for the long life cells we have to connect them in ____ combination​

Answers

Answer 1

Answer:

Parallel combination.

Answer 2

for the long life cells we have to connect them in parallel combination

hope it is helpful to you


Related Questions

Need in hurry important please

Answers

Answer:

I don't see anything on your question?

A certain microscope is provided with objectives that have focal lengths of 20 mm , 4 mm , and 1.4 mm and with eyepieces that have angular magnifications of 5.00 × and 15.0 × . Each objective forms an image 120 mm beyond its second focal point.

Answers

Answer:

Explanation:

Given that:

Focal length for the objective lens = 20 mm, 4 mm, 1.4 mm

For objective lens of focal length f₁ = 20 mm

s₁' = 120 mm + 20 mm = 140 mm

Magnification [tex]m_1 = \dfrac{s'_1}{f_1}[/tex]

[tex]m_1 = \dfrac{140}{20}[/tex]

[tex]m_1 = 7 \ m[/tex]

For objective lens of focal length f₁ = 4 mm

s₁' = 120 mm + 4 mm = 124 mm

[tex]m_1 = \dfrac{s'_1}{f_1}[/tex]

[tex]m_1 = \dfrac{124}{4}[/tex]

[tex]m_1 = 31 \ m[/tex]

For objective lens of focal length f₁ = 1.4 mm

s₁' = 120 mm + 1.4 mm = 121.4 mm

[tex]m_1 = \dfrac{s'_1}{f_1}[/tex]

[tex]m_1 = \dfrac{121.4}{1.4}[/tex]

[tex]m_1 = 86.71 \ m[/tex]

The magnification of the eyepiece is given as:

[tex]m_e = 5X \ and \ m_e = 15X[/tex]

Thus, the largest angular magnification when  [tex]m_1 \ and \ m_e \ are \ large \ is:[/tex]

[tex]M_{large}= (m_1)_{large} \times (m_e)_{large}[/tex]

= 86.71 × 15

= 1300.65

The smallest angular magnification derived when [tex]m_1 \ and \ m_e \ are \ small \ is:[/tex]

[tex]M_{small}= (m_1)_{small} \times (m_e)_{small}[/tex]

= 7 × 5

= 35

The largest magnification will be 1300.65 and the smallest magnification will be 35.

What is magnification?

Magnification is defined as the ratio of the size of the image of an object to the actual size of the object.

Now for objective lens and eyepieces, it is defined as the ratio of the focal length of the objective lens to the focal length of the eyepiece.

It is given in the question:

Focal lengths for the objective lens is = 20 mm, 4 mm, 1.4 mm

now we will calculate the magnification for all three focal lengths of the objective lens.

Also, each objective forms an image 120 mm beyond its second focal point.

(1) For an objective lens of focal length   [tex]f_1=20 \ mm[/tex]

[tex]s_1'=120\ mm +20 \ mm =140\ mm[/tex]

Magnification will be calculated as

[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{140}{20} =7[/tex]

(2) For an objective lens of focal length [tex]f_1= \ 4 \ mm[/tex]

s₁' = 120 mm + 4 mm = 124 mm

[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{124}{4} =31[/tex]

(3) For an objective lens of focal length [tex]f_1=1.4\ mm[/tex]

s₁' = 120 mm + 1.4 mm = 121.4 mm

[tex]m_1=\dfrac{s_1'}{f_1} =\dfrac{121.4}{1.4} =86.71[/tex]

Now the magnification of the eyepiece is given as:

[tex]m_e=5x\ \ \ & \ \ m_e=15x[/tex]

Thus, the largest angular magnification when  

[tex]m_1 = 86.17\ \ \ \ m_e=15x[/tex]

[tex]m_{large}= (m_1)_{large}\times (m_e)_{large}[/tex]

[tex]m_{large}=86.71\times 15=1300.65[/tex]

The smallest angular magnification derived when

[tex]m_1=7\ \ \ \ m_e=5[/tex]

[tex]m_{small}=(m_1)_{small}\times (m_e)_{small}[/tex]

[tex]m_{small}=7\times 5=35[/tex]

Thus the largest magnification will be 1300.65 and the smallest magnification will be 35.

