Answer:
Explanation:
(ΔK + ΔUg + ΔUs + ΔEch + ΔEth = W)
ΔK is increase in kinetic energy . As the athelete is lifting the barbell at constant speed change in kinetic energy is zero .
ΔK = 0
ΔUg is change in potential energy . It will be positive as weight is being lifted so its potential energy is increasing .
ΔUg = positive
ΔUs is change in the potential energy of sportsperson . It is zero since there is no change in the height of athlete .
ΔUs = 0
ΔEth is change in the energy of earth . Here earth is doing negative work . It is so because it is exerting force downwards and displacement is upwards . Hence it is doing negative work . Hence
ΔEth = negative .
b )
work done by athlete
= 400 x 2 = 800 J
energy output = 800 J
c )
It is 25% of metabolic energy output of his body
so metalic energy output of body
= 4x 800 J .
3200 J
power = energy output / time
= 3200 / 1.6
= 2000 W .
d )
1 ) Since he is doing same amount of work , his metabolic energy output is same as that in earlier case .
2 ) Since he is doing the same exercise in less time so his power is increased . Hence in the second day his power is more .
A) Applying the energy equation
The positive terms is : ΔUg The negative terms is : ΔEth The zero term are : ΔK and ΔUsB) The energy output by the athlete is ; 800 Joules
C) The metabolic power is : 2000 w
D) When he performs the task in 1.2 s
The metabolic energy he expends is : the same His metabolic power is : moreGiven data :
Weight of barbell = 400 N
Height = 2.0 m
Time = 1.6 secs
efficiency of the human body = 25%
Speed = constant
A) From the energy equation the ΔK is zero because the athlete is lifting the barbell at a constant speed. ΔUg is positive because as the weight is lifted its potential energy increases. ΔEth ( change in energy of earth ) is negative because it exerts a force in opposite direction to displacement
B) Determine the energy output of the athlete
weight of barbell * Height = 400 * 2 = 800 J
C) Determine the metabolic power
Metabolic power = energy output / Time
where ; energy output = 4 * 800 = 3200
∴ Metabolic power = 3200 / 1.6
= 2000 w
D) When performs same task at 1.2 s
The metabolic energy he expends is the same and His metabolic power is more
Hence we can conclude that the answers to your questions are as listed above
Learn more : https://brainly.com/question/17807740
The tibia is a lower leg bone (shin bone) in a human. The maximum strain that the tibia can experience before fracturing corresponds to a 1 % change in length.
A. Young's modulus for bone is about Y = 1.4 x 10 N/m². The tibia (shin bone) of a human is 0.35 m long and has an average cross-sectional area of 2.9 cm. What is the effective spring constant of the tibia?
B. If a man weighs 750 N, how much is the tibia compressed if it supports half his weight?
C. What is the maximum force that can be applied to a tibia with a cross-sectional area, A = 2.90 cm?
Answer:
a
[tex]k = 11600000 N/m[/tex]
b
[tex]\Delta L = 3.2323 *10^{-5} \ m[/tex]
c
[tex]F = 3750.28 \ N[/tex]
Explanation:
From the question we are told that
The Young modulus is [tex]E = 1.4 *10^{10} \ N/m^2[/tex]
The length is [tex]L = 0.35 \ m[/tex]
The area is [tex]2.9 \ cm^2 = 2.9 *10^{-4} \ m ^2[/tex]
Generally the force acting on the tibia is mathematically represented as
[tex]F = \frac{E * A * \Delta L }{L}[/tex] derived from young modulus equation
Now this force can also be mathematically represented as
[tex]F = k * \Delta L[/tex]
So
[tex]k = \frac{E * A }{L}[/tex]
substituting values
[tex]k = \frac{1.4 *10^{10} * 2.9 *10^{-4} }{ 0.35}[/tex]
[tex]k = 11600000 N/m[/tex]
Since the tibia support half the weight then the force experienced by the tibia is
[tex]F_k = \frac{750 }{2} = 375 \ N[/tex]
From the above equation the extension (compression) is mathematically represented as
[tex]\Delta L = \frac{ F_k * L }{ A * E }[/tex]
substituting values
[tex]\Delta L = \frac{ 375 * 0.35 }{ (2.9 *10^{-4}) * 1.4*10^{10} }[/tex]
[tex]\Delta L = 3.2323 *10^{-5} \ m[/tex]
From the above equation the maximum force is
[tex]F = \frac{1.4*10^{10} * (2.9*10^{-4}) * 3.233*10^{-5} }{ 0.35}[/tex]
[tex]F = 3750.28 \ N[/tex]
Consider two parallel wires where the magnitude of the left currentis 2 I0(io) and that of the right current is I0(io). Point A is midway between the wires,and B is an equal distance on the other side of the wires.
