Answer:
[tex](f/g)(x) = \frac{x + 5}{3x + 5} [/tex]
Step-by-step explanation:
f(x) = 3x² + 10x - 25
g(x) = 9x² - 25
To find (f/g)(x) divide f(x) by g(x)
That's
[tex](f/g)(x) = \frac{3 {x}^{2} + 10x - 25 }{9 {x}^{2} - 25 } [/tex]
Factorize both the numerator and the denominator
For the numerator
3x² + 10x - 25
3x² + 15x - 5x - 25
3x ( x + 5) - 5( x + 5)
(3x - 5 ) ( x + 5)
For the denominator
9x² - 25
(3x)² - 5²
Using the formula
a² - b² = ( a + b)(a - b)
(3x)² - 5² = (3x + 5)(3x - 5)
So we have
[tex](f/g)(x) = \frac{(3x - 5)(x + 5)}{(3x + 5)(3x - 5)} [/tex]
Simplify
We have the final answer as
[tex](f/g)(x) = \frac{x + 5}{3x + 5} [/tex]
Hope this helps you
write a thirdthird-degree polynomial expression that has only two terms with a leading term that has a coefficient of five and a constant of negative two
Answer:
5x^3-2
[tex]ax^{3} +bx^{2} +cx+d\\5x^{3}-given\\ d=-2-given\\5x^{3} -2[/tex]
Explanation:
The two terms are [tex]5x^3[/tex] and [tex]2[/tex]. Terms are separated by either a plus or minus.
We can write it as [tex]5x^3+(-2)[/tex] which is an equivalent form. Here the two terms are [tex]5x^3[/tex] and [tex]-2[/tex]. This is because adding a negative is the same as subtracting.
The coefficient is the number to the left of the variable.
The degree is the largest exponent, which helps form the leading term.
The third degree polynomial written above is considered a cubic binomial. "Cubic" refers to the third degree, while "binomial" means there are 2 terms.
We can write something like [tex]5x^3[/tex] as 5x^3 when it comes to computer settings.
Consider the following ordered data. 6 9 9 10 11 11 12 13 14 (a) Find the low, Q1, median, Q3, and high. low Q1 median Q3 high (b) Find the interquartile range.
Answer:
Low Q1 Median Q3 High
6 9 11 12.5 14
The interquartile range = 3.5
Step-by-step explanation:
Given that:
Consider the following ordered data. 6 9 9 10 11 11 12 13 14
From the above dataset, the highest value = 14 and the lowest value = 6
The median is the middle number = 11
For Q1, i.e the median of the lower half
we have the ordered data = 6, 9, 9, 10
here , we have to values as the middle number , n order to determine the median, the mean will be the mean average of the two middle numbers.
i.e
median = [tex]\dfrac{9+9}{2}[/tex]
median = [tex]\dfrac{18}{2}[/tex]
median = 9
Q3, i.e median of the upper half
we have the ordered data = 11 12 13 14
The same use case is applicable here.
Median = [tex]\dfrac{12+13}{2}[/tex]
Median = [tex]\dfrac{25}{2}[/tex]
Median = 12.5
Low Q1 Median Q3 High
6 9 11 12.5 14
The interquartile range = Q3 - Q1
The interquartile range = 12.5 - 9
The interquartile range = 3.5
What does "C" represent and how do you evaluate this?
[tex]_9C_7=\dfrac{9!}{7!2!}=\dfrac{8\cdot9}{2}=36[/tex]
A cabinet door has a perimeter of 76 inches. Its area is 357 square inches. What are the dimensions of the door?
Answer:
17 by 21 inches
Step-by-step explanation:
The perimeter is twice the sum of the dimensions, and the area is their product, so you have ...
L + W = 38
LW = 357
__
Solution:
W(38 -W) = 357 . . . . . substitute for L
-(W^2 -76W) = 357 . . expand on the left
-(W^2 -38 +19^2) = 357 -19^2 . . . . complete the square
(W -19)^2 = 4 . . . . . . . write as a square
W -19 = ±√4 = ±2 . . . take the square root; next, add 19
W = 19 ±2 = {17, 21} . . . . if width is one of these, length is the other
The dimensions are 17 by 21 inches.
What is the result of question?
