Answer:
Find f(g(x)) f(x)=7x-8 , g(x)=3x-2. f(x)=7x−8 f ( x ) = 7 x - 8 , g(x)=3x−2 g ( x ) = 3 x - 2. Step 1. Set up the composite result function. f(g(x)) f ( g ...
please mark me as a brainalist
Parts A-D. What is the value of the sample mean as a percent? What is its interpretation? Compute the sample variance and sample standard deviation as a percent as measures of rotelle for the quarterly return for this stock.
The sample mean is 2.1, the sample variance is 212.5% and the standard deviation is 14.57%
What is the sample mean?a. The sample mean can be computed as the average of the quarterly percent total returns:
[tex](11.2 - 20.5 + 13.2 + 12.6 + 9.5 - 5.8 - 17.7 + 14.3) / 8 = 2.1[/tex]
So the sample mean is 2.1%, which can be interpreted as the average quarterly percent total return for the stock over the sample period.
b. The sample variance can be computed using the formula:
[tex]s^2 = sum((x - mean)^2) / (n - 1)[/tex]
where x is each quarterly percent total return, mean is the sample mean, and n is the sample size. Plugging in the values, we get:
[tex]s^2 = (11.2 - 2.1)^2 + (-20.5 - 2.1)^2 + (13.2 - 2.1)^2 + (12.6 - 2.1)^2 + (9.5 - 2.1)^2 + (-5.8 - 2.1)^2 + (-17.7 - 2.1)^2 + (14.3 - 2.1)^2 / (8 - 1) = 212.15[/tex]
So the sample variance is 212.15%. The sample standard deviation can be computed as the square root of the sample variance:
[tex]s = \sqrt(s^2) = \sqrt(212.15) = 14.57[/tex]
So the sample standard deviation is 14.57%.
c. To construct a 95% confidence interval for the population variance, we can use the chi-square distribution with degrees of freedom n - 1 = 7. The upper and lower bounds of the confidence interval can be found using the chi-square distribution table or calculator, as follows:
upper bound = (n - 1) * s^2 / chi-square(0.025, n - 1) = 306.05
lower bound = (n - 1) * s^2 / chi-square(0.975, n - 1) = 91.91
So the 95% confidence interval for the population variance is (91.91, 306.05).
d. To construct a 95% confidence interval for the standard deviation (as percent), we can use the formula:
lower bound = s * √((n - 1) / chi-square(0.975, n - 1))
upper bound = s * √((n - 1) / chi-square(0.025, n - 1))
Plugging in the values, we get:
lower bound = 6.4685%
upper bound = 20.1422%
So the 95% confidence interval for the standard deviation (as percent) is (6.4685%, 20.1422%).
Learn more on sample mean here;
https://brainly.com/question/26941429
#SPJ1
i need the answer to this question
The measure of angle BAC is 55°, which is closest to option B (50°).
What is a tangent angle?The ratio of the length of the side directly opposite an acute angle to the side directly adjacent to the angle is known as the tangent in trigonometry. Only triangles with straight angles can have this.
Let's give the angles shown in the diagram the following labels:
Angle ACD = 55°
Angle ABD = 35°
Angle BCD = 90°
To determine the size of angle ABC, we can use the knowledge that a triangle's total angles equal 180°. Because the straight line formed by angles ABD and BCD, we have:
[tex]Angle ABC = 180° - Angles ABD and BCD.[/tex]
[tex]Angle ABC = 180° - 35° - 90°Angle ABC = 55°[/tex]
Given that triangle ABC has two angles, we can use the knowledge that a triangle's total of angles equals 180° to determine the size of angle BAC:
[tex]Angle BAC = 180° - Angle ABC - Angle ACBAngle BAC = 180° - 55° - 70°Angle BAC = 55°[/tex]
To know more about angle visit:-
https://brainly.com/question/28451077
#SPJ1
It is most similar to option B (50°) when the angle BAC is 55°.
What is a tangent angle?
The tangent in trigonometry is the length of the side directly opposite an acute angle divided by the length of the side directly next to the angle.
This property can only be found in triangles with straight angles.
Let's give the angles shown in the diagram the following labels:
Angle ACD = 55°
Angle ABD = 35°
Angle BCD = 90°
We can use the fact that a triangle's total number of angles is 180° to calculate the size of angle ABC. due to the fact that the straight line created by angles ABD and BCD
Triangle ABC has two angles, so we can use the fact that a triangle's sum of angles is 180° to calculate the size of angle BAC.
