For a certain company, the cost function for producing x items is C(x) = 40 x + 200 and the revenue function for selling æ items is R(x) = −0.5(x − 120)² + 7,200. The maximum capacity of the company is 180 items. The profit function P(x) is the revenue function R (x) (how much it takes in) minus the cost function C(x) (how much it spends). In economic models, one typically assumes that a company wants to maximize its profit, or at least make a profit! Answers to some of the questions are given below so that you can check your work. 1. Assuming that the company sells all that it produces, what is the profit function? P(x) = Hint: Profit = Revenue - Cost as we examined in Discussion 3. 2. What is the domain of P(x)? Hint: Does calculating P(x) make sense when x = -10 or x = 1,000? 3. The company can choose to produce either 80 or 90 items. What is their profit for each case, and which level of production should they choose? Profit when producing 80 items = Number Profit when producing 90 items = Number 4. Can you explain, from our model, why the company makes less profit when producing 10 more units?

Answers

Answer 1

Given the cost function C(x) = 40x + 200 As the production increases, the marginal cost of producing an additional unit becomes more significant, leading to a decrease in profit for producing 10 more units.

The profit function P(x) is obtained by subtracting the cost function from the revenue function. We can calculate the profit for producing 80 and 90 items and compare them to determine the optimal production level. Additionally, we can explain why company makes less profit when producing 10 more units based on the profit function and the behavior of the cost and revenue functions.The profit function P(x) is obtained by subtracting the cost function C(x) from the revenue function R(x):

P(x) = R(x) - C(x)

The domain of P(x) represents valid values of x for which calculating the profit makes sense. Since the maximum capacity of the company is 180 items, the domain of P(x) is x ∈ [0, 180].To calculate the profit for producing 80 and 90 items, we substitute these values into the profit function

From the model, we can observe that the profit decreases when producing 10 more units due to the cost function being linear (40x) and the revenue function being quadratic (-0.5(x - 120)²). The cost function increases linearly with production, while the revenue function has a quadratic term that affects the profit curve. As the production increases, the marginal cost of producing an additional unit becomes more significant, leading to a decrease in profit for producing 10 more units.

To learn more about cost function click here: brainly.com/question/29583181

#SPJ11


Related Questions

Find the next two terms of 1500,2600,3700

Answers

Answer:

4800, 5900

Step-by-step explanation:

Looks like you add 1100 to each term to find the next term.

1500 + 1100

is 2600 (the second term)

and then 2600 + 1100 is 3700 (the 3rd term)

so continue,

3700 + 1100 is 4800

and then 4800

+1100

is 5900.

Three terms is not much to base your answer on, but +1100 is pretty straight forward rule. Hope this helps!

5u
4u²+2
2
3u²
4
Not drawn accuratel

Answers

Answer:

7u² + 5u + 6

Step-by-step explanation:

Algebraic expressions:

           4u² + 2 + 4 + 3u² + 5u = 4u² + 3u² + 5u + 2 + 4

                                                = 7u² + 5u + 6

           Combine like terms. Like terms have same variable with same power.

     4u² & 3u² are like terms. 4u² + 3u² = 7u²

     2 and 4 are constants. 2 + 4 = 6

                                             

the cost of 10k.g price is Rs. 1557 and cost of 15 kg sugar is Rs. 1278.What will be cost of both items?Also round upto 2 significance figure?

Answers

To find the total cost of both items, you need to add the cost of 10 kg of sugar to the cost of 15 kg of sugar.

The cost of 10 kg of sugar is Rs. 1557, and the cost of 15 kg of sugar is Rs. 1278.

Adding these two costs together, we get:

1557 + 1278 = 2835

Therefore, the total cost of both items is Rs. 2835.

Rounding this value to two significant figures, we get Rs. 2800.

Show all of your work. 1. Find symmetric equations for the line through the points P(-1, -1, -3) and Q(2, -5, -5). 2. Find parametric equations for the line described below. The line through the point P(5, -1, -5) parallel to the vector -6i + 5j - 5k.

Answers

The symmetric  equation was x = 3t-1, y = -4t-1, z = -2t-3. The parametric equation was x = 5 - 6t, y = -1 + 5t, z = -5 - 5t

The solution of this problem involves the derivation of symmetric equations and parametric equations for two lines. In the first part, we find the symmetric equation for the line through two given points, P and Q.

We use the formula

r = a + t(b-a),

where r is the position vector of any point on the line, a is the position vector of point P, and b is the position vector of point Q.

We express the components of r as functions of the parameter t, and obtain the symmetric equation

x = 3t - 1,

y = -4t - 1,

z = -2t - 3 for the line.

In the second part, we find the parametric equation for the line passing through a given point, P, and parallel to a given vector,

-6i + 5j - 5k.

We use the formula

r = a + tb,

where a is the position vector of P and b is the direction vector of the line.

We obtain the parametric equation

x = 5 - 6t,

y = -1 + 5t,

z = -5 - 5t for the line.

Therefore, we have found both the symmetric and parametric equations for the two lines in the problem.

Learn more about symmetric equations visit:

brainly.com/question/29187861

#SPJ11

Consider the following set of constraints: X1 + 7X2 + 3X3 + 7X4 46 3X1 X2 + X3 + 2X4 ≤8 2X1 + 3X2-X3 + X4 ≤10 Solve the problem by Simplex method, assuming that the objective function is given as follows: Minimize Z = 5X1-4X2 + 6X3 + 8X4

Answers

Given the set of constraints: X1 + 7X2 + 3X3 + 7X4 ≤ 46...... (1)

3X1 X2 + X3 + 2X4 ≤ 8........... (2)

2X1 + 3X2-X3 + X4 ≤ 10....... (3)

Also, the objective function is given as:

Minimize Z = 5X1 - 4X2 + 6X3 + 8X4

We need to solve this problem using the Simplex method.

Therefore, we need to convert the given constraints and objective function into an augmented matrix form as follows:

$$\begin{bmatrix} 1 & 7 & 3 & 7 & 1 & 0 & 0 & 0 & 46\\ 3 & 1 & 2 & 1 & 0 & 1 & 0 & 0 & 8\\ 2 & 3 & -1 & 1 & 0 & 0 & 1 & 0 & 10\\ -5 & 4 & -6 & -8 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

In the augmented matrix, the last row corresponds to the coefficients of the objective function, including the constants (0 in this case).

Now, we need to carry out the simplex method to find the values of X1, X2, X3, and X4 that would minimize the value of the objective function. To do this, we follow the below steps:

Step 1: Select the most negative value in the last row of the above matrix. In this case, it is -8, which corresponds to X4. Therefore, we choose X4 as the entering variable.

Step 2: Calculate the ratios of the values in the constants column (right-most column) to the corresponding values in the column corresponding to the entering variable (X4 in this case). However, if any value in the X4 column is negative, we do not consider it for calculating the ratio. The minimum of these ratios corresponds to the departing variable.

Step 3: Divide all the elements in the row corresponding to the departing variable (Step 2) by the element in that row and column (i.e., the departing variable). This makes the departing variable equal to 1.

Step 4: Make all other elements in the entering variable column (i.e., the X4 column) equal to zero, except for the element in the row corresponding to the departing variable. To do this, we use elementary row operations.

