Answer:
Tempered glass
Explanation:
When warmed, an amorphous substance has a non-crystalline architecture that differentiates from its isochemical liquid, but this does not go through structural breakdown or the glass transition.
recognizing forms of energy
Answer:
hi the question isn't obvious and need a photo I guess
A 12.5-m fire truck ladder is leaning against a wall. Find the distance d the ladder goes up the wall (above the fire truck) if the ladder makes an angle of with the horizontal
Complete Question
A 12.5-m fire truck ladder is leaning against a wall. Find the distance d the ladder goes up the wall (above the fire truck) if the ladder makes an angle of
40° 16' with the horizontal.
Answer:
[tex]d=8.01m[/tex]
Explanation:
From the question we are told that:
Length of ladder [tex]l=12.5m[/tex]
Angle [tex]\theta=40° 16'=20.26 \textdegree[/tex]
Generally the Trigonometric equation for distance d it goes up the wall is mathematically given by
[tex]d=l sin \theta[/tex]
[tex]d=12.5 sin 40.26[/tex]
[tex]d=8.01m[/tex]
What is (a) the x component and (b) the y component of the net electric field at the square's center
Answer:
What is (a) the x component and (b) the y component of the net electric field at the square's center
A system is acted on by its surroundings in such a way that it receives 50 J of heat while simultaneously doing 20 J of work. What is its net change in internal energy
Answer:
30J
Explanation:
Given data
The total quantity of heat recieved= 50J
Quantity of heat used to do work= 20J
Hence the net change is
ΔU= Total Heat - Net work
ΔU= 50-20
ΔU= 30J
Hence the change in the internal energy is 30J
NEED HELP ASAP- Please show work
The angular position of an object is given by θ = 4t3 +10t −40 , where θ is in radians and t is in seconds what is:
(a) (5 points) The angular velocity at t = 2 s?
(b) (5 points) The angular acceleration at t = 2 s?
Answer:
Look at work
Explanation:
Θ= 4t^3+10t-40
a) In order to find ω, we need to find displacement so plug in t=2 to find Θ.
Θ= 4*8+20-40=12
use ω=Θ/t
Plug in values
ω=6 rad/s
b) In order to find α we use ω/t.
Plug in values
α=6/2= 3 rad/s^2
a) Viewers of Star Trek hear of an antimatter drive on the Starship Enterprise. One possibility for such a futuristic energy source is to store antimatter charged particles in a vacuum chamber, circulating in a magnetic field, and then extract them as needed. Antimatter annihilates with normal matter, producing pure energy. What strength magnetic field is needed to hold antiprotons, moving at 5.00 x10^7 m/s in a circular path 2.00m in radius? Antiprotons have the same mass as protons but the opposite (negative) charge.b) Is this field strength obtainable with today's technology or is it a futuristic possibility?
write down the following units in the ascending of their value A) mm nm cm um B) 1m 1cm 1km 1mm. convert the following units into SI without changing their values? A)3500g B)2.5km C)2h
Answer:
A) nm, um, mm, cm
B) 1mm, 1cm, 1m, 1km
A) 3500g, B) 2500m, C) 7200 seconds
What are stepdown transformers used for
Answer:
Step down transformers are used in power adaptors and rectifiers to efficiently decrease the voltage. They are also used in electronic SMPS.
Explanation:
pls mark me as brainlist
Thanks a lot
What word chemical equation describes this chemical reaction?
Answer : sodium + chlorine → sodium chloride
12) If, after viewing a specimen at low power, you switch to high-dry power and, after using fine focus, cannot find the specimen, what things could you do to help yourself (before calling me over to assist you?)
Answer:
See the answer below
Explanation:
After seeing an object on a slide at the low-power objective of the microscope and it disappears on changing to high power, the following can be done to resolve the problem
1. Drop a few drops of immersion oil on the slide and view again under high the power objective.
2. If the object is still not visible after the action above, return the microscope to the low-power objective and make sure the object is refocused and centered. Then carefully change back to the high power objective and use the fine adjustment to bring it into focus.
The north pole of magnet A will __?____ the south pole of magnet B
Answer:
A will attract
B will repare
what is the average velocity if the initial velocity is at rest and the final velocity is 16 m/s
Answer:
8m/s
Explanation:
Vavg= 16-0/2=8m/s
When you hammer a nail into wood, the nail heats up. 30 Joules of energy was absorbed by a 5-g nail as it was hammered into place. How much does the nail's temperature increase (in °C) during this process? (The specific heat capacity of the nail is 450 J/kg-°C, and round to 3 significant digits.
Answer:
13.33 K
Explanation:
Given that,
Heat absorbed, Q = 30 J
Mass of nail, m = 5 g = 0.005 kg
The specific heat capacity of the nail is 450 J/kg-°C.