Therefore, the BAC measurement is 55°, which is closest to option B's 50°.C is 55°, which is closest to option B (50°).
To know more about angle from the given link:-
brainly.com/question/28451077
#SPJ1
Mia has a collection of vintage action figures that is worth $190. If the collection appreciates at a rate of 6% per year, which equation represents the value of the collection after 5 years?
The equation that represents the value of the collection after 5 years is:
Value of collection after 5 years = 190 x (1 + 0.06)^5
Explanation:
To calculate the value of the collection after 5 years, we need to use the compound interest formula. This formula is represented as A = P x (1 + r)^n, where P is the principal amount (initial value of the collection), r is the rate of interest (in this case, 6%), and n is the number of years (in this case, 5).
Therefore, the equation for the value of the collection after 5 years is:
Value of collection after 5 years = 190 x (1 + 0.06)^5
This can also be written as:
Value of collection after 5 years = 190 x 1.31 (1.31 is the result of (1 + 0.06)^5)
Therefore, the value of the collection after 5 years is $246.90.
Answer: 254.26
Step-by-step explanation:
What is the end behavior of the polynomial function?
Answer: D. As x → -∞, y → -∞.
Step-by-step explanation:
The graph shows the function approaching negative infinity on the x-axis (left side). When the x-axis is decreasing, the y-axis is also decreasing towards negative infinity.
Help pleaseeee!!
On January 1, 2014, the federal minimum wage was $7.25 per hour. Which graph has a slope that best represents this rate?
The horizontal line at $7.25 on the y-axis of the graph is the one with a slope that most accurately depicts the federal minimum wage of $7.25 per hour as of January 1, 2014.
Which federal minimum wage was the highest?Although it varies from state to state, the federally mandated minimum wage in the United States is $7.25 per hour. The District of Columbia had the highest minimum wage in the US as of January 1, 2023, at 16.50 dollars per hour.
How are minimum wages determined?The variable dearness allowance (VDA) component, which takes into account inflationary trends, such as an increase or fall in the Consumer Price Index (CPI), and, if applicable, the housing rent, are included in the computation of the monthly minimum salary.
To know more about graph visit:-
https://brainly.com/question/17267403
#SPJ1
According to Money magazine, Maryland had the highest median annual household income of any state in 2018 at $75,847.† Assume that annual household income in Maryland follows a normal distribution with a median of $75,847 and standard deviation of $33,800.
(a) What is the probability that a household in Maryland has an annual income of $90,000 or more? (Round your answer to four decimal places.)
(b) What is the probability that a household in Maryland has an annual income of $50,000 or less? (Round your answer to four decimal places.)
The required probability that a household in Maryland with annual income of ,
$90,000 or more is equal to 0.3377.
$50,000 or less is equal to 0.2218.
Annual household income in Maryland follows a normal distribution ,
Median = $75,847
Standard deviation = $33,800
Probability of household in Maryland has an annual income of $90,000 or more.
Let X be the random variable representing the annual household income in Maryland.
Then,
find P(X ≥ $90,000).
Standardize the variable X using the formula,
Z = (X - μ) / σ
where μ is the mean (or median, in this case)
And σ is the standard deviation.
Substituting the given values, we get,
Z = (90,000 - 75,847) / 33,800
⇒ Z = 0.4187
Using a standard normal distribution table
greater than 0.4187 as 0.3377.
P(X ≥ $90,000)
= P(Z ≥ 0.4187)
= 0.3377
Probability that a household in Maryland has an annual income of $90,000 or more is 0.3377(rounded to four decimal places).
Probability that a household in Maryland has an annual income of $50,000 or less.
P(X ≤ $50,000).
Standardizing X, we get,
Z = (50,000 - 75,847) / 33,800
⇒ Z = -0.7674
Using a standard normal distribution table
Probability that a standard normal variable is less than -0.7674 as 0.2218. This implies,
P(X ≤ $50,000)
= P(Z ≤ -0.7674)
= 0.2218
Probability that a household in Maryland has an annual income of $50,000 or less is 0.2218.