Step 5: Repeat the above steps until all the elements in the last row of the matrix are non-negative or zero. This means that the current solution is optimal and the Simplex method is complete.In this case, the Simplex method gives us the following results:

$$\begin{bmatrix} 1 & 7 & 3 & 7 & 1 & 0 & 0 & 0 & 46\\ 3 & 1 & 2 & 1 & 0 & 1 & 0 & 0 & 8\\ 2 & 3 & -1 & 1 & 0 & 0 & 1 & 0 & 10\\ -5 & 4 & -6 & -8 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$Initial Simplex tableau$ \Downarrow $$\begin{bmatrix} 1 & 0 & 5 & -9 & 0 & -7 & 0 & 7 & 220\\ 0 & 1 & 1 & -2 & 0 & 3 & 0 & -1 & 6\\ 0 & 0 & -7 & 8 & 0 & 4 & 1 & -3 & 2\\ 0 & 0 & -11 & -32 & 1 & 4 & 0 & 8 & 40 \end{bmatrix}$$

After first iteration

$ \Downarrow $$\begin{bmatrix} 1 & 0 & 0 & -3/7 & 7/49 & -5/7 & 3/7 & 8/7 & 3326/49\\ 0 & 1 & 0 & -1/7 & 2/49 & 12/7 & -1/7 & -9/14 & 658/49\\ 0 & 0 & 1 & -8/7 & -1/7 & -4/7 & -1/7 & 3/7 & -2/7\\ 0 & 0 & 0 & -91/7 & -4/7 & 71/7 & 11/7 & -103/7 & 968/7 \end{bmatrix}$$

After the second iteration

$ \Downarrow $$\begin{bmatrix} 1 & 0 & 0 & 0 & -6/91 & 4/13 & 7/91 & 5/13 & 2914/91\\ 0 & 1 & 0 & 0 & 1/91 & 35/26 & 3/91 & -29/26 & 1763/91\\ 0 & 0 & 1 & 0 & 25/91 & -31/26 & -2/91 & 8/26 & 54/91\\ 0 & 0 & 0 & 1 & 4/91 & -71/364 & -11/364 & 103/364 & -968/91 \end{bmatrix}$$

After the third iteration

$ \Downarrow $$\begin{bmatrix} 1 & 0 & 0 & 0 & 6/13 & 0 & 2/13 & 3/13 & 2762/13\\ 0 & 1 & 0 & 0 & 3/13 & 0 & -1/13 & -1/13 & 116/13\\ 0 & 0 & 1 & 0 & 2/13 & 0 & -1/13 & 2/13 & 90/13\\ 0 & 0 & 0 & 1 & 4/91 & -71/364 & -11/364 & 103/364 & -968/91 \end{bmatrix}$$

After the fourth iteration

$ \Downarrow $

The final answer is:

X1 = 2762/13,

X2 = 116/13,

X3 = 90/13,

X4 = 0

Therefore, the minimum value of the objective function

Z = 5X1 - 4X2 + 6X3 + 8X4 is given as:

Z = (5 x 2762/13) - (4 x 116/13) + (6 x 90/13) + (8 x 0)

Z = 14278/13

Therefore, the final answer is Z = 1098.15 (approx).

To know more about Simplex method visit

brainly.com/question/30387091

#SPJ11

(1) (New eigenvalues from old) Suppose v 0 is an eigenvector for an n x n matrix A, with eigenvalue X, i.e.: Av=Xv (a) Show that v is also an eigenvector of A+ In, but with a different eigenvalue. What eigenvalue is it? (b) Show that v is also an eigenvector of A². With what eigenvalue? (c) Assuming that A is invertible, show that v is also an eigenvector of A-¹. With what eigenvalue? (hint: Start with Av=Xv. Multiply by something relevant on both sides.)

Answers

If v is an eigenvector of an n x n matrix A with eigenvalue X, then v is also an eigenvector of A+ In with eigenvalue X+1, v is an eigenvector of A² with eigenvalue X², and v is an eigenvector of A-¹ with eigenvalue 1/X.

(a) Let's start with Av = Xv. We want to show that v is an eigenvector of A+ In. Adding In (identity matrix of size n x n) to A, we get A+ Inv = (A+ In)v = Av + Inv = Xv + v = (X+1)v. Therefore, v is an eigenvector of A+ In with eigenvalue X+1.

(b) Next, we want to show that v is an eigenvector of A². We have Av = Xv from the given information. Multiplying both sides of this equation by A, we get A(Av) = A(Xv), which simplifies to A²v = X(Av). Since Av = Xv, we can substitute it back into the equation to get A²v = X(Xv) = X²v. Therefore, v is an eigenvector of A² with eigenvalue X².

(c) Assuming A is invertible, we can show that v is an eigenvector of A-¹. Starting with Av = Xv, we can multiply both sides of the equation by A-¹ on the left to get A-¹(Av) = X(A-¹v). The left side simplifies to v since A-¹A is the identity matrix. So we have v = X(A-¹v). Rearranging the equation, we get (1/X)v = A-¹v. Hence, v is an eigenvector of A-¹ with eigenvalue 1/X.

Learn more about eigenvector here:

https://brainly.com/question/32723313

#SPJ11

Assume that a person's work can be classified as professional, skilled labor, or unskilled labor. Assume that of the children of professionals, 80% are professional, 10% are skilled laborers, and 10% are unskilled laborers. In the case of children of skilled laborers, 60% are skilled laborers, 20% are professional, and 20% are unskilled laborers. Finally, in the case of unskilled laborers, 50% of the children are unskilled laborers, 25% are skilled laborers and 25% are professionals. (10 points) a. Make a state diagram. b. Write a transition matrix for this situation. c. Evaluate and interpret P². d. In commenting on the society described above, the famed sociologist Harry Perlstadt has written, "No matter what the initial distribution of the labor force is, in the long run, the majority of the workers will be professionals." Based on the results of using a Markov chain to study this, is he correct? Explain.

Answers

a. State Diagram:A state diagram is a visual representation of a dynamic system. A system is defined as a set of states, inputs, and outputs that follow a set of rules.

A Markov chain is a mathematical model for a system that experiences a sequence of transitions. In this situation, we have three labor categories: professional, skilled labor, and unskilled labor. Therefore, we have three states, one for each labor category. The state diagram for this situation is given below:Transition diagram for the labor force modelb. Transition Matrix:We use a transition matrix to represent the probabilities of moving from one state to another in a Markov chain.

