Two things are said to be in contact if the smallest distance between a point in one of them and a point in the other one is zero.
A 10,000J battery is depleted in 2h. What power consumption is this? *
A) 5000W
B) 3W
C) 1.4W
D) 20000W
show your work please
Answer:
P = 1.4 W
Explanation:
Given that,
The work done or the energy of the battery, E = 10,000 J
Time, t = 2 h
We need to find the power consumption. Let it is P. Power is the rate of doing work. So,
[tex]P=\dfrac{W}{t}\\\\P=\dfrac{10,000}{2\times 3600}\\\\P=1.38\ W[/tex]
or
P = 1.4 W
So, the power of the battery is 1.4 W.
12) A negatively-charged balloon touching a wooden wall
A) pulls positive charge on the wall surface toward it.
B) pushes negative charge in the wall away from it.
C) polarizes molecules in the wall.
D) all of the above.
Answer:
D) all of the above.
Explanation:
First polarises it, cahrging and discharging occurs at once.
A negatively charged balloon touching a wooden wall then from the given options option D is correct which is all of the above.
What is a charge?Charged matter experiences a force when it is exposed to an electromagnetic field due to the physical property of electric charge. Positive or negative charges can exist in an electric field (commonly carried by protons and electrons, respectively).
Contrary charges attract one another, while like charges repel one another. A neutral object is one that carries no net charge. Classical electrodynamics, the name given to an early understanding of how charged particles interact, is still accurate for issues that do not call for taking into account quantum phenomena.
In the first step it polarizes molecules in the wall, then charging and discharging in the wall will take place at once.
To get more information about Charge :
https://brainly.com/question/19886264
#SPJ2
Azam had a metal pencil box and a wooden block on his table. When he touched them, the pencil box felt colder compared to the wooden block. When he measured their temperatures using a thermometer, he found that both the objects were at the same temperatures. What could be the reason for Azam to 'feel' that the pencil box was cooler? * (1 Point) Air around the pencil box was at a lower temperature which made the pencil box colder Wood produces heat and so, must have been at a higher temperature than the pencil box As metal is a better conductor of heat, it drew away heat from his hand faster than the wooden block. Metals are always at a lower temperature than other substances and so, there has been an error in measurement
The third choice is the correct explanation. Don't make me type it all out on my phone.
If the car falls down the side of the cliff, what is happening to the gravitational potential energy of the falling car? (Assume the bottom of the cliff is zero)
Answer:
Sentences with many clauses and phrases are difficult to understand because the clauses and phrases typically _____.
modify other clauses and phrases in the sentence
refer to other sentences in the passage
make it hard to determine where the sentence ends
change the intended meaning of the sentence
Explanation:
A baby leaves a bowl of food on the floor and crawls westwards to fetch a toy placed 5 m away.At the same time a dog walks eastwards towards the baby. it takes the baby 30 s to reach the toy. The dog walks past the toy to eat the baby's food in the bowl
Determine the position of the dog relative to the baby before they both moved?
A car of mass M traveling with velocity v strikes a car of mass M that is at rest. The two cars’ bodies mesh in the collision. The loss of the kinetic energy the moving car undergo in the collision is
a) a quarter of the initial kinetic energy.
b) half of the initial kinetic energy.
c) all the initial kinetic energy.
d) zero.
Answer:
the correct answer is B
Explanation:
Let's propose the solution of the problem, for this we form a system formed by the two cars, so that the forces during the collision are internal, the momentum is conserved
instantly starts. Before the crash
p₀ = M v +0
final instant. After the crash
m_f = (M + M) v_f
the moment is preserved
p₀ = p_f
M v = 2 M v_f
v_f = v / 2
let's look for kinetic energy
before the crash
K₀ = ½ M v²
after the crash
K_f = ½ 2M (v_f)²
K_f = ½ 2M (v/2)²
K_f = (½ M v²) ½
K_f = K₀ / 2
therefore the correct answer is B
A speedometer in a car gives the car’s speed at that given moment, or the?
A. General speed
B. Instantaneous speed
C. Average speed
D. Constant speed
It’s not C or D!
Answer:
a because it is at a given moment
Explanation:
did u
A circular wire loop is placed near a long, straight, current-carrying wire in which the current is either increasing or decreasing. Draw the situations in which the induced current in the loop counterclockwise?