Answer:
B
Step-by-step explanation:
x can not be greater than (1,325-270)/26 because $270 is fixed for the rental
if f(x)=3x-3 and g(x)=-x2+4,then f(2)-g(-2)=
Answer:
3
Step-by-step explanation:
f(x)=3x-3
g(x)=-x^2+4,
f(2) = 3(2) -3 = 6-3 =3
g(-2) = -(-2)^2+4 = -4+4 = 0
f(2)-g(-2)= = 3-0 = 3
Brian needs to paint a logo using two right triangles. The dimensions of the logo are shown below. What is the difference between the area of the large triangle and the area of the small triangle?
Answer:
7.5 cm²
Step-by-step explanation:
Dimensions of the large ∆:
[tex] base (b) = 3cm, height (h) = 9cm [/tex]
[tex] Area = 0.5*b*h = 0.5*3*9 = 13.5 cm^2 [/tex]
Dimensions of the small ∆:
[tex] base (b) = 2cm, height (h) = 6cm [/tex]
[tex] Area = 0.5*b*h = 0.5*2*6 = 6 cm^2 [/tex]
Difference between the area of the large and the small ∆ = 13.5 - 6 = 7.5 cm²
100 students are interviewed to see which of biology, chemistry or physics they prefer.
59 of the students are girls. 35 of the girls like biology best.
2 of the boys prefer physics.
6 out of the 30 who prefer chemistry are girls.
What percentage of the students prefer biology?
Answer:
50%
Step-by-step explanation:
Girls Boys
total: 59 total: 41
- Chemistry 35 - Physics 2
= 24 = 39
- Chemistry ( 30 - 6 ) 24
= 15
Total boys and girls for Biology = 35 + 15 = 50
% = 50/100*100
= 50%
Hope it helps and also mark it as brainliest!!!!Find the length of AB¯¯¯¯¯¯¯¯ A. 19.56 B. 51.86 C. 42.99 D. 34.98
Answer:
Apllying cos on the triangle
cos(angle)= Base/ Hyp
cos(34)= 29/ AB
AB= 29/0.8290
AB=34.98
Step-by-step explanation:
The length of AB is 34.98 units which the correct answer would be an option (D).
What is the right triangle?A right triangle is defined as a triangle in which one angle is a right angle or two sides are perpendicular.
What are Trigonometric functions?Trigonometric functions are defined as the functions which show the relationship between the angle and sides of a right-angled triangle.
Given that ΔABC
∠C = 90°
Here base = BC = 29 units and hypotenuse = AB
To determine the length of AB
Apply the cosine on the given right triangle
⇒ cos(θ) = Base/hypotenuse
⇒ cos(34) = 29/ AB
∴ cos(34°) = 0.8290
⇒ 0.8290 = 29/ AB
⇒ AB= 29/0.8290
⇒ AB = 34.98 units
Hence, the length of AB is 34.98 units
Learn more about Trigonometric functions here:
https://brainly.com/question/6904750
#SPJ2
How should a musician effectively convey emotions or ideas in a performance?
Answer:
Within the factors hindering expression in music, tempo is the most important number of factors such as your mood.
Step-by-step explanation:
If one wants to convey a message, they should try these:
a) Use real life
b) introduce symbolism
c) convey sensory disruption, e.t.c.
Hope these helps.
Solve for 2 in the diagram below.
120°
32°
T=
Step-by-step explanation:
Hello, there!!!
It's so simple here,
Here,
we have is 1 angle is 120°and other is 3x°.
now,
3x°=120° {because when two st.line intersects eachother then the opposite angle formed are equal}
so, 3x°=120
or, x=120°/3
=40°
Therefore, the value of x is 40°.
Hope it helps....
Find the fourth roots of 16(cos 200° + i sin 200°).
Answer:
See below.
Step-by-step explanation:
To find roots of an equation, we use this formula:
[tex]z^{\frac{1}{n}}=r^{\frac{1}{n}}(cos(\frac{\theta}{n}+\frac{2k\pi}{n} )+\mathfrak{i}(sin(\frac{\theta}{n}+\frac{2k\pi}{n})),[/tex] where k = 0, 1, 2, 3... (n = root; equal to n - 1; dependent on the amount of roots needed - 0 is included).
In this case, n = 4.
Therefore, we adjust the polar equation we are given and modify it to be solved for the roots.
Part 2: Solving for root #1
To solve for root #1, make k = 0 and substitute all values into the equation. On the second step, convert the measure in degrees to the measure in radians by multiplying the degrees measurement by [tex]\frac{\pi}{180}[/tex] and simplify.