The ratio ofthe magnitude of the magnetic field at point A to that at point Bis________
Answer:
Explanation:
At the point midway between wires
magnetic field due to wire having current 2I₀
= 10⁻⁷ x 2 x2I₀ / r where 2r is the distance between wires .
magnetic field due to wire having current I₀
= 10⁻⁷ x 4 I₀ / r
magnetic field due to wire having current I₀
= 10⁻⁷ x 2I₀ / r
= 10⁻⁷ x 2 I₀ / r where 2r is the distance between wires .
these fields are in opposite direction as direction of current is same in both .
net magnetic field = (4 - 2 )x 10⁻⁷ x I₀ / r
= 2 x 10⁻⁷ x I₀ / r
At point A net magnetic field = 2 x 10⁻⁷ x I₀ / r
At point B , we shall calculate magnetic field
magnetic field due to nearer wire having current 2 I₀ = 10⁻⁷ x 4 I₀ / r
magnetic field due to wire far away = 10⁻⁷ x 2 I₀ / 3r
These magnetic fields act in the same direction so they will add up
net magnetic field = [ (4 I₀ / r) + (2 I₀ / 3r) ] x 10⁻⁷
= (14 I₀ / 3r ) x 10⁻⁷
Magnetic field at point B = (14 I₀ / 3r ) x 10⁻⁷
Ratio of field at A and B
= 3 / 7 . Ans
The ratio of the magnitude of the magnetic field at point A to point B is :
3 / 7
Given data :
Magnitude of the left current is 2I₀
Magnitude of the right current is I₀
First step : Determine the magnetic field at point A
The magnetic field due to the left current ( 2I₀ )
10⁻⁷ * 2 * 2I₀ / r ( 2r = distance between wires )
The magnetic field due to the right current ( I₀ )
10⁻⁷ * 2 I₀ / r
From the expressions above the magnetic fields are in opposite direction
∴ Net magnetic field = (4 - 2 )* 10⁻⁷ * I₀ / r = 2 * 10⁻⁷ * I₀ / r
Hence The magnetic field at point A = 2 * 10⁻⁷ * I₀ / r
Next step : determine the magnetic field at point B
Magnetic field due to the closest wire to point B ( i.e.2I₀ ) = 10⁻⁷ * 4 I₀ / r
Magnetic field due to the wire away from point A = 10⁻⁷ * 2 I₀ / 3r
Since the fields acts in the same directions
The net magnetic field = (4 I₀ / r) + (2 I₀ / 3r) ] * 10⁻⁷ = ( 14 I₀ / 3r ) * 10⁻⁷
Hence The magnetic field at point A = ( 14 I₀ / 3r ) * 10⁻⁷
Therefore the ratio of the magnitude of the magnetic field at point A to point B = 3/ 7
Hence we can conclude that the ratio of the magnitude of the magnetic field at point A to point B = 3 / 7
Learn more : https://brainly.com/question/22403676
A radar installation operates at 9000 MHz with an antenna (dish) that is 15 meters across. Determine the maximum distance (in kilometers) for which this system can distinguish two aircraft 100 meters apart.
Answer:
R = 36.885 km
Explanation:
In order to distinguish the two planes we must use the Rayleigh criterion that establishes two distinguishable objects if in their diffraction the central maximum of one coincides with the first minimum of the other
The diffraction equation for slits is
a sin θ = m λ
the first minimum occurs for m = 1
sin θ = λ a
as the diffraction experiments the angles are very small, we approximate
sin θ = θ
θ = λ / a
This expression is for a slit, in the case of circular objects, when solving the system in polar coordinates, a numerical constant appears, leaving the expression of the form
θ = 1.22 λ / a
In this problem they give us the frequency, let's find the wavelength with the relation
c = λ f
λ = c / f
θ = 1.22 c/ f a
since they ask us for the distance between the planes, we can use the definition of radians
θ = s / R
if we assume that the distance is large, we can approximate the arc to the horizontal distance
s = x
we substitute
x / R = 1.22 c / fa
R = x f a / 1.22c
Let's reduce the magnitudes to the SI system
f = 9000 MHz = 9 109 Hz
a = 15 m
x = 100 m
let's calculate
R = 100 10⁹ 15 / (1.22 3 108)
R = 3.6885 10⁴ m
let's reduce to km
R = 3.6885 10¹ km
R = 36.885 km
The frequency of light emitted from hydrogen present in the Andromeda galaxy has been found to be 0.10% higher than that from hydrogen measured on Earth.
Is this galaxy approaching or receding from the Earth, and at what speed?
Answer:
3x10^5m/s
Explanation:
See attached file
Explanation:
The speed of the light emitted from the earth is approaching the galaxy at [tex]3\times 10^5\;\rm m/s[/tex].
Doppler's Effect
According to the Doppler effect, the difference between the frequency at which light wave leave a source and reaches an observer is caused by the relative motion of the observer and the wave source.
Given that the difference in the frequency is 0.10 %. The speed of light emitted from the galaxy can be calculated by the Doppler effect.
[tex]\dfrac {\Delta f}{f} = \dfrac {v}{c}[/tex]
Where f is the frequency of the light, v is the speed of light emitted from the galaxy and c is the speed of light emitted from the earth.
