The equilibrium constant Keq is 640.86 and the equilibrium constant KP is 0.0198 for the given reaction at 298 K.
How do you calculate the values of Keq and KP for this system?The balanced chemical equation for the given chemical reaction is:
2NO(g) + 2H₂(g) ⇌ N₂(g) + 2H₂O(g)
where ⇌ indicates a state of equilibrium.
The equilibrium concentrations are:
[NO] = 0.0081 M
[H₂] = 4.1 × 10⁻⁵ M
[N₂] = 5.3 × 10⁻² M
[H₂O] = 2.9 × 10⁻³ M
The equilibrium constant, Keq, is given by:
Keq = [N₂][H₂O]² / [NO]²[H₂]²
Substituting the given values:
Keq = (5.3 × 10⁻²) (2.9 × 10⁻³)² / (0.0081)² (4.1 × 10⁻⁵)²
Keq = 640.86
The equilibrium constant in terms of partial pressures, KP, is related to Keq as follows:
KP = Keq(RT)^Δn
where R is the gas constant, T is the temperature in Kelvin, and Δn is the difference between the total number of moles of gaseous products and the total number of moles of gaseous reactants.
For the given reaction:
Δn = (1 + 2) − (2 + 2) = −1
Substituting the values:
KP = 640.86 (0.08206)(298)⁻¹
KP = 0.0198
Therefore, the equilibrium constant Keq is 640.86 and the equilibrium constant KP is 0.0198 for the given reaction at 298 K.
To know more about equilibrium constant, visit:
https://brainly.com/question/15118952
#SPJ1
Identify the Lewis acid and the Lewis base in each the following reactions. (Omit states of matter.) a. B(OH)2(aq) + H2O(l) + B(OH)4 - (aq) + H+ (aq) Acid: Base: b. H2O(1) + CN- (aq) + HCN(aq) + OH- (aq) Acid: Base: C. HgI,(s) +21+ (aq) → Hg1,2(aq) Acid: Base:
Base: Water, b. [tex]HCN[/tex] Acid Base [tex]OH-[/tex] , c. Base: I- Acid:[tex]HgI2[/tex] . Chemical substances known as acids have the ability to donate a proton [tex](H+)[/tex] to a base or another molecule.
Chemical substances known as acids have the ability to donate a proton [tex](H+)[/tex] to a base or another molecule. They have a sour flavour, have the power to dissolve metals, and can make litmus paper turn red. On the pH scale, where 7 is neutral and lower numbers indicate higher acidity, acids have a pH below 7. Hydrochloric acid, sulfuric acid, and acetic acid are a few typical examples of acids. Acids are essential for many chemical processes, such as digestion, the creation of energy, and the synthesis of numerous significant chemicals. Also, they are employed in a number of sectors, such as industry, food production, and agriculture.
Learn more about Acid Base here:
https://brainly.com/question/15717190
#SPJ4
A chemist must dilute 93.1 mL of 7.79 of uM aqueous mercury (I) chloride solution until the concentration falls to 3.00 uM. She’ll do this by adding distilled water to the solution until it reaches a certain final volume. Calculate the final volume in liters.
Taking into account the definition of dilution, if chemist must dilute 93.1 mL of 7.79 of uM aqueous mercury (I) chloride solution until the concentration falls to 3.00 uM, the final volume is 0.24175 L.
Definition of dilutionDilution is a procedure by which the concentration of a solution is lowered, usually with the addition of a diluent.
In a dilution the amount of solute does not change, but as more solvent is added, the concentration of the solute decreases, as the volume of the solution increases.
A dilution is mathematically expressed as:
Ci×Vi = Cf×Vf
where
Ci: initial concentrationVi: initial volumeCf: final concentrationVf: final volumeFinal volumeIn this case, you know:
Ci= 7.79 uMVi= 93.1 mLCf= 3 uMVf= ?Replacing in the definition of dilution:
7.79 uM× 93.1 mL= 3 uM× Vf
Solving:
(7.79 uM× 93.1 mL)÷ 3 uM= Vf
241.75 mL= 0.24175 L = Vf (being 1000 mL= 1 L)
In summary, the final volume is 0.24175 L.
