Answer:
B. Less than 1
Step-by-step explanation:
You could plug in values of n greater than 1 and see what happens....
Example n=2 gives |(.5+.2i)^2|
Simplifying inside gives |(.5)^2+2(.5)(.2i)+(.2i)^2|
=|.25+.2i+.04i^2|=|.25+.2i-.04|=|.21+.2i|.
Applying the absolute value part gives sqrt(.21^2+.2^2)=sqrt(.0441+.04)=sqrt(.0841)=.29
This value is less than 1.
We should also be able to do the absolute value first then the power.
|.5+.2i|=sqrt(.25+.04)=sqrt(.29)
So |.5+.2i|^2=.29 which is what we got long way around.
Anyways (sqrt(.29))^n where n is greater than 1 will result in a number greater than 0 but less than 1.
Question 8
Points 3
Identify the functions whose lines are parallel.
0 3x + 2y = 45 and 8x + 4y = 135
x + y = 25 and 2x + y = 15
O 2x + 2y = 50 and 4x + 2y = 90
O 2x + 2y = 4 and 4x + 4y = 16
Answer:
2x + 2y = 4 and 4x + 4y = 16
Step-by-step explanation:
For two lines to be parallel, they must have the same slope.
To determine the correct answer to the question, we shall determine the slope of each equation in the given options to see which have the same slope. This can be obtained as follow:
1st option:
3x + 2y = 45 and 8x + 4y = 135
We shall rearrange the above equations to look like y = mx + c
NOTE: m is the slope.
3x + 2y = 45
rearrange
2y = –3x + 45
Divide both side by 2
y = –3x/2 + 45/2
Slope (m) = –3/2
8x + 4y = 135
Rearrange
4y = –8x + 135
Divide both side by 4
y = –8x/4 + 135/4
Slope (m) = –8/4 = –2
The two equation has different slopes. Thus, they are not parallel.
2nd option:
x + y = 25 and 2x + y = 15
x + y = 25
Rearrange
y = –x + 25
Slope (m) = –1
2x + y = 15
Rearrange
y = –2x + 15
Slope (m) = –2
The two equations has different slopes. Thus, they are not parallel.
3rd option:
2x + 2y = 50 and 4x + 2y = 90
2x + 2y = 50
Rearrange
2y = –2x + 50
Divide both side by 2
y = –2x/2 + 50/2
Slope (m) = –2/2 = –1
4x + 2y = 90
Rearrange
2y = –4x + 90
Divide both side by 2
y = –4x/2 + 90/2
Slope (m) = –4/2 = –2
The two equations has different slopes. Thus, they are not parallel.
4th option:
2x + 2y = 4 and 4x + 4y = 16
2x + 2y = 4
Rearrange
2y = –2x + 4
Divide both side by 2
y = –2x/2 + 4/2
Slope (m) = –2/2 = –1
4x + 4y = 16
Rearrange
4y = –4x + 16
Divide both side by 4
y = –4x/4 + 16/4
Slope (m) = –4/4 = –1
The two equations have the same slopes. Thus, they are parallel.
Working to
(simplify y
Lisa, an experienced shipping clerk, can fill a certain order in 7 hours, Bill, a new clerk, needs 9 hours to do the
same job. Working together, how long will it take them to fill the order?
it might take 19 hours i might be wrong
Step-by-step explanation:
Please help me i will give you brainlest
Answer:
x = 14/3
Step-by-step explanation:
9.
The given equation is:
(x-2)+(x-3)+(x-9)=0
After opening the brackets,
x-2+x-3+x-9=0
3x+(-2-3-9) = 0
3x-14=0
x = 14/3
So, the value of x is equal to 14/3.
Which would result in a lower price to first discount an item by 10% and then by a further 15%, OR to first discount an item by 15% and then by a further 10%. Justify your reasoning.
Answer:
Neither one. They will both result in the same price.
Step-by-step explanation:
To discount an item 10%, you charge 90% of the price of the item. To find 90% of a price, you multiply the price by 0.9.
To discount an item 15%, you charge 85% of the price of the item. To find 85% of a price, you multiply the price by 0.85.