[tex]\dfrac {0.10 f}{100 f} = \dfrac {v}{3\times 10^8}[/tex]
[tex]v = 3\times 10^5\;\rm m/s[/tex]
Hence we can conclude that the speed of the light emitted from the earth is approaching the galaxy at [tex]3\times 10^5\;\rm m/s[/tex].
To know more about the doppler effect, follow the link given below.
https://brainly.com/question/1330077.
What did the results of photoelectric-effect experiments establish?
Answer:
Option A
Electrons are emitted if low intensity, high-frequency light hits a metal surface.
Explanation:
From the experiments conducted to study the photoelectric effect, conclusions were made that the key factor that contributes to the emission of electrons from the surface of the metal is the frequency of the beam of light. This frequency has to be beyond a minimum threshold, if not, there will be no emission of electrons from the metal surface no matter the intensity of the beam of light or the length of time it is incident upon the metal surface.
This makes option A correct because it highlights the contributions made by the threshold frequency to the photoelectric effect.
What would happen in a State if its citizens lack relevant knowledge, skills
and positive attitude?
Answer:
If the older generation is lacking, the younger generation would likely have knowledge, skill, or a positive attitude in some combination, but it is relative to the culture.
The simple reason is the desirability for genetic variation using recessive genes.
In other words, if the older generation lacks something, it tends to be something they don’t need, but something that will look good on young people. But mostly relative to the culture and education system.
Hope this helps
The hot glowing surfaces of stars emit energy in the form of electromagnetic radiation. It is a good approximation to assume that the emissivity eee is equal to 1 for these surfaces.
Required:
a. Find the radius RRigel of the star Rigel, the bright blue star in the constellation Orion that radiates energy at a rate of 2.7 x 10^31 W and has a surface temperature of 11,000 K.
b. Find the radius RProcyonB of the star Procyon B, which radiates energy at a rate of 2.1 x 10^23 W and has a surface temperature of 10,000 K. Assume both stars are spherical. Use σ=5.67 x 10−8^ W/m^2*K^4 for the Stefan-Boltzmann constant.
Given that,
Energy [tex]H=2.7\times10^{31}\ W[/tex]
Surface temperature = 11000 K
Emissivity e =1
(a). We need to calculate the radius of the star
Using formula of energy
[tex]H=Ae\sigma T^4[/tex]
[tex]A=\dfrac{H}{e\sigma T^4}[/tex]
[tex]4\pi R^2=\dfrac{H}{e\sigma T^4}[/tex]
[tex]R^2=\dfrac{H}{e\sigma T^4\times4\pi}[/tex]
Put the value into the formula
[tex]R=\sqrt{\dfrac{2.7\times10^{31}}{1\times5.67\times10^{-8}\times(11000)^4\times 4\pi}}[/tex]
[tex]R=5.0\times10^{10}\ m[/tex]
(b). Given that,
Radiates energy [tex] H=2.1\times10^{23}\ W[/tex]
Temperature T = 10000 K
We need to calculate the radius of the star
Using formula of radius
[tex]R^2=\dfrac{H}{e\sigma T^4\times4\pi}[/tex]
Put the value into the formula
[tex]R=\sqrt{\dfrac{2.1\times10^{23}}{1\times5.67\times10^{-8}\times(10000)^4\times4\pi}}[/tex]
[tex]R=5.42\times10^{6}\ m[/tex]
Hence, (a). The radius of the star is [tex]5.0\times10^{10}\ m[/tex]
(b). The radius of the star is [tex]5.42\times10^{6}\ m[/tex]
A 28.0 kg child plays on a swing having support ropes that are 2.30 m long. A friend pulls her back until the ropes are 45.0 ∘ from the vertical and releases her from rest.
A: What is the potential energy for the child just as she is released, compared with the potential energy at the bottom of the swing?
B: How fast will she be moving at the bottom of the swing?
C: How much work does the tension in the ropes do as the child swings from the initial position to the bottom?
Answer
A)184.9J
B)=3.63m/s
C) Zero
Explanation:
A)potential energy of the child at the initial position, measured relative the her potential energy at the bottom of the motion, is
U=Mgh
Where m=28kg
g= 9.8m/s
h= difference in height between the initial position and the bottom position
We are told that the rope is L = 2.30 m long and inclined at 45.0° from the vertical
h=L-Lcos(x)= L(1-cosx)=2.30(1-cos45)
=0.674m
Her Potential Energy will now
= 28× 9.8×0.674
=184.9J
B)we can see that at the bottom of the motion, all the initial potential energy of the child has been converted into kinetic energy:
E= 0.5mv^2
where
m = 28.0 kg is the mass of the child
v is the speed of the child at the bottom position
Solving the equation for v, we find
V=√2k/m
V=√(2×184.9/28
=3.63m/s
C)we can find work done by the tension in the rope is given using expresion below
W= Tdcosx
where W= work done
T is the tension
d = displacement of the child
x= angle between the directions of T and d
In this situation, we have that the tension in the rope, T, is always perpendicular to the displacement of the child, d. x= 90∘ and cos90∘=0 hence, the work done is zero.
A 17.0 g bullet traveling horizontally at 785 m/s passes through a tank containing 13.5 kg of water and emerges with a speed of 534 m/s.