Learn more about dilution:
brainly.com/question/6692004
#SPJ1
Calculate Delta H r* n for Ca(s) + 1/2 * O_{2}(g) + C*O_{2}(g) -> CaC*O_{3}(s)
a. -813.4 kJ. enthalpy of the reaction is -813.4 kJ
One of the characteristics of a thermodynamic system is enthalpy, which is calculated by multiplying the internal energy of the system by the sum of its pressure and volume. The total enthalpy of a system cannot be directly calculated because the internal energy's components are either unknown, hard to access, or unimportant to thermodynamics.The overall reaction can be represented as: [tex]Ca(s) +\frac{ 1}{2}O_2(g) + CO2(g) \rightarrow CaCO_3(s).[/tex]
The reaction enthalpy [tex](\Delta H_{rxn})[/tex]is the result of adding the reaction's separate enthalpies.The enthalpy of each of the individual reactions is given as:
[tex]Ca(s) + \frac{1}{2}0_2(g) \rightarrow Cao(s) \Delta H_{rxn} = -635.1 kJ CaCO_3(s) \rightarrow Cao(s) + CO2(g) \Delta H_{rxn} = 178.3 kJ[/tex]
Therefore, the overall enthalpy change for the reaction is given as:
[tex]\Delta H_{rxn} = \Delta H_{rxn}(Ca(s) +\frac{ 1}{2}0_2(g) \rightarrow Cao(s)) +\Delta H_{rxn} (CaCO_3(s) \rightarrow Cao(s) + CO2(g))[/tex]
[tex]\Delta H_{rxn} = -635.1 kJ + 178.3 kJ \Delta H_{rxn} = -813.4 kJ[/tex]
Therefore,The reaction's enthalpy is -813.4 kJ.
learn more about enthalpy Refer:brainly.com/question/13996238
#SPJ1
complete question:Calculate delta Hrxn for Ca(s) + 1/202(g) + CO2(g) => CaCO3(s) given the following set of reactions: Ca(s) + 1/202(g) => Cao(s) delta Hrxn = -635.1 kJ CaCO3(s) => Cao(s) + CO2(g) delta Hrxn = 178.3 kJ a. -813.4 kJ
b. -456.8 kJ
c. 813.4 kJ
d 456.8 kJ
e. None of these is within 5% of the correct answer.
Which of the following groups of substances involve the use of chemicals? Indicate all that apply
All of the groups of substances involve the use of chemicals from the question that we have here.
What are chemicals?Chemicals are essential to life and to many industries, including agriculture, medicine, manufacturing, and technology. They can be found in everyday objects such as food, clothing, electronics, and cleaning products.
Chemicals can be classified into various categories based on their properties, chemical structure, and uses. Some common categories of chemicals include:
Elements: Pure substances that cannot be broken down into simpler substances. Examples include carbon, oxygen, and gold.
Compounds: Substances composed of two or more elements chemically bonded together. Examples include water (H2O) and table salt (NaCl).
Read more on chemicals here:https://brainly.com/question/11231920
#SPJ1
Which of the following groups of substances involve the use of chemicals? Indicate all that apply.
Check all that apply.
Which of the following groups of substances involve the use of chemicals? Indicate all that apply.Check all that apply.
A light-weight bicycle frame, food packaging, a car exhaust catalytic converter
Soap, shampoo, washing powder
Antiseptic cream, pain killers, energy drinks
Paints, printer toner, food coloring
Computer displays, LED lights, barcode readers
molarity of a solution that contains 29.4 grams of NaCl in 250 ml of water?