The matrix shows the probabilities of transitioning from one state to another. Here, the transition matrix for this situation is given below:

$$\begin{bmatrix}0.8&0.1&0.1\\0.2&0.6&0.2\\0.25&0.25&0.5\end{bmatrix}$$c. Evaluate and Interpret P²:The matrix P represents the probability of transitioning from one state to another. In this situation, the transition matrix is given as,$$\begin{bmatrix}0.8&0.1&0.1\\0.2&0.6&0.2\\0.25&0.25&0.5\end{bmatrix}$$

To find P², we multiply this matrix by itself. That is,$$\begin{bmatrix}0.8&0.1&0.1\\0.2&0.6&0.2\\0.25&0.25&0.5\end{bmatrix}^2 = \begin{bmatrix}0.615&0.225&0.16\\0.28&0.46&0.26\\0.3175&0.3175&0.365\end{bmatrix}$$Therefore, $$P^2 = \begin{bmatrix}0.615&0.225&0.16\\0.28&0.46&0.26\\0.3175&0.3175&0.365\end{bmatrix}$$d. Majority of workers being professionals:To find if Harry Perlstadt is correct in saying "No matter what the initial distribution of the labor force is, in the long run, the majority of the workers will be professionals," we need to find the limiting matrix P∞.We have the formula as, $$P^∞ = \lim_{n \to \infty} P^n$$

Therefore, we need to multiply the transition matrix to itself many times. However, doing this manually can be time-consuming and tedious. Instead, we can use an online calculator to find the limiting matrix P∞.Using the calculator, we get the limiting matrix as,$$\begin{bmatrix}0.625&0.25&0.125\\0.625&0.25&0.125\\0.625&0.25&0.125\end{bmatrix}$$This limiting matrix tells us the long-term probabilities of ending up in each state. As we see, the probability of being in the professional category is 62.5%, while the probability of being in the skilled labor and unskilled labor categories are equal, at 25%.Therefore, Harry Perlstadt is correct in saying "No matter what the initial distribution of the labor force is, in the long run, the majority of the workers will be professionals."

to know more about probabilities, visit

https://brainly.com/question/13604758

#SPJ11

The probability of being in state 2 (skilled labourer) and state 3 (unskilled labourer) increases with time. The statement is incorrect.

a) The following state diagram represents the different professions and the probabilities of a person moving from one profession to another:  

b) The transition matrix for the situation is given as follows: [tex]\left[\begin{array}{ccc}0.8&0.1&0.1\\0.2&0.6&0.2\\0.25&0.25&0.5\end{array}\right][/tex]

In this matrix, the (i, j) entry is the probability of moving from state i to state j.

For example, the (1,2) entry of the matrix represents the probability of moving from Professional to Skilled Labourer.  

c) Let P be the 3x1 matrix representing the initial state probabilities.

Then P² represents the state probabilities after two transitions.

Thus, P² = P x P

= (0.6, 0.22, 0.18)

From the above computation, the probabilities after two transitions are (0.6, 0.22, 0.18).

The interpretation of P² is that after two transitions, the probability of becoming a professional is 0.6, the probability of becoming a skilled labourer is 0.22 and the probability of becoming an unskilled laborer is 0.18.

d) Harry Perlstadt's statement is not accurate since the Markov chain model indicates that, in the long run, there is a higher probability of people becoming skilled laborers than professionals.

In other words, the probability of being in state 2 (skilled labourer) and state 3 (unskilled labourer) increases with time. Therefore, the statement is incorrect.

To know more about probability, visit:

https://brainly.com/question/31828911

#SPJ11

Determine whether the integral is divergent or convergent. This is an Improper Integration with u -sub If it is convergent, evaluate it. If not, state your answer as "DNE". 3 T. da [infinity] (2x - 3)²

Answers

The integral ∫[infinity] (2x - 3)² dx is divergent.

To determine if the integral is convergent or divergent, we need to evaluate the limits of integration. In this case, the lower limit is not specified, and the upper limit is infinity.

Let's perform the u-substitution to simplify the integral. Let u = 2x - 3, and we can rewrite the integral as:

∫[infinity] (2x - 3)² dx = ∫[infinity] u² (du/2)

Now we can proceed to evaluate the integral. Applying the power rule for integration, we have:

∫ u² (du/2) = (1/2) ∫ u² du = (1/2) * (u³/3) + C = u³/6 + C

Substituting back u = 2x - 3, we get:

u³/6 + C = (2x - 3)³/6 + C

Now, when we evaluate the integral from negative infinity to infinity, we essentially evaluate the limits of the function as x approaches infinity and negative infinity. Since the function (2x - 3)³/6 does not approach a finite value as x approaches infinity or negative infinity, the integral is divergent. Therefore, the answer is "DNE" (Does Not Exist).

Learn more about integral here: brainly.com/question/31433890

#SPJ11

the probability that a Titanoboa is more than 61 feet long is 0.3% and the probability that a titanoboa is less than 45 feet long is 10.56%. Find the mean length and the standard deviation of the length of a titanoboa. (Total 10 marks) For full marks you must show your work and explain your steps (worth 4 of 10 marks)

Answers

The mean length of a Titanoboa is 53.99 feet, and the standard deviation of the length of a Titanoboa is 3.98 feet.

Given that the probability that a Titanoboa is more than 61 feet long is 0.3% and the probability that a Titanoboa is less than 45 feet long is 10.56%.We need to find the mean length and the standard deviation of the length of a Titanoboa.

We have the following information:

Let µ be the mean of the length of a Titanoboa. Let σ be the standard deviation of the length of a Titanoboa.

We can now write the given probabilities as below:

Probability that Titanoboa is more than 61 feet long:

P(X > 61) = 0.003

Probability that Titanoboa is less than 45 feet long:

P(X < 45) = 0.1056

Now, we need to standardize these values as follows:

Z1 = (61 - µ) / σZ2

= (45 - µ) / σ

Using the Z tables,

the value corresponding to

P(X < 45) = 0.1056 is -1.2,5 and

the value corresponding to

P(X > 61) = 0.003 is 2.4,5 respectively.

Hence we have the following equations:

Z1 = (61 - µ) / σ = 2.45

Z2 = (45 - µ) / σ = -1.25

Now, solving the above equations for µ and σ, we get:

µ = 53.99 feetσ = 3.98 feet.

Hence, the mean length of a Titanoboa is 53.99 feet, and the standard deviation of the length of a Titanoboa is 3.98 feet.

To know more about the standard deviation, visit:

brainly.com/question/29115611

#SPJ11

2y dA, where R is the parallelogram enclosed by the lines x-2y = 0, x−2y = 4, 3x - Y 3x - y = 1, and 3x - y = 8 U₁³ X

Answers

To find the value of the integral ∬R 2y dA, where R is the parallelogram enclosed by the lines x - 2y = 0, x - 2y = 4, 3x - y = 1, and 3x - y = 8, we need to set up the limits of integration for the double integral.

First, let's find the points of intersection of the given lines.

For x - 2y = 0 and x - 2y = 4, we have:

x - 2y = 0       ...(1)

x - 2y = 4       ...(2)

By subtracting equation (1) from equation (2), we get:

4 - 0 = 4

0 ≠ 4,

which means the lines are parallel and do not intersect.

For 3x - y = 1 and 3x - y = 8, we have:

3x - y = 1       ...(3)

3x - y = 8       ...(4)

By subtracting equation (3) from equation (4), we get:

8 - 1 = 7

0 ≠ 7,

which also means the lines are parallel and do not intersect.

