Answer:
3 > 2> 1
Explanation:
Aromatic compounds undergo electrophilic substitution reaction with several electrophiles.
Some substituted benzenes are more reactive towards electrophilic aromatic substitution than unsubstituted benzene.
Certain groups of substituents increase the ease with which an aromatic compound undergoes aromatic substitution.
If we look at the compounds closely, we will notice that only toluene leads to easy reaction with CH3Cl / AlCl3. Thus is due to the +I inductive effect of -CH3 which stabilizes the negatively charged intermediate produced in the reaction.
By how many times would you expect Al2(SO4)3 to depress the F.P of water compared to sucrose C12H22011 ?
Answer:
By how many times would you expect Al2(SO4)3 to depress the F.P of water compared to sucrose C12H22011 ?.
Explanation:
The freezing point of a pure solvent decreases further by adding a nonvolatile solute.
This is called depression in freezing point.
When an ionic solute is dissolved then the depression in the freezing point is proportional to the number of ions present in the solution.
In aluminum sulfate, there are five ions formed as shown below:
[tex]Al_2(SO_4)_3(aq)->2Al^3^+(aq)+3SO_4^2^-(aq)[/tex]
But sucrose is a covalent compound and it does not undergo dissociation.
Hence, aluminum sulfate decreases the freezing point of water by five times compared to sucrose.
Explanation:
Which equation obeys the law of conservation of
mass?
Answer:2C4H10+2C12+12O2 4CO2+CC14+H20
En la fermentación del alcohol, la levadura convierte la glucosa en etanol y dióxido de carbono:
C6H12O6(s) → 2C2H5OH(l) + 2CO2(g)
Si reaccionan 5.97 g de glucosa y se recolectan 1.44 L de CO2 gaseoso, a 293 K y 0.984 atm, ¿cuál
es el rendimiento porcentual de la reacción
Answer:
88.9%
Explanation:
Primero convertimos 5.97 g de glucosa a moles, usando su masa molar:
5.97 g ÷ 180 g/mol = 0.0332 molDespués calculamos la cantidad máxima de moles de CO₂ que se hubieran podido producir:
0.0332 mol C₆H₁₂O₆ * [tex]\frac{2molCO_2}{1molC_6H_{12}O_6}[/tex] = 0.0664 mol CO₂Ahora calculamos los moles de CO₂ producidos, usando los datos de recolección dados y la ecuación PV=nRT:
0.984 atm * 1.44 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 293 Kn = 0.0590 molFinalmente calculamos el rendimiento porcentual:
0.0590 mol / 0.0664 mol * 100% = 88.9%If 0.250 L of a 5.90 M HNO₃ solution is diluted to 2.00 L, what is the molarity of the new solution?
Answer:
0.74 M
Explanation:
From the question given above, the following data were obtained:
Molarity of stock solution (M₁) = 5.90 M
Volume of stock solution (V₁) = 0.250 L
Volume of diluted solution (V₂) = 2 L
Molarity of diluted solution (M₂) =?
The molarity of the diluted solution can be obtained by using the dilution formula as illustrated below:
M₁V₁ = M₂V₂
5.90 × 0.250 = M₂ × 2
1.475 = M₂ × 2
Divide both side by 2
M₂ = 1.475 / 2
M₂ = 0.74 M
Thus, the molarity of the diluted solution is 0.74 M
the force of attraction between non polar molecules are what (a)electrovalent bond (b)covalent bond (c)Hydrogen bond (d)Van der waals forces
Answer:
d. van der waals force
Explanation:
Van der Waals force :
the weakest intermolecular forceand consist of dipole-dipole force and dispersion force.
If a hydrogen atom and a helium atom have the same kinetic energy:________
a. the wavelength of the hydrogen atom will be about 4 times longer than the wavelength of the helium atom.
b. the wavelength of the hydrogen atom will be about 2 times longer than the wavelength of the helium.
c. the wavelength of the hydrogen atom will be roughly equal to the wavelength of the helium atom.
d. the wavelength of the helium atom will be about 2 times longer than the wavelength of the hydrogen atom.
e. the wavelength of the helium atom will be about 4 times longer than the wavelength of the hydrogen atom.
Answer: If a hydrogen atom and a helium atom have the same kinetic energy then the wavelength of the hydrogen atom will be roughly equal to the wavelength of the helium atom.
Explanation:
The relation between energy and wavelength is as follows.
[tex]E = \frac{hc}{\lambda}\\[/tex]
This means that energy is inversely proportional to wavelength.
As it is given that energy of a hydrogen atom and a helium atom is same.
Let us assume that [tex]E_{hydrogen} = E_{helium} = E'[/tex]. Hence, relation between their wavelengths will be calculated as follows.
[tex]E_{hydrogen} = \frac{hc}{\lambda_{hydrogen}}[/tex] ... (1)
[tex]E_{helium} = \frac{hc}{\lambda_{helium}}[/tex] ... (2)
Equating the equations (1) and (2) as follows.
[tex]E_{hydrogen} = E_{helium} = E'\\\frac{hc}{\lambda_{hydrogen}} = \frac{hc}{\lambda_{helium}} = E'\\\lambda_{helium} = \lambda_{hydrogen} = E'[/tex]
Thus, we can conclude that if a hydrogen atom and a helium atom have the same kinetic energy then the wavelength of the hydrogen atom will be roughly equal to the wavelength of the helium atom.
Que es la actividad física y en qué mejora