Answer:
2.16 M
Explanation:
The molarity of the solution is 2.16 M. To calculate the molarity, you need to first determine the number of moles: 29.4 grams of NaCl is equal to 0.737 moles. Then, divide the number of moles, 0.737, by the volume of the solution, which is 250 mL. Multiplying the result by 1000 gives the molarity, which is 2.16 M.
yw
For the partially completed Lewis structures, pick the correct Lewis structure.
How many Valence Electrons total overall?
The correct Lewis structures of the compounds that we have in the question have been shown in the images attached.
What is the Lewis structure?A Lewis structure is a diagram that shows the bonding between atoms in a molecule and the arrangement of electrons around the atoms. It is also known as a Lewis dot structure, Lewis dot diagram, or electron dot structure.
Lewis structures are useful in predicting the geometry of molecules and determining the polarity of molecules. They are also helpful in understanding the reactivity of molecules and how they interact with other molecules.
Learn more about Lewis structure:https://brainly.com/question/20300458
#SPJ1
what does 2NaOH equal
Using C2H4 + 3 O2 -> 2 CO2 + 2 H2O. If 20 moles of fuel are combusted in the above equation, how many moles of CO2 are produced?
18.35 mL of a solution of the acid H₂C₂O4 is titrated, and 58.20 mL of 0.4700-M NaOH is required to reach the equivalence point.
Calculate the original concentration of the acid solution.
The original concentration of the H₂C₂O4 solution is 0.7455 mol/L.
What is the original concentration of the acid solution?The balanced chemical equation for the reaction between H₂C₂O4 and NaOH is:
H₂C₂O4 + 2NaOH → Na₂C₂O₄ + 2H₂O
From this equation, we can see that the acid reacts with the base in a 1:2 ratio, meaning that one mole of H₂C₂O4 will react with two moles of NaOH.
To find the original concentration of the acid solution, we need to use the formula for calculating molarity:
Molarity = moles of solute / volume of solution (in liters)
We can start by calculating the number of moles of NaOH used in the titration:
moles of NaOH = Molarity x volume of NaOH used (in liters)
moles of NaOH = 0.4700 mol/L x 0.05820 L
moles of NaOH = 0.027354 moles
Since the acid and base react in a 1:2 ratio, we know that the number of moles of H₂C₂O4 is half the number of moles of NaOH used:
moles of H₂C₂O4 = 0.027354 moles / 2
moles of H₂C₂O4 = 0.013677 moles
Now we can use the formula for molarity to calculate the original concentration of the acid solution:
Molarity of H₂C₂O4 = moles of H₂C₂O4 / volume of H₂C₂O4 used (in liters)
Molarity of H₂C₂O4 = 0.013677 moles / 0.01835 L
Molarity of H₂C₂O4 = 0.7455 mol/L
Learn more about concentration here: https://brainly.com/question/26255204
#SPJ1
Identify each of the following orbitals, and determine the n and quantum numbers. Explain your answers.
(a) one radial node the Number of radial nodes = n - l - 1
And number of angular nodes = l
n = 3 and l = 1
Orbital is 3p.
(b) It has zero angular node hence s-orbital and there is 1 radial node . 1 = n - 0 - 1 ; n = 2 and l = 0
The orbital is 2s.
(c) the shape of the orbital is that of dz². There is two angular nodes and there is no radial node.
n = 3 and l = 2
Hence the orbital is 3dz².
What is radial node?In atomic physics, a radial node is a point in space where the probability density of finding an electron in an atom is zero. It is a type of nodal plane that occurs in atomic orbitals, which are regions of space where electrons are most likely to be found.
Radial nodes occur in the radial distribution function of an atomic orbital, which describes the probability density of finding an electron at a given distance from the nucleus. The number of radial nodes in an atomic orbital is equal to n - l - 1, where n is the principal quantum number and l is the azimuthal quantum number.
Radial nodes represent regions of space where the radial wave function of the electron changes sign.
To know more about electrons, visit:
https://brainly.com/question/12001116
#SPJ1
Calculate the hydronium ion concentration, [H3O+], for a solution with a pH of 6.82.
