent total returns:
[tex](11.2 - 20.5 + 13.2 + 12.6 + 9.5 - 5.8 - 17.7 + 14.3) / 8 = 2.1[/tex]
So the sample mean is 2.1%, which can be interpreted as the average quarterly percent total return for the stock over the sample period.
b. The sample variance can be computed using the formula:
[tex]s^2 = sum((x - mean)^2) / (n - 1)[/tex]
where x is each quarterly percent total return, mean is the sample mean, and n is the sample size. Plugging in the values, we get:
[tex]s^2 = (11.2 - 2.1)^2 + (-20.5 - 2.1)^2 + (13.2 - 2.1)^2 + (12.6 - 2.1)^2 + (9.5 - 2.1)^2 + (-5.8 - 2.1)^2 + (-17.7 - 2.1)^2 + (14.3 - 2.1)^2 / (8 - 1) = 212.15[/tex]
So the sample variance is 212.15%. The sample standard deviation can be computed as the square root of the sample variance:
[tex]s = \sqrt(s^2) = \sqrt(212.15) = 14.57[/tex]
So the sample standard deviation is 14.57%.
c. To construct a 95% confidence interval for the population variance, we can use the chi-square distribution with degrees of freedom n - 1 = 7. The upper and lower bounds of the confidence interval can be found using the chi-square distribution table or calculator, as follows:
upper bound = (n - 1) * s^2 / chi-square(0.025, n - 1) = 306.05
lower bound = (n - 1) * s^2 / chi-square(0.975, n - 1) = 91.91
So the 95% confidence interval for the population variance is (91.91, 306.05).
d. To construct a 95% confidence interval for the standard deviation (as percent), we can use the formula:
lower bound = s * √((n - 1) / chi-square(0.975, n - 1))
upper bound = s * √((n - 1) / chi-square(0.025, n - 1))
Plugging in the values, we get:
lower bound = 6.4685%
upper bound = 20.1422%
So the 95% confidence interval for the standard deviation (as percent) is (6.4685%, 20.1422%).
Learn more on sample mean here;
https://brainly.com/question/26941429
#SPJ1
In the diagram of right triangle ABC shown below, AB= 14 and AC = 9.
What is the measure of ZA, to the nearest degree?
1) 33
2) 40
3) 50
4) 57
The measure of the angle A is 49.99 degrees or 50 degrees if the length of AB = 14 and AC = 9.
What is trigonometry?Trigonometry is a branch of mathematics that deals with the relationship between sides and angles of a right-angle triangle.
We have a given a right angle triangle in the picture
It is required to find the measure of angle A
Applying cos ratio to find the measure of the angle A:
cosA = 9/14
cosA = 0.642
A = 49.99 ≈ 50 degree
Thus, the measure of the angle A is 49.99 degrees or 50 degrees if the length of AB = 14 and AC = 9.
Learn more about trigonometry here:
https://brainly.com/question/26719838
Let the Universal Set, S, have 158 elements. A and B are subsets of S. Set A contains 67 elements and Set B contains 65 elements. If Sets A and B have 9 elements in common, how many elements are in neither A nor B?
There are 92 elements in A but not in B.
What are sets?In mathematics, a set is a well-defined collection of objects or elements. Sets are denoted by uppercase symbols, and the number of elements in a finite set is denoted as the cardinality of the set enclosed in curly braces {…}.
Empty or zero quantity:
Items not included. example:
A = {} is a null set.
Finite sets:
The number is limited. example:
A = {1,2,3,4}
Infinite set:
There are myriad elements. example:
A = {x:
x is the set of all integers}
Same sentence:
Two sets with the same members. example:
A = {1,2,5} and B = {2,5,1}:
Set A = Set B
Subset:
A set 'A' is said to be a subset of B if every element of A is also an element of B. example:
If A={1,2} and B={1,2,3,4} then A ⊆ B
Universal set:
A set that consists of all the elements of other sets that exist in the Venn diagram. example:
A={1,2}, B={2,3}, where the universal set is U = {1,2,3}
n(A ∪ B) = n(A – B) + n(A ∩ B) + n(B – A)
Hence, There are 92 elements in A but not in B.
learn more about sets click here:
https://brainly.com/question/13458417
#SPJ1
To approximate binomial probability plx > 8) when n is large, identify the appropriate 0.5 adjusted formula for normal approximation. O plx > 7.5) O plx >= 9) O plx > 9) O plx > 8.5)
The appropriate 0.5 adjusted formula for normal approximation is option (d) p(x > 8.5)
The appropriate 0.5 adjusted formula for normal approximation to approximate binomial probabilities when n is large is
P(Z > (x + 0.5 - np) / sqrt(np(1-p)))
where Z is the standard normal variable, x is the number of successes, n is the number of trials, and p is the probability of success in each trial.