Since multiplication is commutative, multiplying a number by 0.9 and then by 0.85 is the same as multiplying the number by 0.85 first and then by 0.9.
Let's say the item costs x.
Take off the 10% discount first: 0.9x
Now take off the 15% discount: 0.85 * (0.9x)
Now do it the other way.
Take off the 15% discount first: 0.85x
Now take off the 10% discount: 0.9 * (0.85x)
Since 0.85 * 0.9 * x = 0.9 * 0.85 * x, the results are the same.
Answer: neither
p{x:x is a natural number x (9
Answer:
you need a photo my dude
Step-by-step explanation:
Determine the nature of the roots: 4x2 + 13x + 6 = 0
a. no real solutions
b. cannot be determined
C. a unique real solution
two distinct real solutions d. two distinct real solutions
Answer:
D. is the correct option
Discriminant is greater than zero, so the roots are unequal and real.
Step-by-step explanation:
We use discriminant to find the nature of the roots
discriminant formula is, b^2 - 4ac
13^2 (-4) × 4 × 6 = 169-96
73 >0
if discriminant greater than 0 that means the roots are real and unequal.
The following data was obtained from 32 people aged 25-29 who were asked how many hours of TV they watched per week.
4,2,8,9,4,5,10,11,7,8,3,4,10,3,8,5,1,7,0,4,3,2,2,1,1,0,2,3,5,2,1,1.
Group the data in intervals and record the frequency of each interval as well as the cumulative frequency and relative frequency. Make a table showing this information.
Graph the data using frequency histogram.
Graph the data using a cumulative frequency chart.
A telephone exchange operator assumes that 9% of the phone calls are wrong numbers. If the operator is correct, what is the probability that the proportion of wrong numbers in a sample of 448 phone calls would differ from the population proportion by more than 3%
Answer:
0.0264 = 2.64% probability that the proportion of wrong numbers in a sample of 448 phone calls would differ from the population proportion by more than 3%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
A telephone exchange operator assumes that 9% of the phone calls are wrong numbers.
This means that [tex]p = 0.09[/tex]
Sample of 448
This means that [tex]n = 448[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.09[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.09*0.91}{448}} = 0.0135[/tex]
What is the probability that the proportion of wrong numbers in a sample of 448 phone calls would differ from the population proportion by more than 3%?
More than 9% + 3% = 12 or less than 9% - 3% = 6%. Since the normal distribution is symmetric, these probabilities are the same, so we find one of them and multiply by 2.
Probability it is less than 6%
P-value of Z when X = 0.06. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.06 - 0.09}{0.0135}[/tex]
[tex]Z = -2.22[/tex]
[tex]Z = -2.22[/tex] has a p-value of 0.0132
2*0.0132 = 0.0264
0.0264 = 2.64% probability that the proportion of wrong numbers in a sample of 448 phone calls would differ from the population proportion by more than 3%
Chef Amy does beginning inventory on Thursday night and finds that she has $4697 in food products in the restaurant
Throughout the week she purchases:
$668 produce
$2206 meat
$2488 dry goods
$3755 dairy
The following Thursday she does ending inventory and finds that she has $3518 in food.
She looks at her sales and finds that she made $30658 over the same 7 day period.
What is her food cost as a percentage of sales (her food cost percentage)? Please input your answer as a percentage (30%), instead of a decimal (0.3).
Answer:
Her food cost as a percentage of sales is 33.58%.
Step-by-step explanation:
Since Chef Amy does beginning inventory on Thursday night and finds that she has $ 4697 in food products in the restaurant, and throughout the week she purchases:
$ 668 produces
$ 2206 meat
$ 2488 dry goods
$ 3755 dairy
The following Thursday she does ending inventory and finds that she has $ 3518 in food.
She looks at her sales de ella and finds that she made $ 30658 over the same 7 day period.