[H₂0¹] =
M
The hydronium ion concentration, [H+] of a solution with a pH of 6.82 is 1.51 × 10-⁷ M.
How to calculate hydrogen ion concentration?The hydrogen or hydronium ion concentration of a solution can be calculated from the pH using the following formula;
pH = - log {H+}
[H+] = 10−pH
by exponentiating both sides with base 10, we can "undo" the common logarithm.
{H+} = 10-⁶.⁸²
{H+} = 0.000000151356
[H+] = 1.51 × 10-⁷ M
Therefore, the hydronium ion concentration with a pH of 6.82 is 1.51 × 10-⁷ M.
Learn more about pH at: https://brainly.com/question/8065527
#SPJ1
Need BIO help with both questions
Answer:
6. The light being reflected off changes the color shown
7. The bottom, the sugar looses its positive charge
Explanation:
add curved arrows to show the mechanism of the propagation steps to form each monochlorination product shown.
To form each of the monochlorination products shown, you will need to draw curved arrows that demonstrate the propagation steps. The first step is when a chlorine radical combines with the double bond to form a chlorine radical cation, which then donates an electron to the double bond.
This results in the formation of two radical chlorides, one on each carbon atom. These radicals then combine with two hydrogen atoms to form the monochlorination product, completing the reaction.The curved arrows for this process should be drawn as follows:
An arrow pointing from the chlorine radical to the double bond, representing the attack of the radical all arrows have been drawn, the monochlorination product has been formed. The mechanism of propagation steps to form each monochlorination product is shown in the following reaction:To represent this reaction, you can draw a curved arrow to show the movement of electrons from the bond to the chlorine. The arrow should start from the carbon-carbon double bond and point towards the chlorine.
Then, another curved arrow can be drawn to represent the formation of the C-Cl bond. The arrow should start from the chlorine and point towards the carbon with the unpaired electron.This process can be repeated to form the second monochlorination product. The following diagram shows the mechanism of the propagation steps:Here, you can see that the curved arrows are used to represent the movement of electrons during the reaction. The arrows point towards the atom that is gaining the electrons.
For more such questions on radical
https://brainly.com/question/289555
#SPJ11
what is the formula for co3+ and se2-?
The formula for Co3+ is Co3+ because it represents the ion of cobalt that has lost three electrons, leaving it with a 3+ charge.
What is chemical formula and how they are formed ?
A chemical formula is a symbolic representation of a chemical compound that shows the types of elements present in the compound and the relative number of atoms of each element. For example, the chemical formula for water is H2O, which indicates that it is made up of two hydrogen atoms and one oxygen atom.
Chemical formulas are formed by identifying the elements that make up a compound and determining the relative number of each element in the compound. The number of each element is represented by a subscript following the chemical symbol of the element. For example, the chemical formula for methane is CH4, which indicates that there is one carbon atom and four hydrogen atoms in each molecule of methane.
The formula for Se2- is Se2- because it represents the ion of selenium that has gained two electrons, giving it a 2- charge.
To know more about reaction visit :-
https://brainly.com/question/11231920
#SPJ1
draw a mechanism showing the penta-coordinate intermediate and the formation of the phosphorylated intermediate (which is an anhydride)
The formation of the phosphorylated intermediate (an anhydride) involves the formation of a penta-coordinate intermediate. This intermediate is formed by a nucleophilic attack of the sulfur on the phosphorus atom of the phosphate group.
In this mechanism, the sulfur atom of the sulfate group nucleophilically attacks the phosphorus atom of the phosphate group to form a penta-coordinate intermediate. This intermediate then rearranges to form a phosphorylated intermediate, which is an anhydride.
Mechanism showing the penta-coordinate intermediate and the formation of the phosphorylated intermediate are given as follows:
Step 1: Alkyl Phosphate Formation : The first step of the mechanism includes the formation of an alkyl phosphate. A proton is abstracted by OH− from the phosphate group to create the alkyl phosphate. The base catalyzes this step.