Therefore, the probability with annual income of $90,000 or more and $50,000 or less is equal to 0.3377 and 0.2218 respectively.
learn more about probability here
brainly.com/question/24111146
#SPJ4
Due today!! Pls helppp
if we that Abby spent 50% of her time on School, 30% on Work, and 20% on Sleep, we can estimate that she spent:
100% - (50% + 30% + 20%) = 100% - 100% = 0% on Other.
What do you mean by spending?If Abby divided her time into four categories (School, Work, Other, and Sleep), the percentage she spent on Other would be 100% less the sum of the percentages she spent on School, Work, and Sleep.
So, assuming Abby spending 50% of her time at school, 30% at work, and 20% sleeping, we can estimate she spent:
On Other, 100% - (50% + 30% + 20%) = 100% - 100% = 0%.
However, this is just a guess based on assumptions about how Abby spent her time. It's difficult to provide a more accurate estimate without more information.
To know more about spending visit:
brainly.com/question/15587297
#SPJ1
The graph of y = 5x2 is
Answer:
................................
Let the Universal Set, S, have 158 elements. A and B are subsets of S. Set A contains 67 elements and Set B contains 65 elements. If Sets A and B have 9 elements in common, how many elements are in neither A nor B?
There are 92 elements in A but not in B.
What are sets?In mathematics, a set is a well-defined collection of objects or elements. Sets are denoted by uppercase symbols, and the number of elements in a finite set is denoted as the cardinality of the set enclosed in curly braces {…}.
Empty or zero quantity:
Items not included. example:
A = {} is a null set.
Finite sets:
The number is limited. example:
A = {1,2,3,4}
Infinite set:
There are myriad elements. example:
A = {x:
x is the set of all integers}
Same sentence:
Two sets with the same members. example:
A = {1,2,5} and B = {2,5,1}:
Set A = Set B
Subset:
A set 'A' is said to be a subset of B if every element of A is also an element of B. example:
If A={1,2} and B={1,2,3,4} then A ⊆ B
Universal set:
A set that consists of all the elements of other sets that exist in the Venn diagram. example:
A={1,2}, B={2,3}, where the universal set is U = {1,2,3}
n(A ∪ B) = n(A – B) + n(A ∩ B) + n(B – A)
Hence, There are 92 elements in A but not in B.
learn more about sets click here:
https://brainly.com/question/13458417
#SPJ1
Please answer Full question
(1) 4y-7z is a binomial.
(2) 8-xy² is a binomial.
(3) ab-a-b can be written as ab - (a + b) which is a binomial.
(4) z²-3z+8 is a trinomial.
What are monomials, binomials and trinomials?In algebra, monomials, binomials, and trinomials are expressions that contain one, two, and three terms, respectively.
A monomial is an algebraic expression with only one term. A monomial can be a number, a variable, or a product of numbers and variables.
A binomial is an algebraic expression with two terms that are connected by a plus or minus sign. For example, 2x + 3y and 4a - 5b are both binomials.
A trinomial is an algebraic expression with three terms that are connected by plus or minus signs.
Learn more about monomial on;
https://brainly.com/question/29047865
#SPJ1
Classify into monomials, binomials and trinomials.
(1) 4y-7z
(1) 8-xy²
(v) ab-a-b
(ix) z2-3z+8
The number 0 is an element of the set of natural numbers.
OA. True
B. False
SUBI
it is false. 0 is not a natural number. it is a whole number
WILL MARK AS BRAINLIEST!!!!!!!!!!!!!!
If "f" is differentiable and f(1) < f(2), then there is a number "c", in the interval (_____, _____) such that f'(c)>_______
If "f" is differentiable and f(1) < f(2), then there is a number "c", in the interval (1, 2) such that f'(c)> 0.
How do we know?Applying the Mean Value Theorem for derivatives, if a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists at least one number c in the interval (a, b) such that:
f'(c) = (f(b) - f(a)) / (b - a)
In the scenario above, we have that f is differentiable, and that f(1) < f(2).
choosing a = 1 and b = 2.