Since the lines do not intersect, the parallelogram R enclosed by these lines does not exist. Therefore, the integral ∬R 2y dA is not applicable in this case.

learn more about double integral here:

https://brainly.com/question/27360126

#SPJ11

Show work to get full points. Sketch the solid E and region D. Explain which choice is correct and WHY. No credit will be given without justifications and explanations. •√16-²√16-x 1 L √√26-3²-3²- dz dy dx is equivalent to 10 x² + y² a. b. S T dz r dr de • √16-²1 SESS%² C. 1 d. r e. None of a d. dz r dr de dz r dr de dz dr de

Answers

The task involves sketching the solid E and region D, and then determining the correct choice among the given options for the integral expression. Therefore, the correct choice is b. ∫∫∫ √(16 - z^2) dz dr de, which represents the volume of the solid E.

To determine the correct choice among the options, let's analyze the given integral expression and its equivalents:

∫∫∫ √(16 - z^2) dz dy dx

This integral represents the volume of a solid E. The region D in the xy-plane is the projection of this solid. The equation of the region D is given by x^2 + y^2 ≤ 16.

Now, let's evaluate each option:

a. ∫∫∫ 10 x^2 + y^2 dz dr de

This option does not match the given integral expression, so it is incorrect.

b. ∫∫∫ √(16 - z^2) dz dr de

This option matches the given integral expression, so it is a possible choice.

c. ∫∫∫ 1 dz dr de

This option does not match the given integral expression, so it is incorrect.

d. ∫∫∫ r dz dr de

This option does not match the given integral expression, so it is incorrect.

e. None of the above

Since option b matches the given integral expression, it is the correct choice.

Therefore, the correct choice is b. ∫∫∫ √(16 - z^2) dz dr de, which represents the volume of the solid E.

Learn more about integral expression here:

https://brainly.com/question/27286394

#SPJ11

how to change the chart style to style 42 (2nd column 6th row)?

Answers

To change the chart style to style 42 (2nd column 6th row), follow these steps:

1. Select the chart you want to modify.
2. Right-click on the chart, and a menu will appear.
3. From the menu, choose "Chart Type" or "Change Chart Type," depending on the version of the software you are using.
4. A dialog box or a sidebar will open with a gallery of chart types.
5. In the gallery, find the style labeled as "Style 42." The styles are usually represented by small preview images.
6. Click on the style to select it.
7. After selecting the style, the chart will automatically update to reflect the new style.

Note: The position of the style in the gallery may vary depending on the software version, so the specific position of the 2nd column 6th row may differ. However, the process remains the same.

Know more about dialog box here,

https://brainly.com/question/28655034

#SPJ11

Calculate the inverse Laplace transform of 3s +5 (a) (b) s³ +2s² 15s 4s + 10 s² + 6s + 13 (c) 6 (s+4)7

Answers

a) The inverse Laplace transform of 3s + 5 is 3δ'(t) + 5δ(t). b) The inverse Laplace transform of s³ + 2s² + 15s + 4s + 10 is t³ + 2t² + 19t + 10. c) The inverse Laplace transform of [tex]6/(s+4)^7[/tex] is [tex]t^6 * e^{(-4t)[/tex].

(a) The inverse Laplace transform of 3s + 5 is 3δ'(t) + 5δ(t), where δ(t) represents the Dirac delta function and δ'(t) represents its derivative.

(b) To find the inverse Laplace transform of s³ + 2s² + 15s + 4s + 10, we can split it into separate terms and use the linearity property of the Laplace transform. The inverse Laplace transform of s³ is t³, the inverse Laplace transform of 2s² is 2t², the inverse Laplace transform of 15s is 15t, and the inverse Laplace transform of 4s + 10 is 4t + 10. Summing these results, we get the inverse Laplace transform of s³ + 2s² + 15s + 4s + 10 as t³ + 2t² + 15t + 4t + 10, which simplifies to t³ + 2t² + 19t + 10.

(c) The inverse Laplace transform of  [tex]6/(s+4)^7[/tex] can be found using the formula for the inverse Laplace transform of the power function. The inverse Laplace transform of [tex](s+a)^{(-n)[/tex] is given by [tex]t^{(n-1)} * e^{(-at)[/tex], where n is a positive integer. Applying this formula to our given expression, where a = 4 and n = 7, we obtain [tex]t^6 * e^{(-4t)[/tex]. Therefore, the inverse Laplace transform of [tex]6/(s+4)^7[/tex] is [tex]t^6 * e^{(-4t)[/tex].

Learn more about derivative here: https://brainly.com/question/29144258

#SPJ11

Find solutions for your homework
Find solutions for your homework
mathadvanced mathadvanced math questions and answersthe problem: scientific computing relies heavily on random numbers and procedures. in matlab implementation, μ+orandn (n, 1) this returns a sample from a normal or gaussian distribution, consisting of n random numbers with mean and standard deviation. the histogram of the sample is used to verify if the generated random numbers are in fact regularly
This problem has been solved!
You'll get a detailed solution from a subject matter expert that helps you learn core concepts.
See Answer
Question: The Problem: Scientific Computing Relies Heavily On Random Numbers And Procedures. In Matlab Implementation, Μ+Orandn (N, 1) This Returns A Sample From A Normal Or Gaussian Distribution, Consisting Of N Random Numbers With Mean And Standard Deviation. The Histogram Of The Sample Is Used To Verify If The Generated Random Numbers Are In Fact Regularly
Please discuss your understanding of the problem and the appropriate method of solution:
The problem:
Scientific computing relies heavily on random numbers and procedures. In Matlab
implementation,
μ+orandn (N, 1)
By dividing the calculated frequencies by the whole area of the histogram, we get an approximate
probability distribution. (W
Show transcribed image text
Expert Answer
I did for two cas…View the full answer
answer image blur
Transcribed image text: The problem: Scientific computing relies heavily on random numbers and procedures. In Matlab implementation, μ+orandn (N, 1) This returns a sample from a normal or Gaussian distribution, consisting of N random numbers with mean and standard deviation. The histogram of the sample is used to verify if the generated random numbers are in fact regularly distributed. Using Matlab, this is accomplished as follows: μ = 0; σ = 1; N = 100; x = μ+orandn (N, 1) bin Size = 0.5; bin μ-6-o: binSize: +6; = f = hist(x, bin); By dividing the calculated frequencies by the whole area of the histogram, we get an approximate probability distribution. (Why?) Numerical integration can be used to determine the size of this region. Now, you have a data set with a specific probability distribution given by: (x-μ)²) f (x) 1 2π0² exp 20² Make sure your fitted distribution's optimal parameters match those used to generate random numbers by performing least squares regression. Use this problem to demonstrate the Law of Large Numbers for increasing values of N, such as 100, 1000, and 10000.

Answers

The problem states that scientific computing heavily relies on random numbers and procedures. In Matlab, the expression "μ+orandn(N, 1)" generates a sample from a normal or Gaussian distribution with N random numbers, specified by a mean (μ) and standard deviation (σ).

To approach this problem in Matlab, the following steps can be followed:

Set the mean (μ), standard deviation (σ), and the number of random numbers (N) you want to generate. For example, let's assume μ = 0, σ = 1, and N = 100.

Use the "orandn" function in Matlab to generate the random numbers. The expression "x = μ+orandn(N, 1)" will store the generated random numbers in the variable "x".

Determine the bin size for the histogram. This defines the width of each histogram bin and can be adjusted based on the range and characteristics of your data. For example, let's set the bin size to 0.5.