To determine what her food cost is as a percentage of sales (her food cost percentage), the following calculation must be performed:
4,697 + 668 + 2,206 + 2,488 + 3,755 = 13,814
13,814 - 3,518 = 10,296
30,658 = 100
10,296 = X
10,296 x 100 / 30,658 = X
1,029,600 / 30,658 = X
33.58 = X
Therefore, her food cost as a percentage of sales is 33.58%.
if a x + B Y is equal to a square minus b square and b x + A Y is equal to zero find the value of x + Y
9514 1404 393
Answer:
a-b
Step-by-step explanation:
Add the two equations together:
(ax +by) +(bx +ay) = (a² -b²) +(0)
x(a +b) +y(a +b) = (a +b)(a -b)
x + y = a - b . . . . . divide by (a+b), assuming a+b ≠ 0
solve the following by factolisation formula
1. x(2x+1)=0
2.4xsquere-11-3x=0
1.
X = 0
2x + 1 = 0
X = 0
X = - ½ (Because we brought the numbers from one side to the other)
2.
Not sure for number 2.
What is the value of x in the diagram below? If necessary, round your answer
to the nearest tenth of a unit.
9514 1404 393
Answer:
A. 7.2
Step-by-step explanation:
In this geometry, all of the right triangles are similar. This means corresponding sides have the same ratio.
short side/hypotenuse = x/12 = 12/20
Multiplying by 12 gives ...
x = 12(12/20) = 144/20
x = 7.2
\int (x+1)\sqrt(2x-1)dx
Answer:
[tex]\int (x+ 1) \sqrt{2x-1} dx = \frac{1}{3}(x+1) (2x - 1)^{\frac{3}{2} } - \ \frac{1}{15}(2x-1)^{\frac{5}{2}} + C[/tex]
Step-by-step explanation:
[tex]\int (x+1)\sqrt {(2x-1)} dx\\Integrate \ using \ integration \ by\ parts \\\\u = x + 1, v'= \sqrt{2x - 1}\\\\v'= \sqrt{2x - 1}\\\\integrate \ both \ sides \\\\\int v'= \int \sqrt{2x- 1}dx\\\\v = \int ( 2x - 1)^{\frac{1}{2} } \ dx\\\\v = \frac{(2x - 1)^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}} \times \frac{1}{2}\\\\v= \frac{(2x - 1)^{\frac{3}{2}}}{\frac{3}{2}} \times \frac{1}{2}\\\\v = \frac{2 \times (2x - 1)^{\frac{3}{2}}}{3} \times \frac{1}{2}\\\\v = \frac{(2x - 1)^{\frac{3}{2}}}{3}[/tex]
[tex]\int (x+1)\sqrt(2x-1)dx\\\\ = uv - \int v du[/tex]
[tex]= (x +1 ) \cdot \frac{(2x - 1)^{\frac{3}{2}}}{3} - \int \frac{(2x - 1)^{\frac{3}{2}}}{3} dx \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \ u = x + 1 => du = dx \ ][/tex]
[tex]= \frac{1}{3}(x+1) (2x - 1)^{\frac{3}{2} } - \ \frac{1}{3} \int (2x - 1)^{\frac{3}{2}}} dx\\\\= \frac{1}{3}(x+1) (2x - 1)^{\frac{3}{2} } - \ \frac{1}{3} \times ( \frac{(2x-1)^{\frac{3}{2} + 1}}{\frac{3}{2} + 1}) \times \frac{1}{2}\\\\= \frac{1}{3}(x+1) (2x - 1)^{\frac{3}{2} } - \ \frac{1}{3} \times ( \frac{(2x-1)^{\frac{5}{2}}}{\frac{5}{2} }) \times \frac{1}{2}\\\\= \frac{1}{3}(x+1) (2x - 1)^{\frac{3}{2} } - \ \frac{1}{15} \times (2x-1)^{\frac{5}{2}} + C\\\\[/tex]
The data set shows the number of players on each softball team in a tournament:
9
12
8
7
7
21
11
9
8
7
10
7
10
11
Which of the following statements is true based on the data set?
There is one outlier that indicates an unusually large number of players on that team.
There are two outliers that indicate an unusually large number of players on those two teams.
There is one outlier that indicates an unusually small number of players on that team.
There are two outliers that indicate an unusually small number of players on those two teams.
Is the random variable described discrete or continuous? The amount of rain during the next thunderstorm.
Answer:
continuous
rain does not fall in specific units like 1 inch , 2 inches etc... but 1.23456 etc..