[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(0)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(0)\pi}{4}))[/tex]
[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{4}))[/tex]
[tex]z^{\frac{1}{4}} = 2(sin(\frac{5\pi}{18}+\frac{\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{4}))[/tex]
Root #1:
[tex]\large\boxed{z^\frac{1}{4}=2(cos(\frac{19\pi}{36}))+\mathfrack{i}(sin(\frac{19\pi}{38}))}[/tex]
Part 3: Solving for root #2
To solve for root #2, follow the same simplifying steps above but change k to k = 1.
[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(1)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(1)\pi}{4}))[/tex]
[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{2\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{2\pi}{4}))\\[/tex]
[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{\pi}{2}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{2}))\\[/tex]
Root #2:
[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{7\pi}{9}))+\mathfrak{i}(sin(\frac{7\pi}{9}))}[/tex]
Part 4: Solving for root #3
To solve for root #3, follow the same simplifying steps above but change k to k = 2.
[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(2)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(2)\pi}{4}))[/tex]
[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{4\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{4\pi}{4}))\\[/tex]
[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\pi))+\mathfrak{i}(sin(\frac{5\pi}{18}+\pi))\\[/tex]
Root #3:
[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{23\pi}{18}))+\mathfrak{i}(sin(\frac{23\pi}{18}))}[/tex]
Part 4: Solving for root #4
To solve for root #4, follow the same simplifying steps above but change k to k = 3.
[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(3)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(3)\pi}{4}))[/tex]
[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{6\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{6\pi}{4}))\\[/tex]
[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{3\pi}{2}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{3\pi}{2}))\\[/tex]
Root #4:
[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{16\pi}{9}))+\mathfrak{i}(sin(\frac{16\pi}{19}))}[/tex]
The fourth roots of 16(cos 200° + i(sin 200°) are listed above.
What is 5 feet and 11 inches in inches
Answer:
60
Step-by-step explanation:
5 is 60 inch
What is the volume of a cube with a side length of
of a unit?
On a coordinate plane, 2 lines are shown. Line A B has points (negative 4, negative 2) and (4, 4). Line C D has points (0, negative 3) and (4, 0). Which statement best explains the relationship between lines AB and CD? They are parallel because their slopes are equal. They are parallel because their slopes are negative reciprocals. They are not parallel because their slopes are not equal. They are not parallel because their slopes are negative reciprocals.
Answer:
A. they are parallel because their slopes are equal.
Step-by-step explanation:
edge 2020
Answer:
its A in egde
Step-by-step explanation:
What is the difference? Complete the equation. -1 2/5 - (-4/5) = ?
Answer:
First convert them which will be
-7/5 - (-4/5)
so when you subtract a negative number from negative number they actually subtract ex = -4-(-2) = -2
so its simply 7/5-4/5 then add a negative sign
so
3/5
now add negative sign so
-3/5
The expression −50x+100 represents the balance, in dollars, of a bank account after x months. What is the rate of change, in dollars per month, of the bank account balance?
Answer:
-50
Step-by-step explanation:
Basically get two slopes -50(1)+100 will get you 1,50 (1 is x and 50 is y since its the answer)
-50(0)+100 (0,100) Y₂-Y₁/X₂-X₁ 50-100/1-0
Rate of change per month = -$50
The table shows the height, in meters, of an object that is dropped as time passes until the object hits the ground. A 2-row table with 10 columns. The first row is labeled time (seconds), x with entries 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.6. The second row is labeled height (meters), h with entries 100, 98.8, 95.1, 89.0, 80.4, 69.4, 55.9, 40.0, 21.6, 0. A line of best fit for the data is represented by h = –21.962x + 114.655. Which statement compares the line of best fit with the actual data given by the table? According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground. According to the line of best fit, the object was dropped from a lower height. The line of best fit correctly predicts that the object reaches a height of 40 meters after 3.5 seconds. The line of best fit predicts a height of 4 meters greater than the actual height for any time given in the table.
Answer: A. According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground.
The statement first "According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground" is correct.
What is the line of best fit?A mathematical notion called the line of the best fit connects points spread throughout a graph. It's a type of linear regression that uses scatter data to figure out the best way to define the dots' relationship.
We have a line of best fit:
h = –21.962x + 114.655
As per the data given and line of best fit, we can say the object would have impacted the ground 0.6 seconds later than it did according to the line of best fit.
Thus, the statement first "According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground" is correct.