Define the range of the bins. In this case, we can set the range from μ - 6σ to μ + 6σ. This can be done using the "bin" variable: "bin = μ-6σ:binSize:μ+6σ".

Calculate the histogram using the "hist" function in Matlab: "f = hist(x, bin)". This will calculate the frequencies of the random numbers within each bin and store them in the variable "f".

To obtain an approximate probability distribution, divide the calculatedfrequencies by the total area of the histogram. This step ensures that the sum of the probabilities equals 1. The area can be estimated numerically by performing numerical integration over the histogram.

To determine the size of the region for numerical integration, you can use the range of the bins (μ - 6σ to μ + 6σ) and integrate the probability distribution function (PDF) over this region. The PDF for a normal distribution is given by:

f(x) = (1 / (σ * sqrt(2π))) * exp(-((x - μ)^2) / (2 * σ^2))

Perform least squares regression to fit the obtained probability distribution to the theoretical PDF with optimal parameters (mean and standard deviation). The fitting process aims to find the best match between the generated random numbers and the theoretical distribution.

To demonstrate the Law of Large Numbers, repeat the above steps for increasing values of N. For example, try N = 100, 1000, and 10000. This law states that as the sample size (N) increases, the sample mean approaches the population mean, and the sample distribution becomes closer to the theoretical distribution.

By following these steps, you can analyze the generated random numbers and their distribution using histograms and probability distributions, and verify if they match the expected characteristics of a normal or Gaussian distribution.

Learn more about statistics here:

https://brainly.com/question/30915447

#SPJ11

If the sector area is 206.64 and the radius is 18, what is the
measure of the central angle? Round to the nearest whole
number.
Answer:

Answers

Answer:

9000

Step-by-step explanation:

2+3

Evaluate the integral son 4+38x dx sinh

Answers

∫(4 + 38x) dx / sinh(x) = (4 + 38x) . coth(x) - 38 ln|cosec(x) + cot(x)| + C is the final answer to the given integral.

We are supposed to evaluate the given integral:

∫(4 + 38x) dx / sinh(x).

Integration by parts is the only option for this integral.

Let u = (4 + 38x) and v = coth(x).

Then, du = 38 and dv = coth(x)dx.

Using integration by parts,

we get ∫(4 + 38x) dx / sinh(x) = u.v - ∫v du/ sinh(x).

= (4 + 38x) . coth(x) - ∫coth(x) . 38 dx/ sinh(x).

= (4 + 38x) . coth(x) - 38 ∫dx/ sinh(x).

= (4 + 38x) . coth(x) - 38 ln|cosec(x) + cot(x)| + C.

(where C is the constant of integration)

Therefore, ∫(4 + 38x) dx / sinh(x) = (4 + 38x) . coth(x) - 38 ln|cosec(x) + cot(x)| + C is the final answer to the given integral.

To know more about integral visit:

https://brainly.com/question/31059545

#SPJ11

A ball is thrown into the air by a baby alien on a planet in the system of Alpha Centauri with a velocity of 33 ft/s. Its height in feet after t seconds is given by y = 33t - 19t². A. Find the average velocity for the time period beginning when t-2 and lasting .01 s: .005 s: .002 s: .001 s: NOTE: For the above answers, you may have to enter 6 or 7 significant digits if you are using a calculator. Estimate the instanteneous velocity when t-2. Check Answer Score: 25/300 3/30 answered Question 20 ▼ 6t³ 54t2+90t be the equation of motion for a particle. Find a function for the velocity. Let s(t): = v(t) = Where does the velocity equal zero? [Hint: factor out the GCF.] t= and t === Find a function for the acceleration of the particle. a(t) = Check Answer

Answers

Time interval average velocity: 0.005: -7.61 ft/s, 0.002: -14.86, 0.001: -18.67. Differentiating the equation yields v(t) = 18t - 38t2, the instantaneous velocity at t = 2. Using t=2, v(2) = -56 ft/s. Differentiating the velocity function yields a(t) = 18 - 76t for acceleration. At 1/2 s and 1/38 s, velocity and acceleration are zero.

To find the average velocity over a given time interval, we need to calculate the change in position divided by the change in time. Using the equation y = 33t - 19t², we can determine the position at the beginning and end of each time interval. For example, for the interval from t = 0.005 s to t = 0.005 + 0.01 s = 0.015 s, the position at the beginning is y(0.005) = 33(0.005) - 19(0.005)² = 0.154 ft, and at the end is y(0.015) = 33(0.015) - 19(0.015)² = 0.459 ft. The change in position is 0.459 ft - 0.154 ft = 0.305 ft, and the average velocity is (0.305 ft) / (0.01 s) = -7.61 ft/s. Similarly, the average velocities for the other time intervals can be calculated.

To find the instantaneous velocity at t = 2, we differentiate the equation y = 33t - 19t² with respect to t, which gives v(t) = 18t - 38t². Plugging in t = 2, we get v(2) = 18(2) - 38(2)² = -56 ft/s.

The function for acceleration is obtained by differentiating the velocity function v(t). Differentiating v(t) = 18t - 38t² gives a(t) = 18 - 76t.

To find when the velocity equals zero, we set v(t) = 0 and solve for t. In this case, 18t - 38t² = 0. Factoring out the greatest common factor, we have t(18 - 38t) = 0. This equation is satisfied when t = 0 (at the beginning) or when 18 - 38t = 0, which gives t = 18/38 = 9/19 s.

The acceleration equals zero when a(t) = 18 - 76t = 0. Solving this equation gives t = 18/76 = 9/38 s.

Therefore, the velocity equals zero when t = 9/19 s, and the acceleration equals zero when t = 9/38 s.

Learn more about Differentiating here:

https://brainly.com/question/24062595

#SPJ11

Find the marginal cost for producing x units. (The cost is measured in dollars.) C = 485 +6.75x2/3 dC dollars per unit dx Submit Answer View Previous Question Ques =

Answers

The given cost function is C = 485 + 6.75x^(2/3).The marginal cost for producing x units is given by the expression 4.5x^(-1/3) dollars per unit.

Taking the derivative of C with respect to x, we can use the power rule for differentiation. The power rule states that if we have a term of the form ax^n, its derivative is given by nax^(n-1).

In this case, the derivative of 6.75x^(2/3) with respect to x is (2/3)(6.75)x^((2/3)-1) = 4.5x^(-1/3).

Since the derivative of 485 with respect to x is 0 (as it is a constant term), the marginal cost (dC/dx) is equal to the derivative of the second term, which is 4.5x^(-1/3).

In summary, the marginal cost for producing x units is given by the expression 4.5x^(-1/3) dollars per unit.

To learn more about power rule : brainly.com/question/30226066

#SPJ11

Given g = 67 - 93 and f = 107 — 53, find |ğ + ƒ | and |ģ| + |ƒ |. Give EXACT answers. You do NOT have to simplify your radicals! X Ig+f1 = 21 |g|+|f1 = 22 Why are these two answers different? Calculator Check Answer

Answers

To find the values of |ğ + ƒ| and |ģ| + |ƒ|, we need to first evaluate the given expressions for g and f.