To know more about magnification follow

https://brainly.com/question/1599771

PLEASE HELP ME WITH THIS ONE QUESTION
The half-life of Barium-139 is 4.96 x 10^3 seconds. A sample contains 3.21 x 10^17 nuclei. What is the decay constant for this decay?

Answers

Answer:

[tex]\lambda=1.39\times 10^{-4}\ s^{-1}[/tex]

Explanation:

Given that,

The half-life of Barium-139 is [tex]4.96\times 10^3[/tex]

A sample contains [tex]3.21\times 10^{17}[/tex] nuclei.

We need to find the decay constant for this decay. The formula for half life is given by :

[tex]T_{1/2}=\dfrac{0.693}{\lambda}\\\\\lambda=\dfrac{0.693}{T_{1/2}}[/tex]

Put all the values,

[tex]\lambda=\dfrac{0.693}{4.96\times 10^3}\\\\=1.39\times 10^{-4}\ s^{-1}[/tex]

So, the decay constant is [tex]1.39\times 10^{-4}\ s^{-1}[/tex].

Example 9.1
The Archer
Let us consider the situation proposed at the beginning of
this section. 160kg archer stands at rest on frictionless ice
and fires a 0.50-kg arrow horizontally at 50 m s (Fig. 9.2).
With what velocity does the archer move across the ice after
firing the arrow​

Answers

v1f = -0.16 ms

Explanation:

Use the conservation law of linear momentum:

m1v1i + m2v2i = m1v1f + m2v2f

where

v1i = v2i = 0

m1 = 160 kg

m2 = 0.50 kg

v2f = 50m/s

v1f = ?

So we have

0 = (160 kg)v1f + (0.5 kg)(50 m/s)

v1f = -(25 kg-m/s)/(160 kg)

= -0.16 m/s

Note: the negative sign means that its direction is opposite that of the arrow.

A balloon pops, making a loud noise that startles you. What kind of energy best describes this experience?

A. Thermal Energy
B. Sound Energy
C. Gravitational Energy
D. Radiant Energy

Answers

The correct answer is b

Why is it that, when we observe an extragalactic source whose diameter is about one lightday, we are unlikely to see fluctuations in light output in times shorter than about one day

Answers

yup i defiantly agree 100% with youuuu

The reason why we are unlikely to see fluctuations in light output in extragalactic sources with a diameter of about one light day over timescales shorter than about one day is due to the size and distance of the source, as well as the speed of light.

How to observe extragalactic sources whose diameter is about one light day?

When we observe an extragalactic source with a diameter of about one light day, we are essentially observing light that has traveled a very long distance through space to reach us. This light may have originated from a region of the source that is changing in brightness or emitting intense bursts of light, but by the time the light reaches us, these fluctuations are smeared out over a longer period of time due to the speed of light.

For example, if the source were emitting a burst of light that lasted for only a few hours, by the time that light travelled a distance of one light day (which is about 25 billion miles or 40 billion kilometres), the burst would be spread out over a longer period of time. This is because the light emitted at the beginning of the burst would have already traveled a significant distance away from the light emitted at the end of the burst by the time it reached us. As a result, we would observe the burst as a more gradual increase and decrease in light output over a period of several days, rather than a sharp increase and decrease over a few hours.

In addition, the turbulent interstellar and intergalactic media that the light passes through can also scatter and delay the light, further smearing out any short-term fluctuations in light output. This effect is known as interstellar scintillation and can make it even more difficult to observe short-term variations in the light output of extragalactic sources.

To know more about extragalactic sources follow

https://brainly.com/question/15023361

#SPJ6

En 2.0 s, una particula con aceleración constante a lo largo del eje x se mueve desde x =10 m
hasta x =50 m. La rapidez al final del recorrido es de 10 m/s. ¿Cuál es la aceleración de la partícula?

Answers

The correct response is x23

3. Four charges having charge q are placed at the corners of a square with sides of length L. What is the magnitude of the force acting on any of the charges

Answers

Answer:

Fr = 1.91 * 9*10⁹*q²/L²

Explanation:

Let´s say that the corners of the square are  A B C and D

We are going to find out the force on the charge placed on B  ( the charge placed in the upper right corner.

As all the charges are positive (the same sign), then all the three forces on the charge in B are of rejection.