Then applying the Mean Value Theorem, there exists at least one number c in the interval (1, 2) such that:
f'(c) = (f(2) - f(1)) / (2 - 1)
f'(c) = f(2) - f(1)
We have that f(1) < f(2), we have:
f(2) - f(1) > 0
We can conclude by saying that there exists a number c in the interval (1, 2) such that:
f'(c) = f(2) - f(1) > 0
Learn more about Mean Value Theorem at: https://brainly.com/question/19052862
#SPJ1
During a manufacturing process, a metal part in a machine is exposed to varying temperature conditions. The manufacturer of the machine recommends that the temperature of the machine part remain below 131°F. The temperature T in degrees Fahrenheit x minutes after the machine is put into operation is modeled by T=-0.005x^2+0.45x+125. Will the temperature of the part ever reach or exceed 131°F? Use the discriminant of a quadratic equation to decide.
answer options
1. No
2. Yes
From the discriminant of the give quadratic equation, the temperature of the machine will part after 50 minutes of operation.
Will the temperature of the part ever reach or exceed 135°F?The given equation that models the temperature of the machine is;
T = -0.005x² + 0.45x + 125
Let check if there's a value that exists for T = 135
Putting T = 135 in the given equation,
135 = -0.005x² + 0.45x + 125
We can simplify this to;
0.005x² - 0.45x + 10 = 0
From the general form of quadratic equation which is ax² + bx + c = 0, where a = 0.005, b = -0.45, and c = 10.
The discriminant of this quadratic equation is given by:
D = b² - 4ac
= (-0.45)² - 4(0.005)(10)
= 0.2025 - 0.2
= 0.0025
The discriminant of the equation is positive which indicates we have two roots. Therefore, the temperature of the machine part will cross 135°F at some point during the operation.
We can also find the roots of the quadratic equation using the formula:
[tex]x = (-b \± \sqrt(D)) / 2a[/tex]
Substituting the values of a, b, and D, we get:
[tex]x = (0.45 \± \sqrt(0.0025)) / 2(0.005)\\= (0.45 \± 0.05) / 0.01[/tex]
Taking the positive value, we get:
x = 50
Therefore, the temperature of the machine part will cross 135°F after 50 minutes of operation.
Learn more on discriminant here;
https://brainly.com/question/12526527
#SPJ1
The pens in a box are repackaged equally into 9 packs. Each pack has more than 15 pens.
1. Find an inequality to represent n, the possible number of pens in the box.
2. Explain why you chose this inequality.
Therefore, the possible number of pens in the box is p, where p is greater than 135.
What is inequality?Inequality refers to a situation in which there is a difference or disparity between two or more things, usually in terms of value, opportunity, or outcome. Inequality can take many forms, including social, economic, and political inequality.
Inequalities are mathematical expressions that compare two values using the symbols < (less than), > (greater than), ≤ (less than or equal to), or ≥ (greater than or equal to). To solve an inequality, you need to isolate the variable (the unknown quantity) on one side of the inequality symbol and determine the range of values for which the inequality holds true.
Here are some general steps to solve an inequality:
Simplify both sides of the inequality as much as possible. This may involve combining like terms, distributing terms, or factoring.Get all the variable terms on one side of the inequality symbol and all the constant terms on the other side. Remember that when you multiply or divide both sides of an inequality by a negative number, you must reverse the direction of the inequality symbol.Solve for the variable by isolating it on one side of the inequality symbol. If the variable has a coefficient, divide both sides of the inequality by that coefficient.Write down the solution as an inequality. If you have solved for x, the solution will be in the form of x < a or x > b, where a and b are numbers.Check your solution by testing a value in the original inequality that is within the range of the solution. If the inequality holds true for that value, then the solution is correct. If not, then you may need to recheck your work or adjust your solutionby the question.
Let's say there are 'p' pens in the box. Each pack has more than 15 pens, so we can write the inequality:
p/9 > 15
Multiplying both sides by 9, we get:
p > 135
To learn more about inequality:
https://brainly.com/question/30231190
#SPJ1
Help me find the value of x
Answer:
x = 30
Step-by-step explanation:
We know
The three angles must add up to 180°. We know one is 20°, so the other two must add up to 160°.
2x + 3x + 10 = 160
5x + 10 = 160
5x = 150
x = 30
Maximize z = 3x₁ + 5x₂
subject to: x₁ - 5x₂ ≤ 35
3x1 - 4x₂ ≤21
with. X₁ ≥ 0, X₂ ≥ 0.
use simplex method to solve it and find the maximum value
Answer:
See below.