What is the maximum temperature increase that the water could have as a result of this event? (in degrees)
Answer:
The maximum temperature increase is [tex]\Delta T = 0.0497 \ ^oC[/tex]
Explanation:
From the question we are told that
The mass of the bullet is [tex]m = 17.0 \ g =0.017 \ kg[/tex]
The speed is [tex]v_1 = 785 \ m/s[/tex]
The mass of the water is [tex]m_w = 13.5 \ kg[/tex]
The velocity it emerged with is [tex]v_2 = 534 \ m/s[/tex]
Generally due to the fact that energy can nether be created nor destroyed but transferred from one form to another then
the change in kinetic energy of the bullet = the heat gained by the water
So
The change in kinetic energy of the water is
[tex]\Delta KE = \frac{1}{2} m (v_1^2 - v_2 ^2 )[/tex]
substituting values
[tex]\Delta KE =0.5 * 0.017 * (( 785)^2 - (534) ^2 )[/tex]
[tex]\Delta KE = 2814.1 \ J[/tex]
Now the heat gained by the water is
[tex]Q = m_w* c_w * \Delta T[/tex]
Here [tex]c_w[/tex] is the specific heat of water which has a value [tex]c_w = 4190 J/kg \cdot K[/tex]
So since [tex]\Delta KE = Q[/tex]
we have that
[tex]2814.1 = 13.5 * 4190 * \Delta T[/tex]
[tex]\Delta T = 0.0497 \ ^oC[/tex]
1. Why do you see colors when you look at reflected light from a CD or DVD disk, or when you look at a soap bubble or oil film on water?
2. What do you think causes the colors on the artwork panels on the side of HLS2 (Health Sciences building) which change with time of day and the angle from which you view them?
Explanation:
1.The light reflected from the CD/DVD or soap bubble or oil film forms an interference with the surrounding light. The inference both constructive and destructive making some color appear and some disappear.
2.As light behaves as wave it will interfere differently at different angles. At certain angle it will interfere constructively and at certain angle it will interfere destructively making some color brighter and some disappear. So, at different angles the color are different.
Interference pattern is responsible for the formation of different colour when a light reflected from CD or soap bubble.
We can see colors when we look at reflected light from a CD or DVD disk, or a soap bubble or oil film on water because of the interference pattern. The colors that we see on the CD are created due to the reflection of white light from ridges in the metal. When light passes through something with many small ridges or scratches, we often see rainbow colors and interesting patterns.
These patterns are called interference patterns. White light is made up of 7 colors i.e. red, orange, yellow, green, blue, indigo, violet. The CD converts or separates the white light into 7 colors so we can conclude that interference pattern is responsible for the formation of different colour when a light reflected from CD OR soap bubble.
Learn more: https://brainly.com/question/17177523
A 10-cm-long thin glass rod uniformly charged to 6.00 nC and a 10-cm-long thin plastic rod uniformly charged to - 6.00 nC are placed side by side, 4.4 cm apart. What are the electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods?
A. Specify the electric field strength E1
B. Specify the electric field strength E2
C. Specify the electric field strength E3
Answer:
A) E(r) = 1.3957 × 10^(5) N/C
B) E(r) = 9.8864 × 10⁴ N/C
C) E(r) = 1.13 × 10^(5) N/C
Explanation:
We are given;
q = 6 nc = 6 × 10^(-9) C
L = 10 cm = 0.1 m
d = 4.4 cm = 0.044 m
r1 = 1 cm = 0.01 m
r2 = 2 cm = 0.02 m
r3 = 3 cm = 0.03 m
Formula for the electric field strength in this question is given as;
E(r) = q/(2π(ε_o)rL) + q/(2π(ε_o)(d - r)L)
When factorized, we have;
E(r) = q/(2π(ε_o)L) × [(1/r) + (1/(d - r))]
Plugging in the relevant values for q/(2π(ε_o)L)
We know that (ε_o) has a constant value of 8.854 × 10^(−12) C²/N².m
Thus; q/(2π(ε_o)L) = (6 × 10^(-9))/(2π(8.854 × 10^(−12)0.1) = 1078.53
Thus;
E(r) = 1078.52 [1/r + 1/(d - r)]
A) E1 is at r = 1 cm = 0.01m
Thus;
E(r) = 1078.52 (1/0.01 + (1/(0.044 - 0.01))
E(r) = 1.3957 × 10^(5) N/C
B) E2 is at r = 2 cm = 0.02 m
Thus;
E(r) = 1078.52 (1/0.02 + (1/(0.044 - 0.02))
E(r) = 9.8864 × 10⁴ N/C
C) E2 is at r = 3 cm = 0.03 m
Thus;
E(r) = 1078.52 (1/0.03 + (1/(0.044 - 0.03))
E(r) = 1.13 × 10^(5) N/C
Suppose that a sound source is emitting waves uniformly in all directions. If you move to a point twice as far away from the source, the frequency of the sound will be:________.
a. one-fourth as great.
b. half as great.
c. twice as great.
d. unchanged.