Learn more about the line of best fit here:
brainly.com/question/14279419
#SPJ2
Transform the polar equation to a Cartesian (rectangular) equation: r= 4sinθ
options include:
x^2+y^2 = 4y
x^2+y^2 = -4
x^2+y^2 = 4
x^2+y^2 = -4y
Answer:
x^2 +y^2 = 4y
Step-by-step explanation:
Using the usual translation relations, we have ...
r^2 = x^2+y^2
x = r·cos(θ)
y = r·sin(θ)
Substituting for sin(θ) the equation becomes ...
r = 4sin(θ)
r = 4(y/r)
r^2 = 4y
Then, substituting for r^2 we get ...
x^2 +y^2 = 4y . . . . . matches the first choice
How do you find x when knowing the probability?
Answer:
x
Step-by-step explanation:
probability is the branch of mathematics concerning numeral descriptions of how likely an event is to occur or how likely it is that a proposition is true
Which of the following is an arithmetic sequence? A.-2, 4, -6, 8, ... B.2, 4, 8, 16, ... C.-8, -6, -4, -2, ...
Answer:
C. -8, -6, -4, -2, ...
Step-by-step explanation:
An arithmetic sequence increases by the same amount every time through addition or subtraction. There is a common difference.
A: -2, 4, -6, 8, ... If there were a common difference, the numbers would not switch between being positive and back to negative. The numbers would either keep going positive or keep going negative.
B: 2, 4, 8, 16, ... The common difference between 16 and 8 is 16 - 8 = 8. The difference between 8 and 4 is 8 - 4 = 4. Since the difference changes between the numbers, this is not an arithmetic sequence.
C. -8, -6, -4, -2, ... The common difference between -2 and -4 is -2 - (-4) = -2 + 4 = 2. The difference between -4 and -6 is -4 - (-6) = -4 + 6 = 2. The difference between -6 and -8 is -6 - (-8) = -6 + 8 = 2. Since the common difference is always two, this is an arithmetic sequence.
Hope this helps!
Find the Vertical asymptotes of the graph of f
[tex]f(x) = \frac{x + 2}{ {x}^{2} - 4}[/tex]
Answer:
x = 2 and x = -2
Step-by-step explanation:
To find the vertical asymptotes, set the denominator equal to zero and solve for x:
vertical asymptotes are x = 2 and x = -2
Give the domain and range of each relation using set notation
Answer:
See below.
Step-by-step explanation:
First, recall the meanings of the domain and range.
The domain is the span of x-values covered by the graph.
And the range is the span of y-values covered by the graph.
1)
So, we have here an absolute value function.
As we can see, the domain of the function is all real numbers because the graph stretches left and right infinitely. Therefore, the domain of the function is:
[tex]\{x|x\in\textbb{R}\}[/tex]
(You are correct!)
For the range, notice how the function stops at y=7. The highest point of the function is (-2,7). There graph doesn't and won't ever reach above y=7. Therefore, the range of the graph is all values less than or equal to 7. In set notation, this is:
[tex]\{y|y\leq 7\}[/tex]
2)
We have here an ellipse.
First, for the domain. We can see the the span of x-values covered by the ellipse is from x=-4 to x=6. In other words, the domain is all values in between these two numbers and including them. Therefore, we can write it as such:
[tex]-4\leq x\leq 6[/tex]
So x is all numbers greater than or equal to -4 but less than or equal to 6. This describes the span of x-values. In set notation, this is:
[tex]\{x|-4\leq x\leq 6\}[/tex]
For the range, we can see that the span of x values covered by the ellipse is from y=-5 to y=1. Just like the domain, we can write it like this:
[tex]-5\leq y\leq 1[/tex]
This represents all the y-values between -5 and 1, including -5 and 1.
In set notation, thi is:
[tex]\{y|-5\leq y\leq 1\}[/tex]
The probability density function for random variable W is given as follows: Let x be the 100pth percentile of W and y be the 100(1 – p)th percentile of W, where 0
Answer:
Step-by-step explanation:
A probability density function (pdf) is used for continuous random variables. That is why p is between 0 and 1 (the two extremes - 0 and 1 - exclusive).
X = 100pth percentile of W
Y = 100(1-p)th percentile of W
Expressing Y as a function of X;
Y = 100(1-p)th = 100th - 100pth
Recall that 100pth is same as X, so substitute;
Y = 100th - X
where 100th = hundredth percentile of W and X = 100pth percentile of W
Sherina wrote and solved the equation. x minus 56 = 230. x minus 56 minus 56 = 230 minus 56. x = 174. What was Sherina’s error?