Force due to charge placed in A

module   Fₓ =  K* q² / L²   in the direction of x

Force due to charge placed in C

module  Fy = K* q²/L²   in the direction of y

Force due to  the charge placed in D

That force will have the direction of the diagonal of the square, and the distance between charges placed in D and A is the length of the diagonal.

d²  =  L²  +  L²  =  2*L²

d  =  √2 * L

The module of the force due to charge place in D

F₄₅ = K*q²/ 2*L²

To get the force we need to add first  Fₓ  and  Fy  

Fx + Fy  =  F₁

module of  F₁ = √ Fx² + Fy²    the direction will be the same as the diagonal of the square then:

F₁   =   √  ( K* q²/L² )²  +   ( K* q²/L² )²

F₁  =  √ 2  *  K*q²/L²

And now we add forces F₁   and F₄₅   to get the net force Fr on charge in point B.

The direction of Fr is the direction of the diagonal and is of rejection

the module is

Fr  =  F₁  *  F₄₅

Fr  =  √ 2  *  K*q²/L²  +   K*q²/ 2*L²

Fr  = ( √ 2 + 0,5 ) * K*q² /L²

K  =  9*10⁹  Nm²C²

Fr = 1.91 * 9*10⁹*q²/L²

We don´t know units of L and q

Computer use ___code to transmit information

Answers

Binary code is the answer

Answer:

binary code is the answer of blank

A motorist travels due North at 90 km/h for 2 hours. She changes direction and travels West at 60 km/for 1 hour.
a) Calculate the average speed of the motorist [4]
b) Calculate the average velocity of the motorist.

Answers

Answer:

a) S =  63.2 km/h

b) V =  63.2 km/h*(-0.316 , 0.949)

Explanation:

Let's define:

North as the positive y-axis

East as the positive x-axis.

Also, remember the relation:

Distance = Time*Speed

Let's assume that she starts at the position (0km, 0km)

Then she travels due North at 90km/h for two hours, then the displacement is

90km/h*2h = 180km to the north

Then the new position is:

(0km, 180km)

Then she travels West at 60km/h for one hour.

Then the distance traveled to the West (negative x-axis) is:

60km/h*1h = 60km to the west

Then the new position is:

(-60km, 180km).

a) The average speed is defined as the quotient between the displacement and the time.

We know that the total time traveled is 3 hours.

And the displacement is the difference between the final position and the initial position.

this is:

D = √( -60km - 0km)^2 + (180km - 0km)^2)=

D = √( (60km)^2 + (180km)^2) = 189.7 km

Then the average speed is:

S = (189.7 km)/(3 h) = 63.2 km/h

b) Now we want to find the average velocity, this will be equal to the average speed times a versor that points from the origin to the direction of the final position.

So, if the final position is (-60km, 180km)

We need to find a vector that represents the same angle, but that is on the unit circle.

Then, if the module of the final position is 189.7 km (as we found above), then the versor is just given by:

(-60km/ 189.7 km, 180km/ 189.7 km)

(-60/189.7 , 180/189.7)

We can just check that the module of the above versor is 1.

[tex]module = \sqrt{(\frac{-60}{189.7} )^2 + (\frac{180}{189.7} )^2} = \frac{1}{189.7}* \sqrt{(-60 )^2 + (180 )^2} = 1[/tex]

Then the average velocity is:

V = 63.2 km/h*(-60/189.7 , 180/189.7)

We can simplify our versor so the velocity equation is easier to read:

V = 63.2 km/h*(-0.316 , 0.949)

How can i prove the conservation of mechanical energy?​

Answers

Answer:

We can also prove the conservation of mechanical energy of a freely falling body by the work-energy theorem, which states that change in kinetic energy of a body is equal to work done on it. i.e. W=ΔK. And ΔE=ΔK+ΔU. Hence the mechanical energy of the body is conserved

Explanation:

A long, straight metal rod has a radius of 5.75 cm and a charge per unit length of 33.3 nC/m. Find the electric field at the following distances from the axis of the rod, where distances are measured perpendicular to the rod's axis.

Answers

Answer:

Explanation:

From the question;

We will make assumptions of certain values since they are not given but the process to achieve the end result will be the same thing.

We are to calculate the following task, i.e. to determine the electric field at the distances:

a)  at 4.75 cm

b)  at 20.5 cm

c) at 125.0 cm

Given that:

the charge (q) = 33.3 nC/m

= 33.3 × 10⁻⁹ c/m

radius of rod = 5.75 cm

a) from the given information, we will realize that the distance lies inside the rod. Provided that there is no charge distribution inside the rod.