Answer:
d. unchanged.
Explanation:
The frequency of a wave is dependent on the speed of the wave and the wavelength of the wave. The frequency is characteristic for a wave, and does not change with distance. This is unlike the amplitude which determines the intensity, which decreases with distance.
In a wave, the velocity of propagation of a wave is the product of its wavelength and its frequency. The speed of sound does not change with distance, except when entering from one medium to another, and we can see from
v = fλ
that the frequency is tied to the wave, and does not change throughout the waveform.
where v is the speed of the sound wave
f is the frequency
λ is the wavelength of the sound wave.
Suppose you drop paperclips into an open cart rolling along a straight horizontal track with negligible friction. As a result of the accumulating paper clips, explain whether the momentum and kinetic energy increase, decrease, or stay the same.
Answer:
Stay the same
Explanation:
Since, friction is negligible:
Initial Momentum = Final Momentum
Initial KE = Final KE
m1 * v1 = m2 * v2
When m increases v decreases.
The momentum and kinetic energy remain the same if you drop paper clips into an open cart rolling along a straight horizontal track with negligible friction.
What is friction?Between two surfaces that are sliding or attempting to slide over one another, there is a force called friction. For instance, friction makes it challenging to push a book down the floor. Friction always moves an object in a direction that is counter to the direction that it is traveling or attempting to move.
Given:
The paperclips into an open cart rolling along a straight horizontal track with negligible friction,
Calculate the momentum, Since friction is negligible,
Initial Momentum = Final Momentum
Initial Kinetic Energy = Final Kinetic Energy
m₁ × v₁ = m₁ × v₂
When m increases, v decreases,
Thus, momentum will remain the same.
To know more about friction:
https://brainly.com/question/28356847
#SPJ5
Water is pumped with a 120 kPa compressor entering the lower pipe (1) and flows upward at a speed of 1 m/s. Acceleration due to gravity is 10 m/s and water density is1000 kg/m-3. What is the water pressure on the upper pipe (II).
Answer:
The water pressure on the upper pipe is 92.5 kPa.
Explanation:
Given that,
Pressure in lower pipe= 120 kPa
Speed of water in lower pipe= 1 m/s
Acceleration due to gravity = 10 m/s²
Density of water = 1000 kg/m³
Radius of lower pipe = 12 m
Radius of uppes pipe = 6 m
Height of upper pipe = 2 m
We need to calculate the velocity in upper pipe
Using continuity equation
[tex]A_{1}v_{1}=A_{2}v_{1}[/tex]
[tex]\pi r_{1}^2\times v_{1}=\pi r_{2}^2\times v_{2}[/tex]
[tex]v_{2}=\dfrac{r_{1}^2\times v_{1}}{r_{2}^2}[/tex]
Put the value into the formula
[tex]v_{2}=\dfrac{12^2\times1}{6^2}[/tex]
[tex]v_{2}=4\ m/s[/tex]
We need to calculate the water pressure on the upper pipe
Using bernoulli equation
[tex]P_{1}+\dfrac{1}{2}\rho v_{1}^2+\rho gh_{1}=P_{2}+\dfrac{1}{2}\rho v_{2}^2+\rho gh_{2}[/tex]
Put the value into the formula
[tex]120\times10^{3}+\dfrac{1}{2}\times1000\times1^2+1000\times10\times0=P_{2}+\dfrac{1}{2}\times1000\times(4)^2+1000\times10\times2[/tex]
[tex]120500=P_{2}+28000[/tex]
[tex]P_{2}=120500-28000[/tex]
[tex]P_{2}=92500\ Pa[/tex]
[tex]P_{2}=92.5\ kPa[/tex]
Hence, The water pressure on the upper pipe is 92.5 kPa.
A microwave oven operates at 2.4 GHz with an intensity inside the oven of 2300 W/m2 . Part A What is the amplitude of the oscillating electric field
Answer:
The amplitude of the oscillating electric field is 1316.96 N/C
Explanation:
Given;
frequency of the wave, f = 2.4 Hz
intensity of the wave, I = 2300 W/m²
Amplitude of oscillating magnetic field is given by;
[tex]B_o = \sqrt{\frac{2\mu_o I}{c} }[/tex]
where;
μ₀ is permeability of free space = 4π x 10⁻⁷ m/A
I is intensity of wave
c is speed of light = 3 x 10⁸ m/s
[tex]B_o = \sqrt{\frac{2*4\pi *10^{-7}*2300}{3*10^8} } \\\\B_o = 4.3899 *10^{-6} \ T[/tex]
The amplitude of the oscillating electric field is given by;
E₀ = cB₀
E₀ = 3 x 10⁸ x 4.3899 x 10⁻⁶
E₀ = 1316.96 N/C
Therefore, the amplitude of the oscillating electric field is 1316.96 N/C
What is the density of the unknown fluid in Figure below? ρwater = 1000 kgm−3
Answer:
2500 kg/m³
Explanation:
P = P
ρgh = ρgh
ρh = ρh
(1000 kg/m³) (8.9 cm) = ρ (3.5 cm)
ρ ≈ 2500 kg/m³
If the solenoid is 45.0 cm long and each winding has a radius of 8.0 cm , how many windings are in the solenoid
Answer:
The number of windings is 1.