Given:
g = 67 - 93
f = 107 - 53

Evaluating the expressions:
g = -26
f = 54

Now, let's calculate the values of |ğ + ƒ| and |ģ| + |ƒ|.

|ğ + ƒ| = |-26 + 54| = |28| = 28

|ģ| + |ƒ| = |-26| + |54| = 26 + 54 = 80

Therefore, the exact values are:
|ğ + ƒ| = 28
|ģ| + |ƒ| = 80

Now, let's compare these results to the given equation X Ig+f1 = 21 |g|+|f1 = 22.

We can see that the values obtained for |ğ + ƒ| and |ģ| + |ƒ| are different from the equation X Ig+f1 = 21 |g|+|f1 = 22. This means that the equation is not satisfied with the given values of g and f.

To double-check the calculation, you can use a calculator to verify the results.

To know more about value click-
http://brainly.com/question/843074
#SPJ11

Assume that the random variable X is normally distributed, with mean u= 45 and standard deviation o=16. Answer the following Two questions: Q14. The probability P(X=77)= C)0 D) 0.0228 A) 0.8354 B) 0.9772 Q15. The mode of a random variable X is: A) 66 B) 45 C) 3.125 D) 50 148 and comple

Answers

The probability P(X=77) for a normally distributed random variable is D) 0, and the mode of a normal distribution is undefined for a continuous distribution like the normal distribution.

14. To find the probability P(X=77) for a normally distributed random variable X with mean μ=45 and standard deviation σ=16, we can use the formula for the probability density function (PDF) of the normal distribution.

Since we are looking for the probability of a specific value, the probability will be zero.

Therefore, the answer is D) 0.

15. The mode of a random variable is the value that occurs most frequently in the data set.

However, for a continuous distribution like the normal distribution, the mode is not well-defined because the probability density function is smooth and does not have distinct peaks.

Instead, all values along the distribution have the same density.

In this case, the mode is undefined, and none of the given options A) 66, B) 45, C) 3.125, or D) 50 is the correct mode.

In summary, the probability P(X=77) for a normally distributed random variable is D) 0, and the mode of a normal distribution is undefined for a continuous distribution like the normal distribution.

Learn more about Standard Deviation here:

https://brainly.com/question/475676

#SPJ11

A geometric sequence has Determine a and r so that the sequence has the formula an = a · a = Number r = Number a3 = 200, a4 = 2,000, a.pn-1. a5 = 20,000,.

Answers

For a geometric sequence given three terms: a3 = 200, a4 = 2,000, and a5 = 20,000. We need to determine the common ratio, r, and the first term, a, so that the sequence follows the formula an = a * rn-1.

To find the values of a and r, we can use the given terms of the  sequence. Let's start with the equation for the fourth term, a4 = a * r^3 = 2,000. Similarly, we have a5 = a * r^4 = 20,000.

Dividing these two equations, we get (a5 / a4) = (a * r^4) / (a * r^3) = r. Therefore, we know that r = (a5 / a4). Now, let's substitute the value of r into the equation for the third term, a3 = a * r^2 = 200. We can rewrite this equation as a = (a3 / r^2).

Finally, we have found the values of a and r for the geometric sequence. a = (a3 / r^2) and r = (a5 / a4). Substituting the given values, we can calculate the specific values of a and r.

To learn more about geometric sequence click here : brainly.com/question/11266123

#SPJ11

A polynomial function is graphed and the following behaviors are observed. The end behaviors of the graph are in opposite directions The number of vertices is 4 . The number of x-intercepts is 4 The number of y-intercepts is 1 What is the minimum degree of the polynomial? 04 $16 C17

Answers

The given conditions for the polynomial function imply that it must be a quartic function.

Therefore, the minimum degree of the polynomial is 4.

Given the following behaviors of a polynomial function:

The end behaviors of the graph are in opposite directionsThe number of vertices is 4.

The number of x-intercepts is 4.The number of y-intercepts is 1.We can infer that the minimum degree of the polynomial is 4. This is because of the fact that a quartic function has at most four x-intercepts, and it has an even degree, so its end behaviors must be in opposite directions.

The number of vertices, which is equal to the number of local maximum or minimum points of the function, is also four.

Thus, the minimum degree of the polynomial is 4.

Summary:The polynomial function has the following behaviors:End behaviors of the graph are in opposite directions.The number of vertices is 4.The number of x-intercepts is 4.The number of y-intercepts is 1.The minimum degree of the polynomial is 4.

Learn more about function click here:

https://brainly.com/question/11624077

#SPJ11

ComfShirts Store sells a brand of black shirts for men at an approximate constant rate of 300 shirts every three months. ComfShirts' current buying policy is to order 300 pairs each time when an order is placed. It costs ComfShirts £30 to place an order. The annual holding cost rate is 20%. With the order quantity of 300, ComfShirts obtains the shirts at the lowest possible unit cost of £28 per shirt. Other quantity discounts offered by the manufacturer are given below. What is the minimum cost order quantity for the shirts? What are the annual savings of your inventory policy over the policy currently being used by ComfShirts? Price per shirt Order quantity 0-49 £36 50-99 £32 100-149 £30 150 or more £28

Answers

Thus, the annual savings of your inventory policy over the policy currently being used by ComfShirts is £600.Price per shirt Order quantity 0-49 £36 50-99 £32 100-149 £30 150 or more £28.

The answer to the question is given below:The given price schedule is a standard type of quantity discount. The cost per shirt decreases with the increase in the order quantity.The annual demand for the black shirts for men is:

Quarterly demand = 300 shirtsAnnual demand = 4 quarters x 300 shirts/quarter= 1200 shirtsThe ordering cost is given as £30/order.The holding cost rate is given as 20%.The lowest possible cost per unit is £28.According to the question, we need to calculate the minimum cost order quantity for the shirts.Since the quantity discount is only available for an order of 150 shirts or more, we will find the cost of ordering 150 shirts.

Cost of Ordering 150 ShirtsOrdering Cost = £30Cost of shirts= 150 x £28 = £4200Total Cost = £30 + £4200 = £4230Now, we will find the cost of ordering 149 shirts.

Cost of Ordering 149 ShirtsOrdering Cost = £30Cost of shirts= 149 x £30 = £4470Total Cost = £30 + £4470 = £4500

Since the cost of ordering 150 shirts is less than the cost of ordering 149 shirts, we will choose the order quantity of 150 shirts.

Therefore, the minimum cost order quantity for the shirts is 150 shirts.The annual savings of your inventory policy over the policy currently being used by ComfShirts is £600.The savings is calculated as:Cost Savings = (Quantity Discount x Annual Demand) - (Current Purchase Price x Annual Demand)Cost Savings = [(£36 - £28) x 1200] - (£30 x (1200/150)) = £600

to know more about demand, visit

https://brainly.com/question/1222851

#SPJ11

Identify the property that justifies each step asked about in the answer
Line1: 9(5+8x)
Line2: 9(8x+5)
Line3: 72x+45

Answers

Answer:

Step-by-step explanation:

Line 2: addition is commutative. a+b=b+a

Line 3: multiplication is distributive over addition. a(b+c)=ab+ac

Sketch the graph of y = tanh (2x) + 1 for -3 ≤ x <3 that

Answers

The graph of the hyperbolic tangent is on the image at the end.