To approximate binomial probability p(x > 8) when n is large, we need to use the continuity correction and find the appropriate 0.5 adjusted formula for normal approximation. Here, x = 8, n is large, and p is unknown. We first need to find the value of p.
Assuming a binomial distribution, the mean is np and the variance is np(1-p). Since n is large, we can use the following approximation
np = mean = 8, and
np(1-p) = variance = npq
8q = npq
q = 0.875
p = 1 - q = 0.125
Now, using the continuity correction, we adjust the inequality to p(x > 8) = p(x > 8.5 - 0.5)
P(Z > (8.5 - 0.5 - 8∙0.125) / sqrt(8∙0.125∙0.875))
= P(Z > 0.5 / 0.666)
= P(Z > 0.75)
Therefore, the correct option is (d) p(x > 8.5)
Learn more about binomial probability here
brainly.com/question/29350029
#SPJ4
The given question is incomplete, the complete question is:
To approximate binomial probability p(x > 8) when n is large, identify the appropriate 0.5 adjusted formula for normal approximation. a) p(x > 7.5) b) p(x >= 9) c) p(x > 9) d) p(x > 8.5)
WILL MARK AS BRAINLIEST!!!!!!!!!!!!!!
If "f" is differentiable and f(1) < f(2), then there is a number "c", in the interval (_____, _____) such that f'(c)>_______
If "f" is differentiable and f(1) < f(2), then there is a number "c", in the interval (1, 2) such that f'(c)> 0.
How do we know?Applying the Mean Value Theorem for derivatives, if a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists at least one number c in the interval (a, b) such that:
f'(c) = (f(b) - f(a)) / (b - a)
In the scenario above, we have that f is differentiable, and that f(1) < f(2).
choosing a = 1 and b = 2.
Then applying the Mean Value Theorem, there exists at least one number c in the interval (1, 2) such that:
f'(c) = (f(2) - f(1)) / (2 - 1)
f'(c) = f(2) - f(1)
We have that f(1) < f(2), we have:
f(2) - f(1) > 0
We can conclude by saying that there exists a number c in the interval (1, 2) such that:
f'(c) = f(2) - f(1) > 0
Learn more about Mean Value Theorem at: https://brainly.com/question/19052862
#SPJ1
the c on the left has blank1 - word answer please type your answer to submit electron geometry and a bond angle of
The CH3-CIOI-CNI molecule contains three carbon atoms with different electron geometries and bond angles. The CH3 and CIOI carbon atoms have tetrahedral geometry with a bond angle of approximately 109.5 degrees, while the CNI carbon atom has a trigonal planar geometry with a bond angle of approximately 120 degrees.
Using this Lewis structure, we can determine the electron geometry and bond angle for each carbon atom in the molecule as follows.
The carbon atom in the CH3 group has four electron domains (three bonding pairs and one non-bonding pair). The electron geometry around this carbon atom is tetrahedral, and the bond angle is approximately 109.5 degrees.
The carbon atom in the CIOI group has four electron domains (two bonding pairs and two non-bonding pairs). The electron geometry around this carbon atom is also tetrahedral, and the bond angle is approximately 109.5 degrees.
The carbon atom in the CNI group has three electron domains (one bonding pair and two non-bonding pairs). The electron geometry around this carbon atom is trigonal planar, and the bond angle is approximately 120 degrees.
Therefore, the electron geometry and bond angle for each carbon atom in the structure CH3-CIOI-CNI are:
CH3 carbon atom tetrahedral geometry, bond angle of approximately 109.5 degrees
CIOI carbon atom tetrahedral geometry, bond angle of approximately 109.5 degrees
CNI carbon atom trigonal planar geometry, bond angle of approximately 120 degrees
To know more about electron geometry:
https://brainly.com/question/7558603
#SPJ4
_____The given question is incomplete, the complete question is given below:
Determine the electron geometry and bond angle for each carbon atom in the structure CH3-CIOI-CNI
What is the slope of the line in the following graph?
Answer:
1/3
Step-by-step explanation:
using rise over run fron the two dots, we can find 2/6, which simplifies down to 1/3
Help me find the value of x
Answer:
x = 30
Step-by-step explanation:
We know
The three angles must add up to 180°. We know one is 20°, so the other two must add up to 160°.
2x + 3x + 10 = 160
5x + 10 = 160
5x = 150
x = 30
Question 6 of 10
Based only on the information given in the diagram, which congruence
theorems or postulates could be given as reasons why ACDE AOPQ?
Check all that apply.