Then, the electric field will be zero.

b) The electric field formula [tex]E = \dfrac{kq }{d}[/tex]

[tex]E = \dfrac{9 \times 10^9 \times (33.3 \times 10^{-9}) }{0.205}[/tex]

E = 1461.95 N/C

c) The electric field E is calculated as:

[tex]E = \dfrac{9 \times 10^9 \times (33.3 \times 10^{-9}) }{1.25}[/tex]

E = 239.76 N/C

You want to calculate how long it takes a ball to fall to the ground from a
height of 20 m. Which equation can you use to calculate the time? (Assume
no air resistance.)
O A. vz? = v? +2aAd
B. a =
V₂-vi
At
O c. At=V1
4
a
O D. At=
2Ad
a

Answers

If a person wants to calculate the length of time it takes for a ball to fall from a height of 20m, the correct equation that they should use is:

D. Δt= √2Δd/a

What is the equation for finding the length of time for a free fall?

The free fall formula should be used to obtain the length of time that it takes for a ball to fall from a given height. This formula also factors the height or distance from which the fall occurred and this is denoted by the letter d. The small letter 'a' is denotative of acceleration due to gravity and this is a constant pegged at -9.98 m/s².

So, the change in height is obtained and multiplied by two. This is further divided by the acceleration and the square root of the derived answer translates to the time taken for the ball to fall from the height of 20m. Of all the options listed, option D represents the correct equation.

Learn more about free fall here:

https://brainly.com/question/12167131

#SPJ1

During one trial, the acceleration is 2m/s^2 to the right. What calculation will give the tensions in actin filaments during this trial

Answers

Answer: hello your question is poorly written attached below is the complete question

answer :

TA = 1.6*10^-24 * 60 * 2,  TB = 1.6*10^-24 * ( 60 + 30 ) * 2  -- ( option 1 )

Explanation:

a = 2m/s^2

Ta = m₁ a = 60 * 1.6 * 10^-24 * 2 ц

Tb - Ta = m₂ a

∴ Tb = m₂ a  + Ta

       = ( 30 * 1.6 * 10^-24 * 2 ) +  ( 60 * 1.6 * 10^-24 * 2 )

= ( 30 + 60 ) * 1.6 * 10^-24 * 2 ц

PLEASE HELP!! URGENTT!

Answers

Answer:

120 Newton

Explanation:

Given the following data;

Mass = 12 kg

Angle = 4°

We know that acceleration due to gravity is equal to 10 m/s

To find the minimum force to stop the block from sliding;

Force = mgCos(d)

Where;

m is the mass of an object.

g is the acceleration due to gravity.

d is the angle of inclination (theta).

Substituting into the formula we have;

F = 12*10*Cos(4°)

F = 120 * 0.9976

F = 119.71 ≈ 120 Newton

One end of a horizontal spring with the spring constant 1900 N/m is attached to the wall, the other end is attached to a block of mass 1.15 kg. Initially, the spring is compressed 4.5 cm. When released, the spring pushes the block away and is no longer in contact with the block. The block slides along a horizontal frictionless plane.
a/ Compute the maximum speed of the block.
b/ The block goes off the edge of the plane and falls down from the plane to reach the floor with speed of
7 m/s. How high is the plane with respect to the floor?

Answers

(a) When the spring is compressed 4.5 cm = 0.045 m, it exerts a restoring force on the block of magnitude

F = (1900 N/m) (0.045 m) = 85.5 N

so that at the moment the block is released, this force accelerates the block with magnitude a such that

85.5 N = (1.15 kg) a   ==>   a = (85.5 N) / (1.15 kg) ≈ 74.3 m/s²

The block reaches its maximum speed at the spring's equilbrium point, and this speed v is such that

v ² = 2 (74.3 m/s²) (0.045 m)   ==>   v = √(2 (74.3 m/s²) (0.045 m)) ≈ 2.59 m/s

(b) There is no friction between the block and plane, so the block maintains this speed as it slides over the edge. At that point, it's essentially in free fall, so if y is the height of the plane, then

(7 m/s)² - (2.59 m/s)² = 2gy   ==>   y = ((7 m/s)² - (2.59 m/s)²) / (2g) ≈ 2.16 m

Can anyone help
Me please the question is on the photo that I attached it to

Answers

Answer:

2.8 MW

Explanation:

There are 7 wind turbines in the wind farm as shown in the diagram. Thus, the energy output by one turbine is 1/7 if the total energy output. So, 19.6/7=2.8MW

who is corazon aquino? ​

Answers

Answer:

Maria Corazon Sumulong Cojuangco Aquino, popularly known as Cory Aquino, was a Filipino politician who served as the 11th President of the Philippines, the first woman to hold that office.