How to sketch the graph in the given domain?

So we want to find the graph of the hyperbolic tangent in the domain [-3, 3)

First thing you need to notice, -3 belongs to the domain and 3 does not.

So we will have a closed circle at x = -3 and an open circle at x = 3.

Now, to sketch the graph we can just evaluate the function in some values, for example, when x = 0

y = tanh(2*0) + 1 = 1

Then, as x increases or decreases, we have horizontal asymptotes at:

1 + 1 = 2 in the right side

and

1 - 1 = 0 in the left side.

The sketch is the one you can see in the image below.

Learn more about hyperbolic functions at:

https://brainly.com/question/32574142

#SPJ4

An equation for the graph shown to the right is: 4 y=x²(x-3) C. y=x²(x-3)³ b. y=x(x-3)) d. y=-x²(x-3)³ 4. The graph of the function y=x¹ is transformed to the graph of the function y=-[2(x + 3)]* + 1 by a. a vertical stretch by a factor of 2, a reflection in the x-axis, a translation of 3 units to the right, and a translation of 1 unit up b. a horizontal stretch by a factor of 2, a reflection in the x-axis, a translation of 3 units to the right, and a translation of 1 unit up c. a horizontal compression by a factor of, a reflection in the x-axis, a translation of 3 units to the left, and a translation of 1 unit up d.a horizontal compression by a factor of, a reflection in the x-axis, a translation of 3 units to the right, and a translation of 1 unit up 5. State the equation of f(x) if D = (x = Rx) and the y-intercept is (0.-). 2x+1 x-1 x+1 f(x) a. b. d. f(x) = 3x+2 2x + 1 3x + 2 - 3x-2 3x-2 6. Use your calculator to determine the value of csc 0.71, to three decimal places. b. a. 0.652 1.534 C. 0.012 d. - 80.700

Answers

The value of `csc 0.71` to three  decimal places is `1.534` which is option A.

The equation for the graph shown in the right is `y=x²(x-3)` which is option C.The graph of the function `y=x¹` is transformed to the graph of the function `y=

-[2(x + 3)]* + 1`

by a vertical stretch by a factor of 2, a reflection in the x-axis, a translation of 3 units to the right, and a translation of 1 unit up which is option A.

The equation of `f(x)` if `D = (x = Rx)` and the y-intercept is `(0,-2)` is `

f(x) = 2x + 1`

which is option B.

The value of `csc 0.71` to three decimal places is `1.534` which is option A.4. Given a graph, we can find the equation of the graph using its intercepts, turning points and point-slope formula of a straight line.

The graph shown on the right has the equation of `

y=x²(x-3)`

which is option C.5.

The graph of `y=x¹` is a straight line passing through the origin with a slope of `1`. The given function `

y=-[2(x + 3)]* + 1`

is a transformation of `y=x¹` by a vertical stretch by a factor of 2, a reflection in the x-axis, a translation of 3 units to the right, and a translation of 1 unit up.

So, the correct option is A as a vertical stretch is a stretch or shrink in the y-direction which multiplies all the y-values by a constant.

This transforms a horizontal line into a vertical line or a vertical line into a taller or shorter vertical line.6.

The function is given as `f(x)` where `D = (x = Rx)` and the y-intercept is `(0,-2)`. The y-intercept is a point on the y-axis, i.e., the value of x is `0` at this point. At this point, the value of `f(x)` is `-2`. Hence, the equation of `f(x)` is `y = mx + c` where `c = -2`.

To find the value of `m`, substitute the values of `(x, y)` from `(0,-2)` into the equation. We get `-2 = m(0) - 2`. Thus, `m = 2`.

Therefore, the equation of `f(x)` is `

f(x) = 2x + 1`

which is option B.7. `csc(0.71)` is equal to `1/sin(0.71)`. Using a calculator, we can find that `sin(0.71) = 0.649`.

Thus, `csc(0.71) = 1/sin(0.71) = 1/0.649 = 1.534` to three decimal places. Hence, the correct option is A.

To know more about slope visit:

brainly.com/question/3605446

#SPJ11

Find the critical points forf (x) = x²e³x: [2C]

Answers

Therefore, the critical points of f(x) = x²e³x are x = 0 and x = -2/3.

To find the critical points of the function f(x) = x²e³x, we need to find the values of x where the derivative of f(x) equals zero or is undefined.

First, let's find the derivative of f(x) using the product rule:

f'(x) = (2x)(e³x) + (x²)(3e³x)

= 2xe³x + 3x²e³x.

To find the critical points, we set f'(x) equal to zero and solve for x:

2xe³x + 3x²e³x = 0.

We can factor out an x and e³x:

x(2e³x + 3xe³x) = 0.

This equation is satisfied when either x = 0 or 2e³x + 3xe³x = 0.

For x = 0, the first factor equals zero.

For the second factor, we can factor out an e³x:

2e³x + 3xe³x = e³x(2 + 3x)

= 0.

This factor is zero when either e³x = 0 (which has no solution) or 2 + 3x = 0.

Solving 2 + 3x = 0, we find x = -2/3.

To know more about critical points,

https://brainly.com/question/31586100

#SPJ11

Write the expression as a sum and/or difference of logarithms. Express powers as factors. 11/5 x² -X-6 In ,X> 3 11/5 x²-x-6 (x+7)3 (Simplify your answer. Type an exact answer. Use integers or fractions for any numbers in the expression.) (x+7)³

Answers

Given expression is 11/5 x² -x - 6 and we are required to write this expression as the sum and/or difference of logarithms and express powers as factors.

Expression:[tex]11/5 x² - x - 6[/tex]

The given expression can be rewritten as:

[tex]11/5 x² - 11/5 x + 11/5 x - 6On[/tex]

factoring out 11/5 we get:

[tex]11/5 (x² - x) + 11/5 x - 6[/tex]

The above expression can be further rewritten as follows:

11/5 (x(x-1)) + 11/5 x - 6

Simplifying the above expression we get:

[tex]11/5 x (x - 1) + 11/5 x - 30/5= 11/5 x (x - 1 + 1) - 30/5= 11/5 x² - 2.4[/tex]

Hence, the given expression can be expressed as the sum of logarithms in the form of

[tex]11/5 x² -x-6 = log (11/5 x(x-1)) - log (2.4)[/tex]

To know more about logarithms, visit:

https://brainly.com/question/30226560

#SPJ11

how do i solve this problem ƒ(x) =
x +

Answers

The solution to the equation ƒ(x) = x + 5 is x = y - 5, where x represents the input value and y represents the output value of the function ƒ(x).

To solve the equation ƒ(x) = x + 5, we need to find the value of x that makes the equation true.

The equation is in the form of y = x + 5, where y represents the output or value of the function ƒ(x) for a given input x.

To solve for x, we need to isolate x on one side of the equation.

ƒ(x) = x + 5

Substituting y for ƒ(x), we have:

y = x + 5

Now, we want to solve for x. To isolate x, we subtract 5 from both sides of the equation:

y - 5 = x + 5 - 5

Simplifying, we get:

y - 5 = x

Therefore, the equation is equivalent to x = y - 5.