Answer:
subtracting 56 instead of adding (or adding wrong)
Step-by-step explanation:
She wrote ...
x - 56 = 230
x - 56 - 56 = 230 -56 . . . . correct application of the addition property*
x = 230 -56 . . . . . . . . . . . . incorrect simplification
Correctly done, the third line would be ...
x -112 = 174
This would have made Sherina realize that the error was in subtracting 56 instead of adding it. The correct solution would be ...
x - 56 + 56 = 230 + 56 . . . using the addition property of equality
x = 286 . . . . . . . . . . . . . . . . correct simplification on both sides
__
There were two errors:
1) incorrect strategy --- subtracting 56 instead of adding
2) incorrect simplification --- simplifying -56 -56 to zero instead of -112
We don't know whether you want to count the error in thinking as the first error, or the error in execution where the mechanics of addition were incorrectly done.
_____
* The addition property of equality requires the same number be added to both sides of the equation. Sherina did that correctly. However, the number chosen to be added was the opposite of the number that would usefully work toward a solution.
Answer:
D: Sherina should have added 56 to both sides of the equation.
Step-by-step explanation:
I got a 100% on my test.
I hope this helps.
Find the number of pieces of floor tiles each measuring 26cm long and 10cm wide needed to lay a floor measuring 260m long and 15m wide
Answer:
150,000
Step-by-step explanation:
1 m = 100 cm
260 m = 260 * 100 cm = 26000 cm
15 m = 15 * 100 cm = 1500 cm
area of floor = LW = 26000 cm * 1500 cm = 39,000,000 cm^2
area of 1 tile = 26 cm + 10 cm = 260 cm^2
number of tiles needed = 39,000,000/260 = 150,000
Answer: 150,000 tiles
. A discount brokerage selected a random sample of 64 customers and reviewed the value of their accounts. The mean was $32,000 with a population standard deviation of $8,200. What is a 90% confidence interval for the mean account value of the population of customers
Answer:
The 90% confidence interval is [tex]\$ \ 30313.9< \mu < \$ \ 33686.13[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is n = 64
The sample mean is [tex]\= x = \$ 32, 000[/tex]
The standard deviation is [tex]\sigma= \$ 8, 200[/tex]
Given that the confidence interval is 90% then the level of significance is mathematically evaluated as
[tex]\alpha = 100 - 90[/tex]
[tex]\alpha = 10 \%[/tex]
[tex]\alpha = 0.10[/tex]
Next we obtain the critical value of [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table , the value is
[tex]Z_{\frac{\alpha }{2} } = 1.645[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{ \sigma }{ \sqrt{n} }[/tex]
=> [tex]E = 1.645 * \frac{ 8200 }{ \sqrt{64} }[/tex]
=> [tex]E = 1686.13[/tex]
The 90% confidence interval is mathematically represented as
[tex]\= x - E < \mu < \= x + E[/tex]
=> [tex]32000 - 1689.13 < \mu < 32000 + 1689.13[/tex]
=> [tex]\$ \ 30313.9< \mu < \$ \ 33686.13[/tex]
What is the solution to the following system of equations? 3x-2y=12 6x - 4y = 24
Answer:
D question,somewhat confusing, itsit's like simultaneous equation,but values are different
Answer:
x = 4 + 2y/3
Step-by-step explanation:
If f(x)=ax+b/x and f(1)=1 and f(2)=5, what is the value of A and B?
Answer:
[tex]\huge\boxed{a=9 ; b = -8}[/tex]
Step-by-step explanation:
[tex]f(x) = \frac{ax+b}{x}[/tex]
Putting x = 1
=> [tex]f(1) = \frac{a(1)+b}{1}[/tex]
Given that f(1) = 1
=> [tex]1 = a + b[/tex]
=> [tex]a+b = 1[/tex] -------------------(1)
Now,
Putting x = 2
=> [tex]f(2) = \frac{a(2)+b}{2}[/tex]
Given that f(2) = 5
=> [tex]5 = \frac{2a+b}{2}[/tex]
=> [tex]2a+b = 5*2[/tex]
=> [tex]2a+b = 10[/tex] ----------------(2)
Subtracting (2) from (1)
[tex]a+b-(2a+b) = 1-10\\a+b-2a-b = -9\\a-2a = -9\\-a = -9\\a = 9[/tex]
For b , Put a = 9 in equation (1)
[tex]9+b = 1\\Subtracting \ both \ sides \ by \ 9\\b = 1-9\\b = -8[/tex]
The formula for the area of a square is s2, where s is the side length of the square. What is the area of a square with a side length of 6 centimeters? Do not include units in your answer.
Answer:
36
Step-by-step explanation:
formula of area for square:
A=s^2
s=6
A=6^2
A=36
Answer:
36
Step-by-step explanation:
I got it right