Answer:

Former President of the Philippines

Explanation:

The steps to determine the sum are shown. (6.74x104)+(8.95 x 104) Step 1. Rearrange the expression: (6.74+8.95) 104 Step 2. Add the coefficients: (15.69) 104 Step 3. Write in scientific notation: 1.569x 10 What is the value of k in Step 3? =​

Answers

Answer:

We want to solve the sum:

6.74*10⁴ + 8.95*10⁴

first, we take the common factor 10⁴ out, so we get:

(6.74 + 8.95)*10⁴

Now we solve the sum:

(15.66)*10⁴

Now we want to rewrite it in exponential form, wo we can rewrite it as:

(15.66)*10⁴ = (1.566*10)*10⁴ = (1.566)*10*10⁴ = (1.566)*10⁴⁺¹ = 1.566*10⁵

k = 5.

The equation of damped oscillations is given in the form x=0.05e^-0.25sin½πt (m). Find the velocity of an oscillating point at the moments of time: 0, T, 2T, 3T and 4T.​

Answers

Explanation:

The logarithmic damping decrement of a mathematical pendulum is DeltaT=0.5. How will the amplitude of oscillations decrease during one full oscillation of the pendulum

how can the starch be removed from the leaves of potted plants​

Answers

Answer:

Explanation:

There are two main ways to de-starch leaves of a plant - the 'Light Exclusion' Method and the 'Carbon Dioxide Deprivation' Method. The 'Light Exclusion' method is a simpler procedure and is used often. Leaves can be destarched by depriving them of light for an extended period of time, usually 24-48 hours.

You throw a stone straight down from the top of a tall tower. It leaves your hand moving at 8.00 m/s, Air resistance can be neglected. Take the positive -direction to be upward, and choose y 0 to be the point where the stone leaves your hand. Find the stone's position 1.50s after it leaves your hand.
Express your answer with the appropriate units.
Find the y-component of the stone's velocity 1.50 s after it leaves your hand. Express your answer with t0he appropriate units.

Answers

Answer:

The velocity after 1.5 s is 22.7 m/s downwards.

Explanation:

Initial velocity = - 8 m/s

acceleration, a = - 9.8 m/s2

time, t = 1.5 s

Use first equation of motion

v = u + at

v = - 8 - 9.8 x 1.5

v = - 8 - 14.7

v = - 22.7 m/s  

Thus, the velocity after 1.5 s is 22.7 m/s downwards.

From 2 King 6:1-6, one of the disciples of Elisha was cutting a tree and the ax head fell into the water. While we do not know how high the ax head was when it fell into the water, we will work through a physics example of the ax head's vertical motion as if it were dropped into the water. ( Due date 09/07)
Write your name and date. The due date of this assignment is the height the ax head falls from in meters into the water. For example, if the due date is July 15, then the ax head fell 15 meters to the water.
Write Newton’s 2nd Law in Equation Form.
Write the quantity and units of average gravitational acceleration on the surface of Earth.
Given the ax head mentioned in the opening portion with the height being equal in numerical value of the due day of this assignment. How long does it take for the ax to fall to the river surface?
Compute the final speed of the ax when it hits the water.

Answers

Answer:

time of fall is 1.75 s and the velocity with which it strikes the water is 17.15 m/s.

Explanation:

Height, h =  15 m

Newton's second law

Force = mass x acceleration

The unit of gravitational force is Newton and the value is m x g.

where, m is the mas and g is the acceleration due to gravity.  

Let the time of fall is t.

Use second equation of motion

[tex]s= u t +0.5 at^2\\\\15 = 0 +0.5\times 9.8\times t^{2}\\\\t = 1.75 s[/tex]

Let the final speed is v.