Step-by-step explanation:
We can solve this linear programming problem using the simplex method. We will start by converting the problem into standard form
Maximize z = 3x₁ + 5x₂ + 0s₁ + 0s₂
subject to
x₁ - 5x₂ + s₁ = 35
3x₁ - 4x₂ + s₂ = 21
x₁, x₂, s₁, s₂ ≥ 0
Next, we create the initial tableau
Basis x₁ x₂ s₁ s₂ RHS
s₁ 1 -5 1 0 35
s₂ 3 -4 0 1 21
z -3 -5 0 0 0
We can see that the initial basic variables are s₁ and s₂. We will use the simplex method to find the optimal solution.
Step 1: Choose the most negative coefficient in the bottom row as the pivot element. In this case, it is -5 in the x₂ column.
Basis x₁ x₂ s₁ s₂ RHS
s₁ 1 -5 1 0 35
s₂ 3 -4 0 1 21
z -3 -5 0 0 0
Step 2: Find the row in which the pivot element creates a positive quotient when each element in that row is divided by the pivot element. In this case, we need to find the minimum positive quotient of (35/5) and (21/4). The minimum is (21/4), so we use the second row as the pivot row.
Basis x₁ x₂ s₁ s₂ RHS
s₁ 4/5 0 1/5 1 28/5
x₂ -3/4 1 0 -1/4 -21/4
z 39/4 0 15/4 3/4 105
Step 3: Use row operations to create zeros in the x₂ column.
Basis x₁ x₂ s₁ s₂ RHS
s₁ 1 0 1/4 7/20 49/10
x₂ 0 1 3/16 -1/16 -21/16
z 0 0 39/4 21/4 525/4
The optimal solution is x₁ = 49/10, x₂ = 21/16, and z = 525/4.
Therefore, the maximum value of z is 525/4, which occurs when x₁ = 49/10 and x₂ = 21/16.
Type the correct answer in each box. Assume π = 3.14. Round your answer(s) to the nearest tenth. 90° 30° In this circle, the area of sector COD is 50.24 square units. The radius of the circle is units, and m AB is units.
Therefore, the length of segment AB is approximately 7.4 units.
What is area?Area is a mathematical concept that describes the size of a two-dimensional surface. It is a measure of the amount of space inside a closed shape, such as a rectangle, circle, or triangle, and is typically expressed in square units, such as square feet or square meters. The area of a shape is calculated by multiplying the length of one side or dimension by the length of another side or dimension. For example, the area of a rectangle can be found by multiplying its length by its width.
Here,
To find the radius of the circle, we can use the formula for the area of a sector:
Area of sector = (θ/360) x π x r²
where θ is the central angle of the sector in degrees, r is the radius of the circle, and π is approximately 3.14.
We're given that the area of sector COD is 50.24 square units and the central angle of the sector is 90°. So we can plug in these values and solve for r:
50.24 = (90/360) x 3.14 x r²
50.24 = 0.25 x 3.14 x r²
r² = 50.24 / (0.25 x 3.14)
r² = 201.28
r = √201.28
r ≈ 14.2
Therefore, the radius of the circle is approximately 14.2 units.
Next, we need to find the length of segment AB. Since AB is a chord of the circle, we can use the formula:
AB = 2 x r x sin(θ/2)
where θ is the central angle of the sector in degrees, r is the radius of the circle, and sin() is the sine function.
We're given that the central angle of sector COD is 30°. So we can plug in this value and the radius we found earlier to solve for AB:
AB = 2 x 14.2 x sin(30/2)
AB = 2 x 14.2 x sin(15)
AB ≈ 7.4
To know more about area,
https://brainly.com/question/22469440
#SPJ1
Question 13 (2 points)
Suppose you flip a coin and then roll a die. You record your result. What is the
probability you flip heads or roll a 3?
1/2
3/4
7/12
1
Step-by-step explanation:
a probability is always the ratio
desired cases / totally possible cases
we have 2 possible cases for the coin and 6 possible cases for the die.
so, we have 2×6 = 12 combined possible cases :
heads, 1
heads, 2
heads, 3
heads, 4
heads, 5
heads, 6
tails, 1
tails, 2
tails, 3
tails, 4
tails, 5
tails, 6
out of these 12 cases, which ones (how many) are desired ?
all first 6 plus (tails, 3) = 7 cases
so, the correct probability is
7/12
formally that is calculated :
1/2 × 6/6 + 1/2 × 1/6 = 6/12 + 1/12 = 7/12
the probability to get heads combined with the probability to roll anything on the die, plus the probability to get tails combined with the probability to roll 3.