Step-by-step explanation:
7. What is given in the problem?
A. Radius of 80m C. Radius of 80 ft.
B. Diameter of 40 ft. D. Diameter of 40 m paki sagot
Answer:
radius of 80cm is the answer
A candy company fills a package of candy with individually wrapped pieces of candy. The number of pieces of candy per package varies because the package is sold by weight. The company wants to estimate the number of pieces per package. Inspectors randomly sample 120 packages of this candy and count the number of pieces in each package. They find that the sample mean number of pieces is 18.72. Assume the population standard deviation of .8735. What is the point estimate of number of pieces per package
Answer:
The point estimate for the number of pieces per package is of 18.72.
Step-by-step explanation:
Point estimate of a population mean:
The mean of the sample gives an estimate for the population mean.
They find that the sample mean number of pieces is 18.72.
This means that the point estimate for the number of pieces per package is of 18.72.
Question
The sum of three consecutive even integers is -312. Find the Integers.
Answer:
-105, -104, -103
Step-by-step explanation:
lets the numbers be:
x
x+1
x+2
so:
x+(x+1)+(x+2)=-312
x+x+x+1+2=-312
3x+3=-312
3x=-312-3=-315
x=-315/3=-105
سا (a) From the definition of derivatives determine dy÷dx if y = -2÷x
Step-by-step explanation:
Given: [tex]y = -\dfrac{2}{x}[/tex]
Derivative of a power function [tex]x^n[/tex]:
[tex]\dfrac{d}{dx}(x^n) = nx^{n-1}[/tex]
Therefore,
[tex]\dfrac{dy}{dx}=-2(-1)x^{-2} = \dfrac{2}{x^2}[/tex]
y + x + z =762500
z : x = 15/9 : 2
y : x = 1 : 3/4
Step-by-step explanation:
true
Find all solutions of the equation in the interval [0, 2pi); sqrt(3) * csc(theta) - 2 = 0
Answer:
Step-by-step explanation:
Solution of the equation [tex]\sqrt{3} (cosec\theta) -2=0[/tex]in the [ 0, 2π) is [tex]\frac{\pi }{3}[/tex] and [tex]\frac{2\pi }{3}[/tex].
What is trigonometric ratio?" Trigonometric ratios are defined as relation of the ratio of the sides of the triangle to the acute angle of the given triangle enclosed in it."
Formula used
[tex]cosec\theta = \frac{1}{sin\theta}[/tex]
According to the question,
Given trigonometric ratio equation,
[tex]\sqrt{3} (cosec\theta) -2=0[/tex]
Replace trigonometric ratio [tex]cosec\theta[/tex] by [tex]sin\theta[/tex] in the above equation we get,
[tex]\sqrt{3} (\frac{1}{sin\theta} ) -2=0\\\\\implies \sqrt{3} (\frac{1}{sin\theta} ) = 2\\\\\implies sin\theta=\frac{\sqrt{3} }{2}[/tex]
As per given condition of the interval [ 0, 2π) we have,
[tex]\theta = sin^{-1} \frac{\sqrt{3} }{2} \\\\\ implies \theta = \frac{\pi }{3} or \frac{2\pi }{3}[/tex]
Hence, solution of the equation [tex]\sqrt{3} (cosec\theta) -2=0[/tex]in the [ 0, 2π) is
[tex]\frac{\pi }{3}[/tex] and [tex]\frac{2\pi }{3}[/tex].
Learn more about trigonometric ratio here
https://brainly.com/question/1201366
#SPJ3
Using law of sines please show process!!!
Let the <C=x
We know in a triangle
☆Sum of angles=180°
[tex]\\ \sf\longmapsto 51+26+x=180[/tex]
[tex]\\ \sf\longmapsto 77+x=180[/tex]
[tex]\\ \sf\longmapsto x=180-77[/tex]
[tex]\\ \sf\longmapsto x=103°[/tex]
Find the functional values of r(0), r(3) and r(-3) for the rational function.
Answer:
Step-by-step explanation:
Given function is,
[tex]r(x)=\frac{3x^3-7}{x^2-6x+9}[/tex]
For x = 0, substitute the value of x in the given function.