Use third equation of motion

[tex]v^2 = u^2 + 2 a s\\\\v^2 = 0 + 2 \times 9.8\times 15\\\\v =17.15 m/s[/tex]

Consider a sample containing 1.70 mol of an ideal diatomic gas.
(a) Assuming the molecules rotate but do not vibrate, find the total heat capacity of the sample at constant volume. nCv = J/K
(b) Assuming the molecules rotate but do not vibrate, find the total heat capacity of the sample at constant pressure. nCp = J/K
(c) Assuming the molecules both rotate and vibrate, find the total heat capacity of the sample at constant volume. nCv = J/K
(d) Assuming the molecules both rotate and vibrate, find the total heat capacity of the sample at constant pressure. nCp = J/K

Answers

I don't know

because I don't know

Mention & Instrument used to measure
the mass of the body.

Answers

Answer:

a scale is used to measure the mass of the body

define emperical formula and what is the dimensional formula of force and energy​

Answers

Answer:

An empirical formula represents the simplest whole number ratio of various atoms present in a compound.The dimensional formula of force is [[tex]MLT^{-2}[/tex]]The dimensional formula of energy is [[tex]ML^{2} T^{-2}[/tex]]

The liquid and gaseous state of hydrogen are in thermal equilibrium at 20.3 K. Even though it is on the point of condensation, model the gas as ideal and determine the most probable speed of the molecules (in m/s). What If? At what temperature (in K) would an atom of xenon in a canister of xenon gas have the same most probable speed as the hydrogen in thermal equilibrium at 20.3 K?

Answers

Answer:

a) the most probable speed of the molecules is 409.2 m/s

b) required temperature of xenon is 1322 K

Explanation:

Given the data in the question;

a)

Maximum probable speed of hydrogen molecule (H₂)

[tex]V_{H_2[/tex] = √( 2RT / [tex]M_{H_2[/tex] )

where R = 8.314 m³.Pa.K⁻¹.mol⁻¹ and given that T = 20.3 K

molar mass of H₂; [tex]M_{H_2[/tex] = 2.01588 g/mol

we substitute

[tex]V_{H_2[/tex] = √( (2 × 8.314 × 20.3 ) / 2.01588 × 10⁻³  )

[tex]V_{H_2[/tex] = √( 337.5484 / 2.01588 × 10⁻³  )

[tex]V_{H_2[/tex] = 409.2 m/s

Therefore, the most probable speed of the molecules is 409.2 m/s

b)

Temperature of xenon  = ?

Temperature of hydrogen = 20.3 K

we know that;

T = (Vxe² × Mxe) / 2R

molar mass of xenon; Mxe = 131.292 g/mol

so we substitute

T = ( (409.2)² × 131.292 × 10⁻³) / 2( 8.314  )

T = 21984.14167 / 16.628

T = 1322 K

Therefore, required temperature of xenon is 1322 K

At the start of a basketball game, a referee tosses a basketball straight into the air by giving it some initial speed. After being given that speed, the ball reaches a maximum height of 4.35 m above where it started. Using conservation of energy, find the height of the ball when it has a speed of 2.5 m/s.

Answers

Answer:

0.32 m.

Explanation:

To solve this problem, we must recognise that:

1. At the maximum height, the velocity of the ball is zero.

2. When the velocity of the ball is 2.5 m/s above the ground, it is assumed that the potential energy and kinetic energy of the ball are the same.

With the above information in mind, we shall determine the height of the ball when it has a speed of 2.5 m/s. This can be obtained as follow:

Mass (m) = constant

Acceleration due to gravity (g) = 9.8 m/s²

Velocity (v) = 2.5 m/s

Height (h) =?

PE = KE

Recall:

PE = mgh

KE = ½mv²

Thus,

PE = KE

mgh = ½mv²

Cancel m from both side

gh = ½v²

9.8 × h = ½ × 2.5²

9.8 × h = ½ × 6.25

9.8 × h = 3.125

Divide both side by 9.8

h = 3.125 / 9.8

h = 0.32 m

Thus, the height of the ball when it has a speed of 2.5 m/s is 0.32 m.