A bookcase contains 2 statistics books and 5 biology books. If 2 books are chosen at random, the chance that both are statistics books isA 1 / 21B 10 / 21C 11D 21 / 11
If 2 books are chosen at random, then the probability that both are statistics books is (a) 1/21.
The number of statistics book in bookcase is = 2;
The number of biology books in bookcase is = 5;
So, the total number of books is = 7;
The Probability of choosing a statistics book on the first draw is 2/7, since there are 2 statistics books out of a total of 7 books.
After the first book is chosen, there will be 6 books left, including 1 statistics book out of a total of 6 books.
So, the probability of choosing another statistics book on the second draw is 1/6.
In order to find the probability of both events happening together (i.e. choosing 2 statistics books in a row), we multiply the probabilities of each event:
So, P(choosing 2 statistics books) = P(1st book is statistics) × P(2nd book is statistics given that the 1st book was statistics);
⇒ (2/7) × (1/6)
⇒ 1/21
Therefore, the required probability is (a) 1/21.
Learn more about Probability here
https://brainly.com/question/13683807
#SPJ4
The given question is incomplete, the complete question is
A bookcase contains 2 statistics books and 5 biology books. If 2 books are chosen at random, the chance that both are statistics books is
(a) 1/21
(b) 10/21
(c) 11
(d) 21/11
the position vector r describes the path of an object moving in the xy-plane. position vector point r(t)
a) Velocity vector v(t) = i - 2tj, Speed s(t) = sqrt(1 + 4t²), Acceleration vector a(t) = -2j. b) Velocity vector v(1) = i - 2j, Acceleration vector a(1) = -2j
This problem is about finding the velocity, speed, and acceleration vectors of an object moving in the xy-plane, described by a position vector r(t). We can find the velocity vector by taking the derivative of the position vector, and the speed by taking the magnitude of the velocity vector. The acceleration vector can be found by taking the derivative of the velocity vector. We can then evaluate the velocity and acceleration vectors at a given point by plugging in the coordinates of the point. This problem requires basic vector calculus and understanding of the relationship between position, velocity, speed, and acceleration vectors.
Learn more about graphs here: brainly.com/question/17267403
#SPJ4
Complete question is attached below
What is the difference between the questionnaire and an interview?
Answer: Questionnaire refers to a research instrument, in which a series of question, is typed or printed along with the choice of answers, expected to be marked by the respondents, used for survey or statistical study. It consists of aformalisedd set of questions, in a definite order on a form, which are mailed to the respondents or manually delivered to them for answers. The respondents are supposed to read, comprehend and give their responses, in the space provided.
A ‘Pilot Study’ is advised to be conducted to test the questionnaire before using this method. A pilot survey is nothing but a preliminary study or say rehearsal to know the time, cost, efforts, reliability and so forth involved in it.
The interview is a data collection method wherein a direct, in-depth conversation between interviewer and respondent takes place. It is carried out with a purpose like a survey, research, and the like, where both the two parties participate in the one to one interaction. Under this method, oral-verbal stimuli are presented and replied by way of oral-verbal responses.
It is considered as one of the best methods for collecting data because it allows two way exchange of information, the interviewer gets to know about the respondent, and the respondent learns about the interviewer. There are two types of interview:
Personal Interview: A type of interview, wherein there is a face to face question-answer session between the interviewer and interviewee, is conducted.
Telephonic Interview: This method involves contacting the interviewee and asking questions to them on the telephone itself.
Use the power of a power property to simplify the numeric expression.
(91/4)^7/2
Using the power property to simplify the expression (9¹⁺⁴)⁷⁺², we have 9^7/8
Given the expression
(9¹⁺⁴)⁷⁺²
To simplify this expression using the power of a power property, we need to multiply the exponents:
(9¹⁺⁴)⁷⁺² = 9(¹⁺⁴ ˣ ⁷⁺²)
Simplifying the exponents in the parentheses:
(9¹⁺⁴)⁷⁺² = 9⁷⁺⁸ or 9^7/8
Therefore, (9¹⁺⁴)⁷⁺² simplifies to 9^(7/8).