Answer:
The induced current is counter clockwise if the current is decreasing and towards right.
Explanation:
When the current is decreasing in the wire, the direction of magnetic field at the center of the loop is outwards to the plane of paper which is given by the Maxwell's right hand thumb rule. The magnetic field is decreasing in nature.
So according to the Lenz's law, the induced current is such that which opposes the cause of its production, so that the induced current is counter clockwise.
What is the main form of energy present in the initial state? (Initial state is when the rubber band is stretched , just before it is released)
O gravitational potential
O kinetic
O thermal
O elastic potential
When you irradiate a metal with light of wavelength 433 nm in an investigation of the photoelectric effect, you discover that a potential difference of 1.43 V is needed to reduce the current to zero. What is the energy of a photon of this light in electron volts? energy of a photon: Find the work function of the irradiated metal in electron volts. work function:
Answer:
The right solution is:
(a) 2.87 eV
(b) 1.4375 eV
Explanation:
Given:
Wavelength,
= 433 nm
Potential difference,
= 1.43 V
Now,
(a)
The energy of photon will be:
E = [tex]\frac{6.626\times 10^{-34}\times 3\times 10^8}{433\times 10^{-9}}[/tex]
= [tex]4.59\times 10^{-19} \ J[/tex]
or,
= [tex]\frac{4.59\times 10^{-19}}{1.6\times 10^{-19}}[/tex]
= [tex]2.87 \ eV[/tex]
(b)
As we know,
⇒ [tex]Vq=\frac{hc}{\lambda}-\Phi_0[/tex]
By substituting the values, we get
⇒ [tex]1.43\times 1.6\times 10^{19}=\frac{6.626\times 10^{-34}\times 3\times 10^8}{433\times 10^{-9}}-\Phi_0[/tex]
⇒ [tex]\Phi_0=2.3\times 10^{-19} \ J[/tex]
or,
⇒ [tex]=\frac{2.3\times 10^{-19}}{1.6\times 10^{-19}}[/tex]
⇒ [tex]=1.4375 \ eV[/tex]
A heat engine with 0.100 mol of a monatomic ideal gas initially fills a 3000 cm3 cylinder at 800 K. The gas goes through the following closed cycle Isothermal expansion to 5000 cm3 ?
Part A How much work does this engine do per cycle? Express your answer with the appropriate units. sochoric cooling to 200 K -Isothermal compression to 3000 cm3. - Isochoric heating to 800 K Value Units
Part B What is its thermal efficiency? Express your answer with the appropriate units.
Answer:
below
Explanation:
Part A) This engine works per cycle is 254.9 J.
Part B) The thermal efficiency is 23.42%
What is the thermal efficiency?The thermal efficiency of any heat engine is represented in percentage of heat energy converted into work.
For isothermal expansion, work done is
W₁ =nRT₁ x ln(V₂/V₁)
W₁ = 0.1 x 8.314 x 800 x ln(5000/3000)
W₁ = 339.8 J =Q₁
For isochoric cooling ,
W₂ =0
Q₂ =nCvdT = 0.1 x 3R/2 x (T₂-T₁)
Q₂ = -748.3 J
For isothermal compression,
W₃ =nRT₂ ln (V₄/V₃)
W₃ = 0.1 x 8.314 x 200 x ln(3000/5000)
W₃ = -84.9J
For isochoric heating
W₄ =0
Q₄ =nCvdT = 0.1 x 3R/2 x (800-200)
Q₄ = -748.3 J
Total work done in all the process W = W₁ +W₂ +W₃ +W₄
W =254.9 J
Thus, the work done is 254.9 J
Thermal efficiency = Work done/Heat taken
η = W/ Q₁ +Q₄
η = [254.9 / 339.8 +748.3 ] x 100 %
η = 0.2342 x 100 %
η = 23.42%
Thus, the thermal efficiency is 23.42%
Learn more about thermal efficiency.
https://brainly.com/question/13039990
#SPJ2
'
human activities that interfere with distribution of natural resources are contributing to the increase of earthquake risk.
Answer:
Changes in climate conditions, especially the warming of global temperatures increases the likelihood of weather-related natural disasters. ... This is most visible when seen through changes in the intensity and frequency of droughts, storms, floods, extreme temperatures and wildfires.
Convert Rev/min to rad/s x 2pie/60?
Anyone knows this please?