A horizontal, uniform board of weight 125 N and length 4 m is supported by vertical chains at each end. A person weighing 500 N is sitting on the board. The tension in the right chain is 250 N. How far from the left end of the board is the person sitting

Answers

Answer:

the person  is sitting 1.5 m from the left end of the board

Explanation:

Given the data in the question;

Wb = 125 N

Wm = 500 N

T₂ = 250 N

Now, we know that;

T₁ + T₂ = Wb + Wm

T₁ + 250 = 125 + 500

T₁ = 125 + 500 - 250

T₁ = 375 N

so tension of the left chain is 375 N.

Now, taking torque about the left end

500 × d + 125 × 2 = 250 × 4

500d + 250 = 1000

500d = 1000 - 250

500d = 750

d = 750 / 500

d = 1.5 m

Therefore, the person  is sitting 1.5 m from the left end of the board.

scripture union was founded by who in what year​

Answers

Answer:

Josiah Spiers in 1867 was when scripture union was founded

Other Questions
if 3 /5 of a class read 4 or more how man students read three books what is the value of x. The NIMS Management Characteristic of Chain of Command and Unity of Command means that each person: The illegal activicty is a conspiracy to boycott a firm and drive it out of business. This is know as? Which explicit formula is equivalent to a1 = 1, an=4an-1?A. an = 1(4)^n-1B. an = 4(4)^n-1C. an = 4(1)^n1D. an = 1 + (n - 1)4 Tony is building a new silo to store corn as animal feed. It will be a cylinder topped with a half-sphere, and must store 21 000 t of corn. The entire silo can be filled with corn. Tony wants to minimize the surface area of the silo to reduce materials and paint costs. He has the following information: 1 cubic m of corn has a mass of 700 kg. Building costs are $8/m2, taxes included. Paint comes in 3.8 L cans. Each can covers 40 sq m and costs $35, taxes included. Corn costs $140 per tonne ($140/t), taxes included. What is the total cost to build, paint, and fill a silo with the least surface area? 5. What process happens when rocks break down due to reaction with water,carbon dioxide, oxygen and organic acids?A. Biological EngineeringB. Chemical EngineeringC. Electrical EngineeringD. Mechanical EngineeringIf your score issted by the ever4- 5 Very good! You may still read the module but you are alreadyknowledgeable with the topics that we are to discuss.2-3 Good! Go over the items that you find difficult and then you may proceedto the lessons in this module that you don't understand. .to Use the information provided in the journal entry to post the transaction to the t-account. Post in DR/CR order.Date Accounts and Explanation Debit Credit Nov. 1 Cash 45,000 Common Stock 45,000 Received cash from selling shares of stock Date Accounts and Explanation Debit Credit Nov. 4 Truck 21,200 Notes Payable 21,200 Bought a compary truck by signing Date Accounts and Explanation Debit Credit Nov. 8 Salaries Expense 14,500 Cash 14,500 Paid cash for salaries ,500 Date Accounts and Explanation Debit Credit Nov. 12 Office Supplies 9,200 Accounts Payable 9,200 Purchased office supplies on account Date Accounts and Explanation Debit Credit Nov. 13 Cash 7,500 Unearned Revenue 7,500 Collected cash for future services Date Accounts and Explanation Debit Credit Nov. 12 Office Supplies 9,200 Accounts Payable 9,200 Purchased office supplies on account Date Accounts and Explanation Debit Credit Nov. 13 Cash 7,500 Unearned Revenue 7,500 Collected cash for future services system. Construct an ER diagram for keeping records for exam section of a college. Help................... so I will pay pal $45 you if your welling to do all my social studies assignments Identify the angle or side that is common to SUT and SVT. plzz help I will mark brainliesttttt Jasmine bought a new IPhone for $1000. The value of the phone depreciates 9% each year. What will the phone be worth after 4 years? Give me three reasons why yemen is in genocide question about weather no links because someone gave me a video of rick roll Can yall help me?! :) 10 All of the following types of wildlife are found in the High Plains except: A- DeerB - Black bearsC - TurkeyD - Buffalo ill the blanks with the correct direct and indirect object pronouns.There are two parts to this verb and therefore there are two blanks.Ellos dan las revistas a nosotros. Ellos --------- ---------- dan The perimeter of triangle ABC is 56 cmThe length of AB is 4x - 4 degrees; 2x + 6 degrees; 70 degrees B A A 16 B of these 18 cm D 5 E 20 cm