Step 2: Binding to Mg2+After the alkyl phosphate is created, the magnesium ion binds to it.
Step 3: Nucleophilic attack: Following that, the nucleophilic attack happens, with the nucleophile being the water molecule. It is coordinated with the magnesium ion. It occurs at phosphorus, causing it to be phosphorylated. It results in the creation of a pentacoordinate intermediate.
Step 4: Release of Orthophosphate: Orthophosphate is released as a result of the reaction between pentacoordinate intermediate and water. It results in the creation of a diester intermediate.
Step 5: Subsequent Hydrolysis: In the final step, the intermediate diester is hydrolyzed to form orthophosphate and the final product. This is accomplished via nucleophilic substitution.
The end result is a free phosphate group that is bound to the alcohol's oxygen. A phosphate anhydride is formed in the process.
For more such questions on phosphorylated , Visit:
https://brainly.com/question/29104695
#SPJ11
why can't the enthalpy of formation of calcium carbonate be determined directly?
The enthalpy change can not be measured directly because you have to take into account how much energy was put into the reaction in the first place.
Hope this helps!!! :)
The standard enthalpy of formation of all elements in their standard states are assumed to be zero. It is not possible to determine the enthalpy of formation of calcium carbonate as it is formed from other compounds.
What is enthalpy of formation?The standard enthalpy of formation of a compound can be defined as the enthalpy change accompanying the formation of one mole of the compound from its constituent elements, all the substances being in their standard states.
The standard enthalpy of formation is usually denoted as ΔfH⁰. For example the enthalpy of formation of CO₂ and CH₄ are -393.5 kJ mol⁻¹ and -74.8 kJ mol⁻¹ respectively.
Here CaCO₃ is formed by the reaction:
CaO + CO₂ → CaCO₃
The enthalpy change for the given reaction is not an enthalpy of formation of CaCO₃. Since CaCO₃ is not formed from its constituent elements.
To know more about enthalpy of formation, visit;
https://brainly.com/question/17508960
#SPJ2
Calculate the mass of benzene that should be dissolved in 425g of water at 35°C to produce a
solution with a vapor pressure of 36.1 mmHg.
(At 35°C, P0H20 = 42.2mmHg)
The mass of benzene that should be dissolved in 425g of water at 35°C to produce a solution with a vapor pressure of 36.1 mmHg is approximately 10.02 g.
1. Calculate the mole fraction of benzene (Xbenzene) in the solution using the following equation:
Ptotal = Xbenzene x P0benzene + Xwater x P0water
where Ptotal is the total vapor pressure of the solution, P0benzene is the vapor pressure of pure benzene, P0water is the vapor pressure of pure water, and Xwater = 1 - Xbenzene.
Rearranging the equation to solve for Xbenzene:
Xbenzene = (Ptotal - Xwater x P0water) / P0benzene
Substituting the given values:
Xbenzene = (36.1 mmHg - 0.953 x 42.2 mmHg) / 95.1 mmHg
Xbenzene = 0.390
2. Calculate the molality of the solution using the following equation:
molality = moles of solute / mass of solvent in kg
moles of solute = molality x mass of solvent in kg
Substituting the given values:
molality = 0.390 mol / kg
mass of solvent = 425 g = 0.425 kg
moles of solute = 0.390 mol / kg x 0.425 kg
moles of solute = 0.166 mol
3. Calculate the mass of benzene using its molar mass:
mass of benzene = moles of benzene x molar mass of benzene
Substituting the given values:
moles of benzene = 0.166 mol
molar mass of benzene = 78.11 g/mol
mass of benzene = 0.166 mol x 78.11 g/mol
mass of benzene = 12.97 g
However, we assumed that the density of the solution is equal to the density of water, which is not the case. Therefore, we need to adjust the mass of benzene by using the following equation:
mass of benzene = mass of solute / (1 - mass fraction of solute)
4. Calculate the mass fraction of benzene using the mole fraction:
mass fraction of benzene = (Xbenzene x molar mass of benzene) / (Xbenzene x molar mass of benzene + Xwater x molar mass of water)
5. Substituting the given values:
molar mass of water = 18.02 g/mol
mass fraction of benzene = (0.390 x 78.11 g/mol) / (0.390 x 78.11 g/mol + 0.610 x 18.02 g/mol)
mass fraction of benzene = 0.097
Substituting the values in the mass equation:
mass of benzene = 12.97 g / (1 - 0.097)
mass of benzene = 10.02 g
To know more about benzene, visit:
https://brainly.com/question/7284916
#SPJ1
match each substance correctly to the principal type(s) of intermolecular force(s) present, other than covalent bonding.