We need to find the increase in the temperature during the process. The heat absorbed in a process is as follows:
[tex]Q=mc\Delta T\\\\\Delta T=\dfrac{Q}{mc}\\\\\Delta T=\dfrac{30}{0.005\times 450}\\\\=13.33\ K[/tex]
So, the increase in temperature is 13.33 K.
need help pleaseee,question is in the pic
Explanation:
For engine 1,
Energy removed = 239 J
Energy added = 567 J
[tex]\eta_1=\dfrac{239}{567}\cdot100=42.15\%[/tex]
For engine 2,
Energy removed = 457 J
Energy added = 789 J
[tex]\eta_2=\dfrac{457}{789}\cdot100=57.92\%[/tex]
For engine 3,
Energy removed = 422 J
Energy added = 1038 J
[tex]\eta_3=\dfrac{422}{1038}\cdot100=40.65\%[/tex]
So, the engine 2 has the highest thermal efficiency.
What is significant about the primary colors of pigments?
They can be mixed together to make almost any other color.
Any two primary colors of pigments combine to make white pigment.
Each primary color of pigment absorbs all other colors.
Any two primary colors of pigments combine to make black pigment.
Answer:
They can be mixed together to make almost any other color.
Explanation:
All the three primary colors can mix to form white color.
Blue and red mix to form a black color.
There are two beakers of water on the table. We can compare the average kinetic energy of the water molecules in the two beakers by measuring their
A temperatures.
B volumes.
C densities.
D masses.
Answer: masses
Explanation:
Trust me
a vehicle start moving at 15m/s. How long will it take to stop at a distance of 15m?
Answer:
Explanation:
Speed= distance/time
Or time = distance/speed
According to your question
Speed=15m/s
and. Distance=1.2km. ,we must change kilometer in meter because given speed is in m/s
D= 1.2km = 1.2×1000m =1200meter
Time = distance/ speed
1200/15 =80second
Or. 1min and 20 sec will be your answer.
Find the starting pressure of CCl4 at this temperature that produces a total pressure of 1.1 atm at equilibrium. Express the pressure in atmospheres to three significant figures.
The complete question is as follows: At 700 K, [tex]CCl_{4}[/tex] decomposes to carbon and chlorine. The Kp for the decomposition is 0.76.
Find the starting pressure of [tex]CCl_{4}[/tex] at this temperature that will produce a total pressure of 1.1 atm at equilibrium.
Answer: The starting pressure of [tex]CCl_{4}[/tex] is 0.79 atm.
Explanation:
The equation for decomposition of [tex]CCl_{4}[/tex] is as follows.
[tex]CCl_{4}(g) \rightleftharpoons C(s) + 2Cl_{2}(g)[/tex]
Let us assume that initial concentration of [tex]CCl_{4}[/tex] is 'a'. Hence, the initial and equilibrium concentrations will be as follows.
[tex]CCl_{4}(g) \rightleftharpoons C(s) + 2Cl_{2}(g)[/tex]
Initial: a 0 0
Equilibrium: (a - x) 0 2x
Total pressure = (a - x) + 2x = a + x
As it is given that the total pressure is 1.1 atm.
So, a + x = 1.1
a = 1.1 - x
Now, expression for equilibrium constant for this equation is as follows.
[tex]K_{p} = \frac{P^{2}_{Cl_{2}}}{P_{CCl_{4}}}\\0.76 = \frac{(2x)^{2}}{(a - x)}\\0.76 = \frac{4x^{2}}{1.1 - x - x}\\0.76 = \frac{4x^{2}}{1.1 - 2x}\\x = 0.31 atm[/tex]
Hence, the value of 'a' is calculated as follows.
a + x = 1.1 atm
a = 1.1 atm - x
= 1.1 atm - 0.31 atm
= 0.79 atm
Thus, we can conclude that starting pressure of [tex]CCl_{4}[/tex] is 0.79 atm.
A body of mass 4kg is moving with a velocity of 108km/h . find the kenetic energy of the body.
Answer:
KE = 2800 J
Explanation:
Usually a velocity is expressed as m/s. Then the energy units are joules.
[tex]\frac{108 km}{hr} * \frac{1000m}{1 km} * \frac{1 hour}{3600 seconds} =\frac{108*1000 m}{3600sec}[/tex]
v = 30 m / sec
KE = 1/2 * 4 * (30)^2
KE =2800 kg m^2/sec^2
KE = 2800 Joules
Typhoon signal number 2 is raised. What is the speed of the expected typhoon?
the simple answer is from 61kmph to 120kmph
Explanation:
no explanation is needed
Explain what a circuit breaker is and how it helps protect your house?