AA
A. AAS
B. ASA
C. LL
OD. HL
E. LA
F. SAS
Therefore, A, B, C, and F are the proper responses as the congruence theories or postulates based on the data.
what is triangle ?Having three straight sides and three angles where they intersect, a triangle is a closed, two-dimensional shape. It is one of the fundamental geometric shapes and has a number of characteristics that can be used to study and resolve issues that pertain to it. The triangle inequality theory states that the sum of a triangle's interior angles is always 180 degrees, and that the longest side is always the side across from the largest angle. Triangles can be used to solve a wide range of mathematical issues in a variety of disciplines and can be categorised based on the length of their sides and the measurement of their angles.
given
We can use the following congruence theories or postulates based on the data in the diagram:
A. ASA
B. AAS
C. LL (corresponding angles hypothesis)
F. SAS
Therefore, A, B, C, and F are the proper responses as the congruence theories or postulates based on the data.
To know more about triangle visit:
https://brainly.com/question/2773823
#SPJ1
For a standard normal distribution, find:
P(-2.11 < z < -0.85)
Answer:
Step-by-step explanation:
Using a standard normal table, we can find the area under the curve between -2.11 and -0.85.
P(-2.11 < z < -0.85) = P(z < -0.85) - P(z < -2.11)
Using the table, we find:
P(z < -0.85) = 0.1977
P(z < -2.11) = 0.0174
Therefore,
P(-2.11 < z < -0.85) = 0.1977 - 0.0174 = 0.1803
So the probability that a standard normal random variable falls between -2.11 and -0.85 is 0.1803.
How do you compute the sum of squared errors
Answer:
Relating SSE to Other Statistical Data
Variance = SSE/n, if you are calculating the variance of a full population.Variance = SSE/(n-1), if you are calculating the variance of a sample set of data.
Please answer Full question
(1) 4y-7z is a binomial.
(2) 8-xy² is a binomial.
(3) ab-a-b can be written as ab - (a + b) which is a binomial.
(4) z²-3z+8 is a trinomial.
What are monomials, binomials and trinomials?In algebra, monomials, binomials, and trinomials are expressions that contain one, two, and three terms, respectively.
A monomial is an algebraic expression with only one term. A monomial can be a number, a variable, or a product of numbers and variables.
A binomial is an algebraic expression with two terms that are connected by a plus or minus sign. For example, 2x + 3y and 4a - 5b are both binomials.
A trinomial is an algebraic expression with three terms that are connected by plus or minus signs.
Learn more about monomial on;
https://brainly.com/question/29047865
#SPJ1
Classify into monomials, binomials and trinomials.
(1) 4y-7z
(1) 8-xy²
(v) ab-a-b
(ix) z2-3z+8
fill in the blank. Toward the end of a game of Scrabble, you hold the letters D, O, G, and Q. You can choose 3 of these 4 letters and arrange them in order in ______ different ways. (Give your answer as a whole number.)
Toward the end of a game of Scrabble, you hold the letters D, O, G, and Q. You can choose 3 of these 4 letters and arrange them in order in 24 different ways.
To solve this problem, we need to use the concept of permutations. A permutation is an arrangement of objects in a specific order. In this case, we need to find the number of permutations that can be made from the letters D, O, G, and Q when we choose 3 of these 4 letters.
The formula for finding the number of permutations is:
n! / (n-r)!
where n is the total number of objects and r is the number of objects we choose.
Using this formula, we can calculate the number of permutations as follows:
4! / (4-3)!
= 4! / 1!
= 4 x 3 x 2 x 1 / 1
= 24
Therefore, we can arrange the chosen 3 letters in 24 different ways.
To learn more about permutations click on,
https://brainly.com/question/30660588
#SPJ4
Oliver's normal rate of pay is $10.40 an hour.
How much is he paid for working 5 hours overtime one Saturday at time-and-a-half?
Without an appointment, the average waiting time in minutes at the doctor's office has the probability density function f(t)=1/38, where 0≤t≤38
Step 1 of 2:
What is the probability that you will wait at least 26 minutes? Enter your answer as an exact expression or rounded to 3 decimal places.
Step 2 of 2:
What is the average waiting time?
The probability of waiting at least 26 minutes is 0.316. The average waiting time is 19 minutes.
Step 1:
The probability of waiting at least 26 minutes can be calculated by finding the area under the probability density function from 26 to 38:
P(waiting at least 26 minutes) = ∫26^38 (1/38) dt = [t/38] from 26 to 38
= (38/38) - (26/38) = 12/38 = 0.316
So the probability of waiting at least 26 minutes is 0.316 or approximately 0.316 rounded to 3 decimal places.
Step 2:
The average waiting time can be calculated by finding the expected value of the probability density function:
E(waiting time) = ∫0³⁸ t f(t) dt = ∫0³⁸ (t/38) dt
= [(t²)/(238)] from 0 to 38
= (38²)/(238) = 19
Therefore, the average waiting time is 19 minutes.