Substance intermolecular force
CH2OH ---> Hydrogen bonding
CH3F --> Dipole-dipole forces
C3H8 --> Dispersion forces
CaCL2 --> Ionic bonding
The intermolecular force present in CH2OH is hydrogen bonding. The intermolecular force present in CH3F is Dipole-dipole forces. Ionic bonding is defined as a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions or between two atoms with sharply different electronegativities. It is the primary interaction occurring in ionic compounds. Hydrogen bonding results from the attractive force between a hydrogen atom covalently bonded to a very electronegative atom such as a N, O, or F atom and another very electronegative atom.
Dipole-dipole forces are defined as a attractive forces between the positive end of one polar molecule and the negative end of another polar molecule. Dispersion force is defined as a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles.
To learn more about Intermolecular forces
https://brainly.com/question/12243368
#SPJ4
The complete question is,
Match each substance correctly to the principal type(s) of intermolecular force(s) present, other than covalent bonding.
CH2OH Ionic bonding
CH3F Hydrogen bonding
C3H8 Dispersion forces
CaCL2 Dipole-dipole forces
What is the name in a position called
The names of the positions are called:
(1) (10) Atomic number
(2) (11) Chemical symbols
(3) (12) Elements
(4) (13) Atomic mass
What is an atomic structure?Atomic structure refers to the composition and arrangement of subatomic particles within an atom. An atom consists of a central nucleus, which contains positively charged protons and uncharged neutrons, surrounded by negatively charged electrons that move around the nucleus in shells or energy levels.
The number of protons in the nucleus determines the atomic number and thus the identity of the element. The arrangement of electrons around the nucleus determines the chemical and physical properties of the element.
Learn more on atomic structure here: https://brainly.com/question/21289019
#SPJ1
The questions are:
10 What is the name for the number in this position called? (the answer is not "6") →6
11 What is the name for the letter in this position called? (the answer is not "C"!) →C
12 What is the name in this position called? (the answer is not "Carbon"!) →Carbon
13
What is the name for the number in this position? (the answer is not "12.0") →12.0
Use the spaces below to type your answers to the questions above.
When a mineral breaks along a weekly bonded plane it is called
Answer: Cleavage
Explanation:
When a mineral breaks along a weekly bonded plane it is called cleavage
0.10 molL-1 NaCl solution contains 1.0 mole of NaCl
The volume of the 0.10 molL⁻¹ NaCl solution which contains 0.1 mole of sodium chloride, NaCl is 1 L
How do i determine the volume of the solution?Molarity of a solution is defined by the following formula:
Molarity = mole / volume
Cross multiply
Molarity × volume = Mole
Divide both sides by molarity
Volume = mole / molarity
With the above formula, we can obtain the volume of the solution. Details below:
Molarity of solution = 0.10 molL⁻¹Mole of NaCl = 0.1 moleVolume of solution =?Volume = mole / molarity
Volume of solution = 0.1 / 0.1
Volume of solution = 1 L
Thus, we can conclude that the volume of the solution is 1 L
Learn more about volume:
https://brainly.com/question/29144710
#SPJ1
Complete question:
0.10 molL⁻¹ NaCl solution contains 1.0 mole of NaCl. What is the volume of the solution?