Explanation:
The radius of the solenoid = 8.0 cm = 0.08 m
Length of the solenoid = 45.0 cm = 0.45 m
number of turn = ?
circumference of each winding = 2πr = 2 x 3.142 x 0.08 = 0.503 m
The number of windings = (Length of the solenoid)/(circumference of each winding)
==> 0.45/0.503 = 0.89 ≅ 1
An electron is accelerated from rest through a potential difference. After acceleration the electron has a de Broglie wavelength of 880 nm. What is the potential difference though which this electron was accelerated
Answer:
3x10⁴v
Explanation:
Using
Wavelength= h/ √(2m.Ke)
880nm = 6.6E-34/√ 2.9.1E-31 x me
Ke= 6.6E-34/880nm x 18.2E -31.
5.6E-27/18.2E-31
= 3 x 10⁴ Volts
What is the separation in meters between two slits for which 594 nm orange light has its first maximum at an angle of 32.8°?
Answer:
1.1micro meter
Explanation:
Given that
Constructive interference is
ma = alpha x sin theta
Alpha = 1 x 594 x10^ -9/ sin 32.8°
= 1.1 x 10^ -6m
Explanation:
A train on one track moves in the same direction as a second train on the adjacent track. The first train, which is ahead of the second train and moves with a speed of 36.4 m/s , blows a horn whose frequency is 123 Hz .what is its speed?
Answer:
51. 7m/s
Explanation:
Take speed of sound in air = 340 m/s
fp = fs (V + Vp)/(V + Vs)
128 = 123 (340 + Vp)/(340 + 36.4)
Vp = 51.7m/s
Explanation:
Experiment to find ways to make rainbows.
a) Insert at least one setup where light passing through a prism gives a rainbow and describe why a rainbow is formed.
b) Explain why only some types of light will yield rainbows.
Answer:
Explanation:
a) To get a rainbow from a prism arrangement, we will need
A triangular prismA black cardboard boxA source of white light (light from the window will suffice)A pocket knifeFirst, you cut a slit in one end of the cardboard with the pen knife.
Next you open up a space on top of the cardboard through which you can observe the experiment and its result.
Next, you place the triangular prism with its slant face facing the the cut slit.
Finally, position the slit to face the light from the open window, and adjust the prism till the projected bands of colored light (rainbow) is very much obvious on the other end of the box, opposite the slit.
b) For a light to yield rainbow, it most be composed of different component colors of light. The colors of light is due to the difference in wavelength, and dispersion is due to the different in the wavelengths of the component light. So to get rainbow from a light source, the light must not be monochromatic. This means that only light composed of component light of different colors can produce rainbow. Light from the sun for example is composed of 7 distinct colors of light, and white light can be created with just three colors; blue, green, and red light.
We can reasonably model a 75 W incandescent light bulb as a sphere 6.0 cm in diameter. Typically only about 5% of the energy goes to visible light; the rest goes largely to non-visible infrared radiation. (a) What is the visible light intensity at the surface of the bulb
Answer:
Visible light intensity at the surface of the bulb (I) = 331 W/m²
Explanation:
Given:
Energy = 75 W
Radius = 6 /2 = 3 cm = 3 × 10⁻² m
Energy goes to visible light = 5% = 0.05
Find:
Visible light intensity at the surface of the bulb (I)
Computation:
Visible light intensity at the surface of the bulb (I) = P / 4A
Visible light intensity at the surface of the bulb (I) = (0.05)(75) / 4π(3 × 10⁻²)²
Visible light intensity at the surface of the bulb (I) = 3.75 / 4π(9 × 10⁻⁴)
Visible light intensity at the surface of the bulb (I) = 331 W/m²
An organ pipe open at both ends is 1.5 m long. A second organ pipe that is closed at one end and open at the other is 0.75 m long. The speed of sound in the room is 330 m/s. Which of the following sets of frequencies consists of frequencies which can be produced by both pipes?