Explanation:
A circuit breaker is an electrical switch designed to protect an electrical circuit from damage caused by overcurrent/overload or short circuit. Its basic function is to interrupt current flow after protective relays detect a fault.
Circuit breakers have been designed to detect when there is a fault in the electricity, so it will “trip” and shut down electrical flow. ... This detection is key to preventing surges of electricity that travel to appliances or other outlets, which can cause them to break down
High-speed stroboscopic photographs show that the head of a -g golf club is traveling at m/s just before it strikes a -g golf ball at rest on a tee. After the collision, the club head travels (in the same direction) at m/s. Find the speed of the golf ball just after impact.
The question is incomplete. The complete question is :
High-speed stroboscopic photographs show that the head of a 200 g golf club is traveling at 60 m/s just before it strikes a 50 g golf ball at rest on a tee. After the collision, the club head travels (in the same direction) at 40 m/s. Find the speed of the golf ball just after impact.
Solution :
We know that momentum = mass x velocity
The momentum of the golf club before impact = 0.200 x 60
= 12 kg m/s
The momentum of the ball before impact is zero. So the total momentum before he impact is 12 kg m/s. Therefore, due to the conservation of momentum of the two bodies after the impact is 12 kg m/s.
Now the momentum of the club after the impact is = 0.2 x 40
= 8 kg m/s
Therefore the momentum of the ball is = 12 - 8
= 4 kg m/s
We know momentum of the ball, p = mass x velocity
4 = 0.050 x velocity
∴ Velocity = [tex]$\frac{4}{0.050}$[/tex]
= 80 m/s
Hence the speed of the golf ball after the impact is 80 m/s.
Betelgeuse (in Orion) has a parallax of 0.00451 + 0.00080 arcsec,as measured by the Hipparcos satellite. What is the distance to Betelgeuse, and what is the uncertainty in that measurement?
We have that the distance to Betelgeuse, and the uncertainty in that measurement is
[tex]d=(221.7\pm39.33)pc[/tex]Uncertainty U = 0.00080
From the Question we are told that
Betelgeuse (in Orion) has a parallax of 0.00451 + 0.00080
Generally
[tex]Distance\ in\ parsecs =\frac{ 1}{(parallax\ measured\ in\ arcseconds}[/tex]
Where
Parallax [tex]P =0.00451[/tex]
Uncertainty [tex]U = 0.00080[/tex]
Generally the equation for the distance is mathematically given as
[tex]d=(\frac{1}{P}pc\pm(\frac{U}{P}*100\%))[/tex]
Therefore
[tex]d=(\frac{1}{0.00451}pc\pm(\frac{0.00080}{0.00451}*100\%))[/tex]
[tex]d=(221.7\pm39.33)pc[/tex]
For more information on this visit
https://brainly.com/question/12319416?referrer=searchResults
A block of mass M is connected by a string and pulley to a hanging mass m. The coefficient of kinetic friction between block M and the table is 0.2, and also, M = 20 kg, m = 10 kg. How far will block m drop in the first seconds after the system is released?
How long will block M move during above time?
At the time, calculate the velocity of block M
Find out the deceleration of the block M, if the connected string is
removal by cutting after the first second. Then, calculate the time
taken to contact block M and pulley.
Answer:
a) y = 0.98 t², t=1s y= 0.98 m,
b) he two blocks must move the same distance
c) v = 1.96 m / s, d) a = -1.96 m / s², e) x = 0.98 m
Explanation:
For this exercise we can use Newton's second law
Big Block
Y axis
N-W = 0
N = M g
X axis
T- fr = Ma
the friction force has the expression
fr = μ N
fr = μ Mg
small block
w- T = m a
we write the system of equations
T - fr = M a
mg - T = m a
we add and resolved
mg- μ Mg = (M + m) a
a = [tex]g \ \frac{m - \mu M}{m+M}[/tex]
a = [tex]9.8 \ \frac{10- 0.2 \ 20}{ 10 \ +\ 20}[/tex]
a = 9.8 (6/30)
a = 1.96 m / s²
a) now we can use the kinematic relations
y = v₀ t + ½ a t²
the blocks come out of rest so their initial velocity is zero
y = ½ a t²
y = ½ 1.96 t²
y = 0.98 t²
for t = 1s y = 0.98 m
t = 2s y = 1.96 m
b) Time is a scale that is the same for the entire system, the question should be oriented to how far the big block will move.