Answer:
Thus, [tex]\frac{1 rev}{min} =\frac{2\pi}{60} rad/s[/tex]
Explanation:
The angular speed is defined as the rate of change of angular velocity.
Its SI unit is rad/s and other units are rev/min or rev/s.
[tex]\frac{1 rev}{min } = \frac{1 rev}{60 sec}\\\\1 rev = 2\pi rad\\\\So\\\\\frac{1 rev}{min} = \frac{2\pi}{60} rad/s[/tex]
A certain electric stove has a 16 Ω heating element. The current going through the element is 15 A. Calculate the voltage across the element.
The voltage across the element is = 240 V
I hope you understand....
Mark me as brainliest....
Thanks...
Determine the values of m and n when the following average magnetic field strength of the Earth is written in scientific notation: 0.0000451 T. Enter m and n, separated by commas.
Answer:
B = 4.51×10⁻⁵ T
Explanation:
Given that,
The average magnetic field strength of the Earth is 0.0000451 T.
We need to write the value in the form of scientific notation. Any number in scientific notation is written as follows :
N=a×bⁿ
Where
n is any integer and a is a real no
So,
0.0000451 = 4.51×10⁻⁵ T
So, the required answer is equal to 4.51×10⁻⁵ T.
A 3-kg projectile is launched at an angle of 45o above the horizontal. The projectile explodes at the peak of its flight into two pieces. A 2-kg piece falls directly down and lands exactly 50 m from the launch point. Determine the horizontal distance from the launch point where the 1-kg piece lands.
1517.4 m
Step-by-step explanation:
Since the projectile broke up at the peak of its flight, it already traveled half its initial range so we can find its initial launch velocity [tex]v_0[/tex] from the equation
[tex]\frac{1}{2}R= \dfrac{1}{2} \left(\dfrac{v_0^2}{g}\sin 2\theta_0 \right)[/tex]
where [tex]\theta_0 = 45°[/tex] and [tex]\frac{1}{2}R = 50\:\text{m}[/tex] so we will get [tex]v_0=31.3\:\text{m/s}[/tex]. Next, we can use the equation
[tex]v_y = v_0y - gt = v_0 \sin 45 - gt[/tex]
and since [tex]v_y=0[/tex] at its peak, we get t = 22.1 s. Let's set this aside for a moment and we'll use it later.
At the top of its peak, we can use the conservation law of linear momentum. Let M be the mass if of the original projectile, [tex]m_1[/tex] be the mass of the larger fragment (2 kg) and [tex]m_2[/tex] be the mass of the smaller fragment (1 kg). We can write the conservation law as
[tex]Mv_0x = m_1V_1 + m_2V_2[/tex]
where [tex]V_1\:\text{and}\:V_2[/tex] are the velocities of the fragments immediately after the break up. But we also know that [tex]V_1=0[/tex] so the velocity of [tex]m_2[/tex] can be calculated from the conservation law as
[tex]Mv_0 \cos 45° = m_2V_2[/tex]
or
[tex]V_2 = \dfrac{M}{m_2}v_0 \cos 45° = 66.4\:\text{m/s}[/tex]
Now we can calculate the horizontal distance the smaller fragment traveled after the break up. Recall that the amount of time for it to go up is also the amount of time to get down so the horizontal distance x is
[tex]x = V_2 t = (66.4\:\text{m/s})(22.1\:\text{s})= 1467.4\:\text{m}[/tex]
Therefore, the total distance traveled from the launch point is
[tex]D = 50\:\text{m} + 1467.4\:\text{m}=1517.4\:\text{m}[/tex]
On Ramesh’s13th birthday, his father invited all his friends and their relatives. It was a big party with lots of food and DJs. Ramesh didn’t like the loud sound of DJs and asked his father to play it in a low volume so that their neighbours do not get much disturbed and people at the party can also enjoy the music. Ramesh’s father felt good for his wisdom and did as he said.
→Do you think when loud music is played at a party is acceptable to all the people living in, neighbourhood? Give a reason for your answer
→How can you control noise pollution at your end?
which describes a homogeneous mixture
Answer:
A homogeneous mixture is a type of mixture in which the composition is uniform and every part of the solution has the same properties. Example, air
Explanation:
A homeowner has a new oil furnace which has an efficiency of 60%. For every 100 barrels of oil used to heat his house, how much (in barrels of oil) goes up the chimney as waste heat?