a. 110Hz,220Hz, 330 Hz
b. 220Hz 440Hz 66 Hz
c. 110Hz, 330Hz, 550Hz
d. 330 Hz, 550Hz, 440Hz
e. 660Hz, 1100Hz, 220Hz
Answer:
A. 110Hz,220Hz, 330 Hz
Explanation:
for organ open at open both ends;
the length of the organ for the fundamental frequency, L = A---->N + N----->A
A---->N = λ /4 and N----->A = λ /4
L = λ /4 + λ /4 = λ /2
[tex]L = \frac{\lambda}{2} \\\\\lambda = 2L[/tex]
λ = 2 x 1.5m = 3.0 m
Wave equation is given by;
V = Fλ
Where;
V is the speed of sound
F is the frequency of the wave
F = V/ λ
F₀ = V / 2L
Where;
F₀ is the fundamental frequency
F₀ = 330 / 2(1.5)
F₀ = 330 / 3
F₀ = 110 Hz
the length of the organ for the first overtone, L = A---->N + N----->A + A----->N + N----->A
L = 4λ /4
L = λ
λ = 1.5 m
F₁ = 330 / 1.5
F₁ = 220 Hz
Thus, F₁ = 2F₀
For open organ at one end
the length of the organ for the fundamental frequency, L = N------A
L = λ /4
λ = 4L
F₀ = V/4L
F₀ = 330 / (4 x 0.75)
F₀ = 110 Hz
the length of the organ for the first overtone, L = N-----N + N-----A
L = λ/2 + λ / 4
L = 3λ /4
F₁ = 3F₀
F₁ = 3 x 110
F₁ = 330 Hz
Thus the fundamental frequency for both organs is 110 Hz,
The first overtone for the organ open at both ends is 220 Hz
The first overtone for the organ open at one end is 330 Hz
The correct option is "A. 110Hz,220Hz, 330 Hz"
The correct option is option (A)
the frequencies produced by the pipes are (A) 110Hz,220Hz, 330 Hz
Frequencies and overtones:(I) For an organ pipe open at open both ends the frequency of different modes is given by:
F = nv/2L
where
F is the frequency
L is the length of the organ pipe
v is the speed of the wave
and, n is the mode of frequency
the fundamental frequency corresponds to n = 1, given by:
F₀ = v/2L
F₀ = 330 / 2(1.5)
F₀ = 330 / 3
F₀ = 110 Hz
The first overtone corresponds to n = 2, the second overtone corresponds to n = 3, and so on...
F₁ =2v/2L
F₁ = 330 / 1.5
F₁ = 220 Hz
Thus, F₁ = 2F₀
The difference between successive overtones is F₀
(II) For an organ pipe open at one end the frequency of different modes is given by:
F = nv/4L
where
F is the frequency
L is the length of the organ pipe
v is the speed of the wave
and, n is the mode of frequency
the fundamental frequency corresponds to n = 1, given by:
F₀ = V/4L
F₀ = 330 / (4 x 0.75)
F₀ = 110 Hz
For an organ pipe open at one end, only those overtones are present which correspond to odd n, that is n = 3,5,...so:
F₁ = 3F₀
F₁ = 3 x 110
F₁ = 330 Hz
Learn more about overtones:
https://brainly.com/question/1515875?referrer=searchResults
Given a double slit apparatus with slit distance 2 mm, what is the theoretical maximum number of bright spots that I would see when I shine light with a wavelength 500 nm on the slits
Answer:
The values is [tex]m_{max} = 8001 \ bright \ spots[/tex]
Explanation:
From the question we are told that
The slit distance is [tex]d = 2 \ mm = 2*10^{-3} \ m[/tex]
The wavelength is [tex]\lambda = 500 \ nm = 500 *10^{-9} \ m[/tex]
At the first half of the screen from the central maxima
The number of bright spot according to the condition for constructive interference is
[tex]n = \frac{d * sin (\theta )}{\lambda}[/tex]
For maximum number of spot [tex]\theta = 90^o[/tex]
So
[tex]n = \frac{2*10^{-3} * sin (90 )}{500 *10^{-9}}[/tex]
[tex]n =4000[/tex]
Now for the both sides plus the central maxima we have
[tex]m_{max} = 2 * n + 1[/tex]
substituting values
[tex]m_{max} = 2 * 4000 + 1[/tex]
[tex]m_{max} = 8001 \ bright \ spots[/tex]
At what temperature (degrees Fahrenheit) is the Fahrenheit scale reading equal to:_____
(a) 3 times that of the Celsius and
(b) 1/5 times that of the Celsius
Answer:
C = 26.67° and F = 80°C = -20° and F = -4°Explanation:
Find:
3 times that of the Celsius and 1/5 times that of the CelsiusComputation:
F = (9/5)C + 32
3 times that of the Celsius
If C = x
So F = 3x
So,
3x = (9/5)x + 32
15x = 9x +160
6x = 160
x = 26.67
So, C = 26.67° and F = 80°
1/5 times that of the Celsius
If C = x
So F = x/5
So,
x/5 = (9/5)x + 32
x = 9x + 160
x = -20
So, C = -20° and F = -4°
Which one of the following actions would make the maxima in the interference pattern from a grating move closer together?
A. Increasing the number of lines per length.
B. Decreasing the number of lines per length.
C. Increasing the distance to the screen.
D. Increasing the wavelength of the laser.
Answer:
Answer:
A. Increasing the number of lines per length.
NASA is giving serious consideration to the concept of solar sailing. A solar sailcraft uses a large, low mass sail and the energy and momentum of sunlight for propulsion.
(a) Should the sail be absorbing or reflective? Why?
(b) How large a sail is necessary to propel a 10000kg
spacecraft against the gravitational force of the sun? Express your result in square kilometers.
(c) Explain why your answer to part (b) is independent of the distance from the sun.
The gravitational constant is G=6.67×10−11m3⋅s−2⋅kg−1.
The mass of the sun is Ms=1.99×1030kg.