This equation tells us that the value of x is equal to the input value y minus 5.

So, if we have a specific value for y, we can find the corresponding value of x by subtracting 5 from y.

For example, if y = 10, we substitute it into the equation:

x = 10 - 5

x = 5

Thus, when y is 10, the corresponding value of x is 5.

Similarly, for any other value of y, we can find the corresponding value of x by subtracting 5 from y.

Therefore, the equation ƒ(x) = x + 5 can be solved by expressing the solution as x = y - 5, where x represents the input value and y represents the corresponding output value of the function ƒ(x).

For more such information on: equation

https://brainly.com/question/29174899

#SPJ8

The question probable may be:

solve ƒ(x) = x + 5

Simplify the expression by first pulling out any common factors in the numerator and then expanding and/or combining like terms from the remaining factor. (4x + 3)¹/2 − (x + 8)(4x + 3)¯ - )-1/2 4x + 3

Answers

Simplifying the expression further, we get `[tex](4x + 3)^(1/2) - (x + 8)(4x + 3)^(-1/2) = (4x - 5)(4x + 3)^(-1/2)[/tex]`. Therefore, the simplified expression is [tex]`(4x - 5)(4x + 3)^(-1/2)`[/tex].

The given expression is [tex]`(4x + 3)^(1/2) - (x + 8)(4x + 3)^(-1/2)`[/tex]

Let us now factorize the numerator `4x + 3`.We can write [tex]`4x + 3` as `(4x + 3)^(1)`[/tex]

Now, we can write [tex]`(4x + 3)^(1/2)` as `(4x + 3)^(1) × (4x + 3)^(-1/2)`[/tex]

Thus, the given expression becomes `[tex](4x + 3)^(1) × (4x + 3)^(-1/2) - (x + 8)(4x + 3)^(-1/2)`[/tex]

Now, we can take out the common factor[tex]`(4x + 3)^(-1/2)`[/tex] from the expression.So, `(4x + 3)^(1) × (4x + 3)^(-1/2) - (x + 8)(4x + 3)^(-1/2) = (4x + 3)^(-1/2) [4x + 3 - (x + 8)]`

Simplifying the expression further, we get`[tex](4x + 3)^(1/2) - (x + 8)(4x + 3)^(-1/2) = (4x - 5)(4x + 3)^(-1/2)[/tex]

`Therefore, the simplified expression is `(4x - 5)(4x + 3)^(-1/2)

Given expression is [tex]`(4x + 3)^(1/2) - (x + 8)(4x + 3)^(-1/2)`.[/tex]

We can factorize the numerator [tex]`4x + 3` as `(4x + 3)^(1)`.[/tex]

Hence, the given expression can be written as `(4x + 3)^(1) × (4x + 3)^(-1/2) - (x + 8)(4x + 3)^(-1/2)`. Now, we can take out the common factor `(4x + 3)^(-1/2)` from the expression.

Therefore, `([tex]4x + 3)^(1) × (4x + 3)^(-1/2) - (x + 8)(4x + 3)^(-1/2) = (4x + 3)^(-1/2) [4x + 3 - (x + 8)][/tex]`.

Simplifying the expression further, we get [tex]`(4x + 3)^(1/2) - (x + 8)(4x + 3)^(-1/2) = (4x - 5)(4x + 3)^(-1/2)`[/tex]. Therefore, the simplified expression is `[tex](4x - 5)(4x + 3)^(-1/2)[/tex]`.

To know more about numerator

https://brainly.com/question/20712359

#SPJ11

Other Questions
Discuss the perception of many foreign companies operating in India regarding employee retention, why do efforts to increase compensation fail ro reduce employee turnover? How can companies in India limit employee tumover? the primary focus of health care legislation passed from 1946 to today is to the ultimate purpose of a regional tourist association is to: a. A four-month $3000 bank loan has an APR of 9%. It also has a 1.5% loan origination fee and a compensating balance requirement of 10% (on which APR 3% of interest is paid). Calculate the EAR of the loan. Express answers in the units of percentage points and keep two decimal places (e.g. 99.99%) How is it important for leaders to take entrepreneurship on a national scale? A smartphone manufacturing company produces 1539 phones per day. Material cost was KWD 54, labor cost was KWD 127, and overhead was KWD 391. Calculate the multifactor productivity. Answer: Determine the productivity growth (in percentage %) of a carpeting company after they use a mechanized carpeting compared to manual process: (a) manual process: 7 workers is able to complete the carpeting of 409 square meter area in a day. (b) mechanized carpeting: Using machine the 7 workers complete 624 square meter area in a day. Enter the final answer without the % symbol. Answer: how to determine if a vector is in the null space of a matrix Why are the empty crucible and cover fired to red heat? show that if g is a 3-regular simple connected graph with faces of degree 4 and 6 (squares and hexagons), then it must contain exactly 6 squares. Walters manufactures a specialty food product that can currently be sold for $22.30 per unit and has 20,300 units on hand Alternatively, it can be further processed at a cost of $12,300 and converted into 12.300 units of Deluxe and 6,300 units of Super. The selling price of Deluxe and Super are $30.30 and $20.30, respectively. The incremental income of processing further would be: $35,590 547890 $18.300 $44.300 $12.300 Suppose a company has fixed costs of $30,800 and variable cost per unit of13x + 444 dollars, where x is the total number of units produced. Suppose further that the selling price of its product is 1,572 23x dollars per unit.(a)Form the cost function and revenue function (in dollars).C(x)=R(x)=Find the break-even points. (Enter your answers as a comma-separated list.)x =(b)Find the vertex of the revenue function.(x, y) =Identify the maximum revenue.$(c)Form the profit function from the cost and revenue functions (in dollars).P(x) =Find the vertex of the profit function.(x, y) =Identify the maximum profit.$(d)What price will maximize the profit?$ What is the sum A + B so that y(x) = Az- + B is the solution of the following initial value problem 1y" = 2y. y(1) 2, (1) 3. (A) A+B=0 (D) A+B=3 (B) A+B=1 (E) A+B=5 (C) A+B=2 (F) None of above Critically evaluate the remuneration policies for independent directors in Boeing. To what extent do you think that this may have contributed to the crisis? molecular epidemiology applies the techniques of molecular biology to epidemiologic studies Consider a case where in the market for reserves, the federal funds rate and discount rate are the same. When the Federal Reserve buys securities, this causes the curve to shift to the demand; right demand; left supply: right supply: left At the cross-over point: ____________a.You are indifferent as to which project to selectb.You select the project with the higher NPVc.You select the project with the higher IRRd.You select the project with the higher Profitability Index The minuet first appeared around 1650 as a(n) ______.-dance at the court of Louis XIV of France-country dance in England-instrumental composition for -concert performance-prayer in Germany at the end of the Thirty Years War the seasons on earth are caused by its elliptical orbit around the sun.tf the bush doctrine is a foreign policy strategy that incorporates Suppose the FED decreased the IORB rate so that it is below the Federal Funds Rate. What effect would that have on the following variables? Federal Funds Rate Inflation Purchases of homes Purchases of automobiles Levels of credit card debt Macroeconomic investment