Answer:
below
Explanation:
What is a reasonable measurement for the distance to Neptune?
30 light years
30 kilometers
30 parsecs
30 Astronomical Units
Answer:
30 kilometers is a reasonable measurement
Calculate the terminal velocity of a rain drop of radius 0.12cm
Explanation:
Given that,
The radius of rain drop, r = 0.12 cm = 0.0012 m
The viscocity of air is, [tex]\eta=18\times 10^{-5}\ poise[/tex]
Let the viscous force is, [tex]F = 0.010173\ N[/tex]
The viscous force is given by :
[tex]F=6\pi \eta rv\\\\v=\dfrac{F}{6\pi \eta r}[/tex]
Put all the values,
[tex]v=\dfrac{0.010173}{6\pi 18\times 10^{-5}\times 0.0012 }\\\\v=2498.58\ m/s[/tex]
If you wanted to know how much the temperature of a particular piece of material would rise when a known amount of heat was added to it, which of the following quantities would be most helpful to know?
a. coefficient of linear expansion
b. specific heat
c. initial temperature
d. thermal conductivity
e. density
Answer:
Option (b) is correct.
Explanation:
The amount of heat required to raise the temperature of substance of mass 1 kg by 1 degree C, is called specific heat of the substance.
The formula of the specific heat is
H = m c (T' - T)
where, m is the mass, c is the specific heat and T' - T is the change in temperature.
So, to know the rise in temperature, by adding the known amount of heat, the specific heat is required.
So, option (b) is correct.
Topic: Physical and Chemical Changes
Subject: Science
Grade: 5th
Question: Why am I growing?
(Please give this answer related to Physical and Chemical Changes.
Answer: Why am I growing is a chemical change.
Explanation:
Changes that can be reversed and does not affect the composition of a substance are called physical changes.
For example, change in state of a substance like ice converting into water is a physical change.
Changes that cannot be reversed and affect the chemical composition of a substance are called chemical changes.
For example, a child growing is an irreversible change and hence, it is a chemical change.
Thus, we can conclude that why am I growing is a chemical change.
Khối lượng ban đầu của mặt trời m⊙ = 2 × 1030 kg trong đó có 71 % là
hydrogen. Trong 5×10^9 năm đầu tiên, mặt trời phát ra năng lượng với công suất
3.86 × 10^26 W, nhờ phản ứng
4p → 4+2He + 2e
+ 2νe + 26 MeV
trong đó bốn proton tổng hợp thành hạt α và tỏa ra năng lượng 26 MeV. Hãy
xác định
a) số hạt proton của mặt trời tại thời điểm ban đầu.
b) số hạt proton của mặt trời tham gia phản ứng trong 1 năm.
c) số hạt proton còn lại trong mặt trời sau 5 × 10^9 năm.
d) thời gian để tiêu thụ hết 10 % số hạt proton còn lại của mặt trời
Answer:
jsgssbvwsvs
Explanation:
ifmd understand
A bullet of mass 0.5 kg is moving horizontally with a speed of 50 m/s when it hits a block of mass 3 kg that is at rest on a horizontal surface with a coefficient of friction of 0.2. After the collision the bullet becomes embedded in the block. How much work is being dne by bullet?
Answer:
Work done by the bullet is 612.26 J.
Explanation:
mass of bullet, m = 0.5 kg
initial velocity of bullet, u = 50 m/s
coefficient of friction = 0.2
mass of block, M = 3 kg
let the final speed of the bullet block system is v.
use conservation of momentum
Momentum of bullet + momentum of block = momentum of bullet block system
0.5 x 50 + 3 x 0 = (3 + 0.5) v
v = 7.14 m/s
let the stopping distance is
The work done is given by change in kinetic energy of bullet
initial kinetic energy of bullet, K = 0.5 x 0.5 x 50 x 50 = 625 J
Final kinetic energy of bullet, K' = 0.5 x 0.5 x 7.14 x 7.14 = 12.74 J
So, the work done by the bullet
W = 625 - 12.74 = 612.26 J
Two parallel circular plates with radius carrying equal-magnitude surface charge densities of are separated by a distance of How much stored energy do the plates have? A. 120 B. 360 C. 12 D. 37
Answer:
I guess it is A. I am not sure
In a 2-dimensional Cartesian coordinate system the y-component of a given vector is equal to that vector's magnitude multiplied by which trigonometric function, with respect to the angle between vector and y-axis?
a. sine
b. cosine
c. tangent
d. cotangent
Answer:
Option b, cosine.