A student sets up a titration with a * 1 point buret filled with 0.5 M NaOH. In the flask below they place the phenolphthalein indicator and 6.2 mL of the unknown acid. The solution in the beaker turns pink after exactly 24.8 mL of NaOH have been added. The student repeats this experiment but this time they do it with a buret filled with 1.0 M NaOH which is more concentrated than the original experiment. Would the solution in the test tube turn pink sooner, later, or around the same amount of added NaOH?
Answer:
The solution in the test tube would turn pink earlier with the more concentrated NaOH solution.
This is because the concentration of the NaOH solution is directly proportional to the number of moles of NaOH per unit volume of the solution.
So, with a more concentrated NaOH solution (1.0 M compared to 0.5 M), each mL of NaOH solution contains twice as many moles of NaOH.
Therefore, it would take half as much volume (i.e., 12.4 mL instead of 24.8 mL) of the 1.0 M NaOH solution to react with the same number of moles of the unknown acid as the 0.5 M NaOH solution.
WHAT IS THE OXIDATION NUMBER OF SULFUR IN THE S2O8 ION?
Answer: The Oxidation State Of Sulphur is +6
Explanation:
Choose the correct answer.
The correct reaction equation is; Sr(OH)2 ----> Sr + 2OH
How do you know a correct reaction equation?A correct chemical reaction equation must follow the law of conservation of mass, which states that matter cannot be created or destroyed, only transformed from one form to another. This means that the total number of atoms of each element on the reactant side of the equation must be equal to the total number of atoms of each element on the product side.
To ensure that an equation is correct, you should first check that the chemical formulas of the reactants and products are correct. You can then balance the equation by adjusting the coefficients in front of each chemical formula so that the number of atoms of each element is the same on both sides of the equation.
Learn more about reaction equation:https://brainly.com/question/19703643
#SPJ1
Weigh magnesium metal Complete the following steps: Place weighing paper on balance Use forceps to place magnesium o balance. Record exact mass in Lab Data Calculate moles of magnesium. Record in Lab Data Use forceps to place magnesium on bench near wires and stopper 0.215 g TARE Mass of magnesium (g) Moles of magnesium (mol) Temperature of water (°C) Temperature of water (K) Vapor pressure of water (mmHg) Barometric pressure (mmHg) 0.198 9
Moles of magnesium = 0.198 g / 24.31 g/mol = 0.00815 mol
What are the moles?
Based on the given data, we can calculate the moles of magnesium using the following formula:
moles of magnesium = mass of magnesium (g) / molar mass of magnesium
The molar mass of magnesium is 24.31 g/mol.
Thus, moles of magnesium = 0.198 g / 24.31 g/mol = 0.00815 mol
It seems that the experiment involves determining the mass and moles of magnesium. The temperature of water, vapor pressure of water, and barometric pressure are likely additional data points collected during the experiment for further analysis.
To know more about the moles, visit:
https://brainly.com/question/26416088
#SPJ1
3. Draw a Lewis dot structure for the fictitious molecular ion [ZO2]-1. Assume that the central Z atom is bonded to each of the outer O atoms by a single bond. What is the formal charge on the Z atom?
The formal charge on the Z atom in the [ZO2]-1 ion is +1.
The Lewis dot structure for the [ZO2]-1 molecular ion is:
O
|
Z === O
|
O-
1. Determine the total number of valence electrons in the ion by adding the valence electrons of each atom and the charge of the ion.
Z has 4 valence electrons, while each O atom has 6 valence electrons.The ion has an overall negative charge of 1, so there is one extra electron.Total number of valence electrons = 4 + 6 + 6 + 1 = 172. Connect the Z atom to each O atom with a single bond, which uses up 2 electrons.
We now have 15 electrons left to distribute.3. Add the remaining electrons in pairs as lone pairs to each atom until all valence electrons are used up.