Read more about expression at
https://brainly.com/question/4344214
#SPJ1
What gravitational force does the moon produce on the Earth if their centers are 3.88x108 m apart and the moon has a mass of 7.34x1022 kg?
The gravitational force that the moon produces on the Earth is approximately [tex]1.98 \times 10^{20}\ \mathrm{N}$.[/tex]
What is gravitational force?
Gravitational force is the force of attraction that exists between any two objects in the universe with mass. This force is directly proportional to the masses of the objects and inversely proportional to the square of the distance between their centers.
The gravitational force that the moon produces on the Earth can be calculated using the formula:
[tex]F = G \cdot \frac{m_1 \cdot m_2}{r^2}[/tex]
where:
[tex]G$ = gravitational constant = $6.67430 \times 10^{-11}\ \mathrm{N(m/kg)^2}$[/tex]
[tex]m_1$ = mass of the moon = $7.34 \times 10^{22}\ \mathrm{kg}$[/tex]
[tex]m_2$ = mass of the Earth = $5.97 \times 10^{24}\ \mathrm{kg}$ (approximate)[/tex]
[tex]r$ = distance between the centers of the Earth and the moon = $3.88 \times 10^8\ \mathrm{m}$[/tex]
Substituting these values into the formula, we get:
[tex]F &= 6.67430 \times 10^{-11} \cdot \frac{7.34 \times 10^{22} \cdot 5.97 \times 10^{24}}{(3.88 \times 10^8)^2} \&= 1.98 \times 10^{20}\ \mathrm{N}[/tex]
Therefore, the gravitational force that the moon produces on the Earth is approximately [tex]1.98 \times 10^{20}\ \mathrm{N}$.[/tex]
To learn more about gravitational force visit:
https://brainly.com/question/29328661
#SPJ1
A simple random sample with n = 25 provided a sample mean of 30 and a sample standard deviation of 4. Assume the population is approximately normal. a. Develop a 90% confidence interval for the population mean. b. Develop a 95% confidence interval for the population mean. c. Develop a 99% confidence interval for the population mean. d. What happens to the margin of error and the confidence interval as the confidence level is increased?
Conversely, as the confidence level decreases, the margin of error becomes smaller, and the confidence interval becomes narrower.
What is confidence interval?In statistics, a confidence interval is a range of values that is likely to contain the true value of a population parameter (such as a mean or a proportion), based on a sample from that population. The confidence interval is typically expressed as an interval around a sample statistic, such as a mean or a proportion, and is calculated using a specified level of confidence, typically 90%, 95%, or 99%.
Here,
To develop a confidence interval, we need to use the following formula:
Confidence Interval = sample mean ± margin of error
where the margin of error is calculated as:
Margin of Error = z* (sample standard deviation/ √n)
where z* is the critical value from the standard normal distribution table based on the chosen confidence level.
a. For a 90% confidence interval, the critical value (z*) is 1.645. Thus, the margin of error is:
Margin of Error = 1.645 * (4 / √25) = 1.317
So, the 90% confidence interval for the population mean is:
30 ± 1.317, or (28.683, 31.317)
b. For a 95% confidence interval, the critical value (z*) is 1.96. Thus, the margin of error is:
Margin of Error = 1.96 * (4 / √25) = 1.568
So, the 95% confidence interval for the population mean is:
30 ± 1.568, or (28.432, 31.568)
c. For a 99% confidence interval, the critical value (z*) is 2.576. Thus, the margin of error is:
Margin of Error = 2.576 * (4 / √25) = 2.0656
So, the 99% confidence interval for the population mean is:
30 ± 2.0656, or (27.9344, 32.0656)
d. As the confidence level increases, the margin of error also increases, because we need to be more certain that our interval includes the true population mean. This means that the confidence interval becomes wider as the confidence level increases.
To know more about confidence interval,
https://brainly.com/question/28969535
#SPJ1
What is the slope of the line in the following graph?
Answer:
1/3
Step-by-step explanation:
using rise over run fron the two dots, we can find 2/6, which simplifies down to 1/3
Question 6 of 10
Based only on the information given in the diagram, which congruence
theorems or postulates could be given as reasons why ACDE AOPQ?
Check all that apply.