Learn more about probability here: brainly.com/question/30034780
#SPJ4
During a manufacturing process, a metal part in a machine is exposed to varying temperature conditions. The manufacturer of the machine recommends that the temperature of the machine part remain below 131°F. The temperature T in degrees Fahrenheit x minutes after the machine is put into operation is modeled by T=-0.005x^2+0.45x+125. Will the temperature of the part ever reach or exceed 131°F? Use the discriminant of a quadratic equation to decide.
answer options
1. No
2. Yes
From the discriminant of the give quadratic equation, the temperature of the machine will part after 50 minutes of operation.
Will the temperature of the part ever reach or exceed 135°F?The given equation that models the temperature of the machine is;
T = -0.005x² + 0.45x + 125
Let check if there's a value that exists for T = 135
Putting T = 135 in the given equation,
135 = -0.005x² + 0.45x + 125
We can simplify this to;
0.005x² - 0.45x + 10 = 0
From the general form of quadratic equation which is ax² + bx + c = 0, where a = 0.005, b = -0.45, and c = 10.
The discriminant of this quadratic equation is given by:
D = b² - 4ac
= (-0.45)² - 4(0.005)(10)
= 0.2025 - 0.2
= 0.0025
The discriminant of the equation is positive which indicates we have two roots. Therefore, the temperature of the machine part will cross 135°F at some point during the operation.
We can also find the roots of the quadratic equation using the formula:
[tex]x = (-b \± \sqrt(D)) / 2a[/tex]
Substituting the values of a, b, and D, we get:
[tex]x = (0.45 \± \sqrt(0.0025)) / 2(0.005)\\= (0.45 \± 0.05) / 0.01[/tex]
Taking the positive value, we get:
x = 50
Therefore, the temperature of the machine part will cross 135°F after 50 minutes of operation.
Learn more on discriminant here;
https://brainly.com/question/12526527
#SPJ1
Due today!! Pls helppp
if we that Abby spent 50% of her time on School, 30% on Work, and 20% on Sleep, we can estimate that she spent:
100% - (50% + 30% + 20%) = 100% - 100% = 0% on Other.
What do you mean by spending?If Abby divided her time into four categories (School, Work, Other, and Sleep), the percentage she spent on Other would be 100% less the sum of the percentages she spent on School, Work, and Sleep.
So, assuming Abby spending 50% of her time at school, 30% at work, and 20% sleeping, we can estimate she spent:
On Other, 100% - (50% + 30% + 20%) = 100% - 100% = 0%.
However, this is just a guess based on assumptions about how Abby spent her time. It's difficult to provide a more accurate estimate without more information.
To know more about spending visit:
brainly.com/question/15587297
#SPJ1
state the third congruence statement that is needed to prove that FGH is congruent to LMN using the ASA congruence therom
Answer:
a
Step-by-step explanation:
find a polynomial function with the following zeros: double zero at -4 simple zero at 3.
f(x) = (x+4)^2(x-3) has polynomial function with the following zeros: double zero at -4 simple zero at 3.
If a polynomial has a double zero at -4, it means that it can be factored as (x+4)^2.
If it also has a simple zero at 3, then the factorization must include (x-3).
Therefore, the polynomial function with these zeros is :-
f(x) = (x+4)^2(x-3)
This polynomial has a double zero at -4, because $(x+4)^2$ has a zero of order 2 at -4, and a simple zero at 3, because $(x-3)$ has a zero of order 1 at 3.
To know more about polynomial-
brainly.com/question/11536910
#SPJ4
Point E represents the center of this circle. Angle DEF
has a measure of 80%.
Drag and drop a number into the box to correctly
complete the statement.
An angle measure of 80° is the size of an angle
that turns through
20
50
one-degree turns.
80
100
K
The measure of the arc intercepted by the angle and the vertical angles make up the angle subtended at the center. As a result, XYZ has a value of 35°.
What are angles?Two lines intersect at a location, creating an angle.
An "angle" is the term used to describe the width of the "opening" between these two rays. The character is used to represent it.
Angles are frequently expressed in degrees and radians, a unit of circularity or rotation.
In geometry, an angle is created by joining two rays at their ends. These rays are referred to as the angle's sides or arms.
An angle has two primary components: the arms and the vertex. T
he two rays' shared vertex serves as their common terminal.
Hence, The measure of the arc intercepted by the angle and the vertical angles make up the angle subtended at the center. As a result, XYZ has a value of 35°.
Learn more on angles here click here:
brainly.com/question/2046046
#SPJ1
please help me with math quiz i’ll give you brainlist
Answer:
Answer: B. Symmetric.
Explanation:
In a symmetric distribution, the data is evenly distributed around the mean or median, creating a mirror image on both sides of the center. In this histogram, the median and mean are very close together at 55 and the bars on both sides of the center are roughly equal in height, indicating a fairly even distribution. Therefore, the histogram is symmetric.