[tex]r(0)=\frac{3(0)^3-7}{(0)^2-6(0)+9}[/tex]
[tex]r(0)=\frac{-7}{9}[/tex]
For r = 3,
[tex]r(3)=\frac{3(3)^3-7}{(3)^2-6(3)+9}[/tex]
[tex]r(3)=\frac{81-7}{9-18+9}[/tex]
[tex]=\frac{74}{(9-18+9)}[/tex]
[tex]=\frac{74}{0}[/tex]
Function is undefined at x = 3.
For x = -3,
[tex]r(-3)=\frac{3(-3)^3-7}{(-3)^2-6(-3)+9}[/tex]
[tex]=\frac{-81-7}{9+18+9}[/tex]
[tex]=\frac{-88}{36}[/tex]
[tex]=-\frac{22}{9}[/tex]
Melanie has D dimes and Q quarters. She has no less than $4 worth of coins altogether. Write this situation as an inequality.
Step-by-step explanation:
D(.10) + Q(.25) = 4
I think
Answer:
D(.10) + Q(.25) = 4
Step-by-step explanation:
What is the value of y?
Enter your answer, as an exact value, in the box.
Answer:
y=4√3 units
Step-by-step explanation:
Hi there!
We are given ΔABC, which is a right triangle (m<C=90°), m<A=60°, AB=8, and BC=y
We need to find the value of y (BC)
The side AB is the hypotenuse of the (the side opposite from the right angle).
BC is a leg, which is a side that makes up the right angle.
Now, if we have a right triangle that has one of the acute angles as 60°, the side OPPOSITE from that 60° angle (in this case, BC) is equal to [tex]\frac{a\sqrt{3}}{2}[/tex], where a is the length of the hypotenuse
Since we have the hypotenuse given as 8, the length of BC (y) is [tex]\frac{8\sqrt{3}}{2}[/tex], or 4√3
so y=4√3 units
Hope this helps!
A bank gives you a loan of 1,500,000 Baht to buy a house. The interest rate of the loan is 0.01% per day (Using 1 year = 365 days) How much interest you pay after 10 years
Answer:
547 500
Step-by-step explanation:
Interest for 1 year:
0.01%×365=3.65 a year
3.65×10=36.5% for 10 years
36.5×1,500,000÷100=547 500
The interest paid after 10 years is 547 ,500 Baht.
What is Interest ?Interest is the amount paid or earned when a loan is taken or an investment is done respectively.
It is given that
Principal = 1,500,000 Baht
Rate = 0.01 % per day
Time period = 10 years
Interest = ?
Interest = P *R *T/100
Interest = 1500000 * 0.01 *365* 10 / 100
Interest = 547,500 Baht
Therefore the interest paid after 10 years is 547 ,500 Baht.
To know more about Interest
https://brainly.com/question/13324776
#SPJ2
The following figure appears in a math workbook. Students are asked to reflect the polygon across the line, then rotate it 90 degrees clockwise . Which figure shows the result of the two transformations?
Answer:
C
Step-by-step explanation:
tracing paper is your friend
write the volume formula beside the solid figure
Answer:
cube(v=l×l×l)
cylinder (v= πr^2h)
cone(v=1/3πr^2h)
rectangular prism (v= area of base×lenght)
pyramid (v=1/3×area of base×h)
Step-by-step explanation:
Cube:-a^3
Cuboid:-lbh
Cylinder :-pi r^2h
Cone:-1/3pi r^2h
in a class of 38 student,30 are good in mathematics and 22 are good in physics how many students are good in both mathematics and physics
Answer:
8 are bad in math and 16 in physics
Step-by-step explanation:
No more than one state of nature can occur at a given time for a chance event. This indicates that the states of nature are defined such that they are
a. conservative events.
b. mutually exclusive.
c. independent outcomes.
d. collectively exhaustive.
Answer:
b. mutually exclusive.
Step-by-step explanation:
The given description is an illustration of mutually exclusive events.
Take for instance, when you roll a die;
It is impossible to have an outcome of 2 and 6 at the same time; these means that 2 and 6 are mutually exclusive.
In a nutshell, when two or more sates of events/states of nature can not happen at the same time; such events/states of nature are mutually exclusive.