AA
A. AAS
B. ASA
C. LL
OD. HL
E. LA
F. SAS
Therefore, A, B, C, and F are the proper responses as the congruence theories or postulates based on the data.
what is triangle ?Having three straight sides and three angles where they intersect, a triangle is a closed, two-dimensional shape. It is one of the fundamental geometric shapes and has a number of characteristics that can be used to study and resolve issues that pertain to it. The triangle inequality theory states that the sum of a triangle's interior angles is always 180 degrees, and that the longest side is always the side across from the largest angle. Triangles can be used to solve a wide range of mathematical issues in a variety of disciplines and can be categorised based on the length of their sides and the measurement of their angles.
given
We can use the following congruence theories or postulates based on the data in the diagram:
A. ASA
B. AAS
C. LL (corresponding angles hypothesis)
F. SAS
Therefore, A, B, C, and F are the proper responses as the congruence theories or postulates based on the data.
To know more about triangle visit:
https://brainly.com/question/2773823
#SPJ1
1 cubic meter = _____ cm cube
Answer:
1 cubic meter = 1000000 cm cubed
Step-by-step explanation:
[tex]1m^3*10^6=1000000cm^3[/tex]
Answer:
1 cubic meter = 10000000 cm cube
Two cars, one going due east at the rate of 90 km/hr and the other going to south at the rate of 60 km/hr are traveling toward the intersection of two roads. At what rate the two cars approaching each other at the instant when the first car is 0.2 km and the second car is 0.15 km from the intersection ?
The two cars are approaching each other at a rate of 36 km/hr at the given instant.
We can solve this problem by using the Pythagorean theorem and differentiating with respect to time. Let's call the distance of the first car from the intersection "x" and the distance of the second car from the intersection "y". We want to find the rate at which the two cars are approaching each other, which we'll call "r".
At any moment, the distance between the two cars is the hypotenuse of a right triangle with legs x and y, so we can use the Pythagorean theorem
r^2 = x^2 + y^2
To find the rates of change of x and y, we differentiate both sides of this equation with respect to time
2r(dr/dt) = 2x(dx/dt) + 2y(dy/dt)
Simplifying and plugging in the given values
dr/dt = (x(dx/dt) + y(dy/dt)) / r
dr/dt = (0.2 x 90 + 0.15 x (-60)) / sqrt((0.2)^2 + (0.15)^2)
dr/dt = (18 - 9) / sqrt(0.04 + 0.0225)
dr/dt = 9 / sqrt(0.0625)
dr/dt ≈ 36 km/hr
Learn more about Pythagorean theorem here
brainly.com/question/14930619
#SPJ4
Expand and simplify completely
[tex]x(x+(1+x)+2x)-3(x^2-x+2)[/tex]
Answer:
x² + 4x - 6
Step-by-step explanation:
x(x + (1 + x) + 2x) - 3(x² - x + 2) ← simplify parenthesis on left
= x(x + 1 + x + 2x) - 3(x² - x + 2)
= x(4x + 1) - 3(x² - x + 2) ← distribute parenthesis
= 4x² + x - 3x² + 3x- 6 ← collect like terms
= x² + 4x - 6
Question 15 (2 points)
A standard deck of cards contains 4 suits of the same 13 cards. The contents of a
standard deck are shown below:
Standard deck of 52 cards
4 suits (CLUBS SPADES, HEARTS, DIAMONDS)
13 CLUBS
13 SPADES
13 HEARTS
DIAMONDS
If a card is drawn at random from the deck, what is the probability it is a jack or ten?
0
4/52- 1/13
8/52 = 2/13
48/52- 12/13
Answer: 2/13
Step-by-step explanation:
There are four jacks and four tens in a standard deck of 52 cards. However, the jack of spades and the ten of spades are counted twice since they are both a jack and a ten. Therefore, there are 8 cards that are either a jack or a ten, and the probability of drawing one of these cards at random is:
P(Jack or Ten) = 8/52 = 2/13
So the answer is 2/13.
Step-by-step explanation:
a probability is airways the ratio
desired cases / totally possible cases
in each of the 4 suits there is one Jack and one 10.
that means in the whole deck of cards we have
4×2 = 8 desired cases.
the totally possible cases are the whole deck = 52.
so, the probability to draw a Jack or a Ten is
8/52 = 2/13