Explanation:
Below you can see an image that illustrates this situation.
Remember that for a triangle rectangle with a given angle θ, we have:
Cos(θ) = (adjacent cathetus)/(hypotenuse)
In the image, you can see a vector of magnitude M, and the angle θ defined between the vector and the positive y-axis.
In this case, the y-component is the adjacent cathetus and the hypotenuse is the magnitude of the vector.
Then we will have:
Cos(θ) = (adjacent cathetus)/(hypotenuse) = y/M
solving that for y, we get:
y = Cos(θ)*M
Then the y-component is the vector's magnitude multiplied by the cosine of the angle between the vector and the y-axis.
The correct option is b.
Answer:
(b) cosine
Explanation:
In a 2-dimensional Cartesian coordinate system, a vector has a x-component and/or a y-component. To get these components, the magnitude of the vector is resolved with respect to the x-axis and the y-axis by multiplying it (the magnitude) by some trigonometric function with respect to the angle between the vector and the x or y axis.
For example, given a vector A of magnitude A which makes an angle α with the x-axis and an angle β with the y-axis, the x and y components of the vector A can be found as follows;
i. x-component is given by [tex]A_{x}[/tex]
[tex]A_{x}[/tex] = A cos α (with respect to the angle between A and the x-axis) or
[tex]A_{x}[/tex] = A sin β (with respect to the angle between A and the y-axis)
ii. y-component is given by [tex]A_{y}[/tex]
[tex]A_{y}[/tex] = A sin α (with respect to the angle between A and the x-axis) or
[tex]A_{y}[/tex] = A cos β (with respect to the angle between A and the y-axis)
Therefore, the y-component of a vector in a 2-dimensional Cartesian coordinate is given by the product of the magnitude of the vector and the cosine of the angle between the vector and the y-axis.
A block whose weight is 45.8 N rests on a horizontal table. A horizontal force of 36.6 N is applied to the block. The coefficients of static and kinetic friction are 0.697 and 0.371, respectively. Will the block move under the influence of the force, and, if so, what will be the block's acceleration? If the block does not move, give 0 m/s2 as the acceleration?
Answer:
Yes it will move and a= 4.19m/s^2
Explanation:
In order for the box to move it needs to overcome the maximum static friction force
Max Static Friction = μFn(normal force)
plug in givens
Max Static friction = 31.9226
Since 36.6>31.9226, the box will move
Mass= Wieght/g which is 45.8/9.8= 4.67kg
Fnet = Fapp-Fk
= 36.6-16.9918
=19.6082
=ma
Solve for a=4.19m/s^2
two blocks are held together with a compressed spring between them on the surface of a slippery table .one block has three times the inertia of the other .when the blocks are released ,the spring pushes them away from each other .what is the ratio of their kinetic energies after the release?
Explanation:
The initial kinetic energy [tex]KE_0[/tex] for both blocks is zero. Let [tex]m_1= m[/tex] and [tex]m_2 =3m[/tex]. So using the conservation law of linear momentum, we can write
[tex]0 = m_1v_1 - m_2v_2[/tex]
or
[tex]v_2 = \dfrac{m_1}{m_2}v_1 = \dfrac{m}{3m}v_1 = \dfrac{1}{3}v_1[/tex]
The final kinetic energies for the two masses are
[tex]KE_1 = \frac{1}{2}m_1v_1^2 = \frac{1}{2}mv_1^2[/tex]
[tex]KE_2 = \frac{1}{2}m_2v_2^2 = \frac{1}{2}(3m)(\frac{1}{3}v_1)^2 = \frac{1}{2}m(\frac{1}{3}v_1^2)[/tex]
Therefore, the ratio of their kinetic energies is
[tex]\dfrac{\Delta KE_2}{\Delta KE_1} = \dfrac{\frac{1}{2}(\frac{1}{3}v_1^2)}{\frac{1}{2}v_1^2} = \dfrac{1}{3}[/tex]
What actually heats up the atmosphere?
Answer:
The heat source for our planet is the sun. Energy from the sun is transferred through space and through the earth's atmosphere to the earth's surface. Since this energy warms the earth's surface and atmosphere, some of it is or becomes heat energy.