Each O atom needs 2 lone pairs (4 electrons).Z needs 2 lone pairs (4 electrons).4. Draw the Lewis dot structure.
The Lewis dot structure for [ZO2]-1 is:O
|
Z === O
|
O-
5. Calculate the formal charge on the Z atom using the formula:
Z has 4 valence electrons.Z has 2 lone pairs (4 electrons) and 2 bonding electrons (1 bond to each O).Formal charge = valence electrons - (number of lone pair electrons + 1/2 x number of bonding electrons)
Formal charge = 4 - (2 + 1/2 x 2) = 4 - 3 = +1
Therefore, the formal charge on the Z atom in the [ZO2]-1 ion is +1.
What is valence electron?
A valence electron is an electron in the outer shell associated with an atom, and that can participate in the formation of a chemical bond if the outer shell is not closed.
To know more about valence electron, visit:
https://brainly.com/question/28977387
#SPJ1
Which of the following are volume ratios from this equation? Select all that apply.
2H2 + O2 --> 2H2O
The volume ratios from the equation 2H2 + O2 → 2H2O are:
2 L H2 : 1 L O2 (or 2 mol H2 : 1 mol O2)1 L O2 : 2 L H2O (or 1 mol O2 : 2 mol H2O)The coefficients in a balanced chemical equation give the ratio of moles of reactants and products. From the equation 2H2 + O2 → 2H2O, we can see that:
2 moles of H2 react with 1 mole of O2 to produce 2 moles of H2O.Therefore, the following volume ratios are valid:
2 L H2 : 1 L O21 L O2 : 2 L H2OWhat are the reactants?
The reactants are the substances that participate in a chemical reaction and are consumed to form new products. In the equation 2H2 + O2 → 2H2O, the reactants are hydrogen gas (H2) and oxygen gas (O2). These reactants undergo a chemical reaction to form water (H2O) as the product.
To know more about reactants, visit:
https://brainly.com/question/17096236
#SPJ1
which of the following is the correct electron configuration for tc? select the correct answer below: [kr]5s24d5 [kr]4d7 [kr]5s24d2 [kr]5s25d5
The correct electron configuration for Tc (technetium) is [Kr] 5s² 4d⁵. Therefore, the correct answer is: [kr]5s²4d⁵.
What is technetium?Technetium (Tc) is a radioactive chemical substance with the atomic number 43 and symbol Tc. It is a silvery-gray metal that belongs to the transition metals group on the periodic table. Technetium is the first element to be artificially produced, and all of its isotopes are radioactive, with no stable isotopes. It is a highly toxic and dangerous element, and therefore has no significant commercial applications. Technetium has many nuclear and medical applications due to its radioactivity, and is used in medical imaging, cancer treatment, and scientific research.
To know more about technetium, visit:
https://brainly.com/question/29845296
#SPJ1
Answer:
C
Explanation:
edg 2023
Question 8 of 10
Which of the following diagrams is the correct electron dot diagram for Al?
O A.
OB.
О с.
O D.
..
•Al:
:AI:
•AI.
:AI.
Please help I need it asap!!!
Answer:
The correct electron dot diagram for Al is option A:
•Al:
:AI:
Explanation:
How does a phase change affect a thermochemical equation?
O It alters the products.
O It alters the moles of reactants.
O It affects the balance of the equation.
O It can affect the AH value.
The correct answer is option D, It can affect the AH value.
What is a phase change?A phase change is a physical change in a substance in which the substance's state of matter is changed, such as from a gas to a liquid or from a liquid to a solid. It is also known as a phase transition.
Phase changes also involve changes in energy, temperature, and pressure. For example, when a solid melts to become a liquid, it absorbs energy and the temperature rises. When a liquid boils to become a gas, energy is released and the temperature decreases. Similarly, when a gas condenses to become a liquid, energy is released and the pressure increases.
Learn more about phase change here:
https://brainly.com/question/25664350
#SPJ1