Answer:
The complete question is
NASA is giving serious consideration to the concept of solar sailing. A solar sailcraft uses a large, low-mass sail and the energy and momentum of sunlight for propulsion. (a) Should the sail be absorbing or reflective? Why? (b) The total power output of the sun is 3.9 x 10^26 W. How large a sail is necessary to propel a 10,000-kg spacecraft against the gravitational force of the sun? Express your result in square kilometers. (c) Explain why your answer to part (b) is independent of the distance from the sun.
a) The sail should be reflective because, an incident electromagnetic wave, in this case, light wave, impacts twice the energy density on a reflective sail, and hence twice the force on a totally reflective sail as would be impacted on a sail that is totally absorbing.
For totally reflective, F = (2I/c)A ....1
for totally reflective, F = (I/c)A ....2
where I is the intensity of the light
c is the speed of light = 3 x 10^8 m/s
A is the area the sail
b) The intensity of the light from the sun = power/area
==> I = [tex]\frac{3.9*10^{26}}{4\pi r^{2} }[/tex]
where r is the distance from the sun and the sail
The Force from the sail from equation 1 is therefore
[tex]F[/tex] = [tex]\frac{2*3.9*10^{26}*A}{4\pi r^{2} *3*10^{8}}[/tex] = [tex]2.069*10^{17}\frac{A}{r^{2}}[/tex]
gravitational force between the sail and the sun [tex]F_{g}[/tex] = [tex]\frac{GMm}{r^{2}}[/tex]
where
G is the gravitational constant = 6.67 x 10^−11 m^3⋅s−2⋅kg−1.
m is the mass of the sail = 10000 kg
M is the mass of the sun = 1.99 x 10^30 kg.
==> [tex]F_{g}[/tex] = [tex]\frac{6.67*10^{-11}*1.99*10^{30}*10000}{r^{2}}[/tex] = [tex]\frac{1.33*10^{24}}{r^{2}}[/tex]
Equating the forces, we have
[tex]2.069*10^{17}\frac{A}{r^{2}}[/tex] = [tex]\frac{1.33*10^{24}}{r^{2}}[/tex]
the distance cancels out
A = (1.33 x 10^24)/(2.069 x 10^17) = 6428226.196 m^2
==> 6428.2 km^2
c) The force of the solar radiation is proportional to the intensity of the sun from the light, and the intensity is inversely proportional to the square of the distance from the source. Also, the force of gravitation is inversely proportional to the square of the distance, so they both cancel out.
48. A patient presents with a thrombosis in
the popliteal vein. This thrombosis most likely
causes reduction of blood flow in which of the
following veins?
Answer:
the interation blood veins
Explanation:
When a monochromatic light of wavelength 433 nm incident on a double slit of slit separation 6 µm, there are 5 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.9 nm for the same double slit?
Answer:
The number of interference fringes is [tex]n = 3[/tex]
Explanation:
From the question we are told that
The wavelength is [tex]\lambda = 433 \ nm = 433 *10^{-9} \ m[/tex]
The distance of separation is [tex]d = 6 \mu m = 6 *10^{-6} \ m[/tex]
The order of maxima is m = 5
The condition for constructive interference is
[tex]d sin \theta = n \lambda[/tex]
=> [tex]\theta = sin^{-1} [\frac{5 * 433 *10^{-9}}{ 6 *10^{-6}} ][/tex]
=> [tex]\theta = 21.16^o[/tex]
So at
[tex]\lambda_1 = 632.9 nm = 632.9*10^{-9} \ m[/tex]
[tex]6 * 10^{-6} * sin (21.16) = n * 632.9 *10^{-9}[/tex]
=> [tex]n = 3[/tex]
A ball travels with velocity given by [21] [ 2 1 ], with wind blowing in the direction given by [3−4] [ 3 −4 ] with respect to some co-ordinate axes. What is the size of the velocity of the ball in the direction of the wind?
Answer:
2/5 m/s
Explanation:
There are two vectors v and w . Let θ be angle b/w the two vector.
[tex]cos\theta =\frac{\overleftarrow{v}\cdot \overleftarrow{w}}{\left | v \right |\left | w \right |}\\=\frac{6-4}{\sqrt(2^2+1^2)\sqrt(3^2+4^2)} =\frac{2}{5\sqrt(5)}[/tex]
velocity of the ball in direction of the the wind
[tex]\left | vcos\theta \right |\\\left | v \right |cos\theta\\\sqrt(2^2+1^2)\frac{2}{5\sqrt(5)} = \frac{2}{5}[/tex]
The size of the velocity of the ball in the direction of the wind is 2/5 ms.
Calculation of the size of velocity:Since there are two vectors v and w
Also, here we assume θ be angle b/w the two vector.
So
Cos θ = 6-4 / √(2^2 + 1^2) √(3^2 + 4^2)
= 2/5√5
Now the velocity of the ball should be
= √(2^2 + 1^2) 2 ÷ 5√(5)
= 2 /5
hence, The size of the velocity of the ball in the direction of the wind is 2/5 ms.
Learn more about velocity here: https://brainly.com/question/1303810