As the curda is in tension the two blocks must move the same distance
c) the velocity of the block M
v = vo + a t
v = 0 + 1.96 t
for t = 1 s v = 1.96 m / s
t = 2 s v = 3.92 m / s
d) the deceleration if the chain is cut
when removing the chain the tension becomes zero
-fr = M a
- μ M g = M a
a = - μ g
a = - 0.2 9.8
a = -1.96 m / s²
e) the distance to stop the block is
v² = vo² - 2 a x
0 = vo² - 2a x
x = vo² / 2a
x = 1.96² / 2 1.96
x = 0.98 m
the time to travel this distance is
v = vo - a t
t = vo / a
t = 1.96 /1.96
t = 1 s
A hot air balloon is a sphere of volume 2210 m3. The density of the hot air inside is 1.13 kg/m3, while the air outside has a density of 1.29 kg/m3. The balloon itself has a mass of 240 kg. What is the TOTAL NET force acting on the balloon?
[?]N
The total net force acting on the balloon will be 24498 Newtons
Given that
Volume of the balloon = 2210 cubic meter
Density of the air inside the balloon = 1.13 kg/m3
What will be the net force exerted on the balloon ?Here force on the balloon will be equal to the weight of the air displaced by balloon
[tex]F= mass of air displaced\times gravity[/tex]
[tex]F= Density \times volume \times gravity[/tex]
[tex]F=1.13 \times 2210 \times 9.81[/tex]
[tex]F=24498 N[/tex]
The total net force acting on the balloon will be 24498 Newtons
To know more about buoyancy force follow
https://brainly.com/question/117714
Every object around you is attracted to you. In fact, every object in the galaxy is attracted to every other object in the galaxy.
a. True
b. False
Answer:
True
Explanation:
With the gravitational pull that our planets have, we are able to remain in orbit. This demonstrates how every object in the galaxy is attracted to every other object. Every object in the universe that has mass exerts a gravitational pull on every other mass. We as humans do it too, but since our force isn't strong, we don't have much of an effect. I hope this helped and please don't hesitate to reach out with more questions!
When an apple falls towards the earth,the earth moves up to meet the apple. Is this true?If yes, why is the earth's motion not noticeable?
Answer:
Yes, when an apple falls towards the earth, the apple gets accelerated and comes down due to the gravitational force of attraction used by the earth. The apple also exerts an equal and opposite force on the earth but the earth does not move because the mass of the apple is very small, due to which the gravitational force produces a large acceleration in it (a = F/m) but the mass of the earth is very large, the same gravitational force produces very small acceleration in the earth and we don't see the earth rising towards the apple.
what is Friction
short note on friction
Answer:
Explanation:
Friction can be defined as a force that resists the relative motion of two objects when there surface comes in contact. Thus, it prevents two surface from easily sliding over or slipping across one another. Also, friction usually reduces the efficiency and mechanical advantage of machines but can be reduced through lubrication.
Generally, there are four (4) main types of friction and these includes;
I. Static friction.
II. Rolling friction.
III. Sliding friction.
IV. Fluid friction.
A cannon and a supply of cannonballs are inside a sealed railroad car of length L, as in Fig. 7-33. The cannon fires to the right; the car recoils to the left. The cannonballs remain in the car after hitting the far wall. (a) After all the cannonballs have been fired, what is the greatest distance the car can have moved from its original position
Answer:
Initially let n cannonballs with a total mass of m be to the left of the center of mass at L /2 and the mass of the car at L/2
x1 = [-m / (m + M)] * L / 2 is the original position of the CM
x2 = (m (x + L/2) + M x) / (m + M) * L/2 final position of CM with all cannon balls to the right
[-m x - m L / 2 + m x - M x] / (M + m) * L/2
= - ( m L / 2 + M x) / (m + M) * L/2 = Xcm
Check the math, but maximum distance occurs when the cannonballs of mass m move from -L/2 to L/2 and the car of mass M moves from zero to -x
A 64-ka base runner begins his slide into second base when he is moving at a speed of 3.2 m/s. The coefficient of friction between his clothes and Earth is 0.70. He slides so that his speed is zero just as he reaches the base.
Required:
a. How much mechanical energy is tout due to friction acting on the runner?
b, How far does he slide?
Answer:
Explanation:
From the given information:
mass = 64 kg
speed = 3.2 m/s
coefficient of friction [tex]\mu =[/tex] 0.70
The mechanical energy touted relates to the loss of energy in the system as a result of friction and this can be computed as:
[tex]W = \Delta K.E[/tex]
[tex]\implies \dfrac{1}{2}m(v^2 -u^2)[/tex]
[tex]= \dfrac{1}{2}(64.0 \kg) (0 - (3.2 \ m/s^2))[/tex]
Thus, the mechanical energy touted = 327.68 J
According to the formula used in calculating the frictional force
[tex]F_r = \mu mg[/tex]
= 0.70 × 64 kg× 9.8 m/s²
= 439.04 N
The distance covered now can be determined as follows:
d = W/F
d = 327.68 J/ 439.04 N
d = 0.746 m