Answer:
f(g(9)) = 945/16
Step-by-step explanation:
To find f(g(x)), you have to substitute g(x) wherever there is an x in f(x).
g(x) = x + 3/4
f(x) = x² - 4x - 3
f(g(x)) = (x + 3/4)² - 4(x + 3/4) - 3
f(g(x)) = x² + 3/2x + 9/16 - 4x + 3 - 3
f(g(x)) = x² - 5/2x + 9/16 + 3 - 3
f(g(x)) = x² - 5/2x + 9/16
Now, put a 9 wherever there is an x in f(g(x)).
f(g(9)) = (9)² - 5/2(9) + 9/16
f(g(9)) = 81 - 5/2(9) + 9/16
f(g(9)) = 81 - 45/2 + 9/16
f(g(9)) = 117/2 + 9/16
f(g(9)) = 945/16
x = 4 7 9 I dont mind for a step by step
Answer:
[tex]\boxed{\sf x = 9}[/tex]
Step-by-step explanation:
According to chord-chord theorem:
=> [tex]x* 2 = 3 * 6[/tex]
=> [tex]2x = 18[/tex]
Dividing both sides by 2
=> x = 18/2
=> x = 9
What is the scale factor of this dilation?
Answer:
5/3
Step-by-step explanation:
on both sides we can see that the orginal length of 3 increased to five
therfore if we multiply 3 by 3/5 we get five which means the scale factor is 5/3
A study claimed residents in a suburb town spend at most 1.9 hours per weekday commuting to and from their jobs. A researcher believed commute times were now different and wants to test this claim by sampling 14 adults. Sample statistics for these 14 adults are: X = 2.2 $=0.7 Can the researcher support the claim that mean commuting time is more than 1.9 hours ? Test using a =.01.
Answer:
There is no sufficient evidence to support the claim that mean commuting time is more than 1.9 hours
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 1.9 \ hr[/tex]
The sample mean is [tex]\= x = 2.2[/tex]
The standard deviation is [tex]\sigma = 0.7[/tex]
The sample size is [tex]n = 14[/tex]
The level of significance is [tex]\alpha = 0.01[/tex]
The null hypothesis is [tex]H_o : \mu = 1.9 \ hr[/tex]
The alternative hypothesis is [tex]H_a : \mu > 1.9 \ hr[/tex]
Generally the test statistics is mathematically represented as
[tex]t = \frac{\= x - \mu }{ \frac{\sigma}{ \sqrt{n} } }[/tex]
[tex]t = \frac{ 2.2 - 1.9 }{ \frac{0.7 }{ \sqrt{14} } }[/tex]
[tex]t = 1.6036[/tex]
The p-value is obtained from the z-table, the value is
[tex]p-value = P(t > 1.6036) = 0.054401[/tex]
Looking at the value of [tex]p-value \ and \ \alpha[/tex] we see that [tex]p-value > \alpha[/tex]
So we fail reject the null hypothesis
Hence we can conclude that there is no sufficient evidence to support the claim that mean commuting time is more than 1.9 hours
Problem 1. (1 point) A steel ball weighing 128 pounds is suspended from a spring. This stretches the spring 128101 feet. The ball is started in motion from the equilibrium position with a downward velocity of 2 feet per second. The air resistance (in pounds) of the moving ball numerically equals 4 times its velocity (in feet per second) . Suppose that after t seconds the ball is y feet below its rest position. Find y in terms of t. (Note that this means that the positive direction for y is down.)
Answer:
seeed
Step-by-step] explanation:
ddd~!`
1. What is sin(A)?
1
T
2
2. What is
tan(B)?
5
3
4
13
12
이
3. What is
cos(C)?
5
3
B
5
6
4. What is
cos(D)?
7
AddP
Answer:
Sin A=0.6
Tan B = 1.3333
Cos C= 0.9231
Cos C= 0.3846
Step-by-step explanation:
For sin A
Sin A= opposite/hypotenuse
Sin A= 3/5
Sin A=0.6
For Tan B
Tan B = opposite/adjacent
Tan B = 4/3
Tan B = 1.3333
For cos C
Cos C = adjacent/hypotenuse
Cos C= 12/13
Cos C= 0.9231
For Cos D
Cos D= adjacent/hypotenuse
Cos C = 5/13
Cos C= 0.3846
Write the equation of the line that passes through (-1,5) and has a slope of 3 in point slope form
Answer:
y-5=3(x+1)
Step-by-step explanation:
we use the point-slope formula to plug all of our values in.
[tex]y-y_{1}=m(x-x_{1})[/tex]
Given the exponential function f(x) = 16(0.75)", classify the function as exponential growth or decay and determine the percent rate of growth or decay.
Exponential growth, 75% increase
O Exponential decay, 75% decrease
O Exponential growth, 25% increase
Exponential decay, 25% decrease
Answer:
D
Step-by-step explanation:
To determine if a function is exponential decay or growth, simply look at the rate. If the rate is less than one, it is decay. It it's greater than one, it's growth.
The rate in the given function is 0.75 or 75%. 0.75 is less than one so it's exponential decay.
To determine the percent decrease, simply subtract the rate into 1 or 100%. Thus:
[tex]1-0.75=0.25[/tex]
Therefore, it is a 0.25 or 25% decrease.
The answer is D.
Answer: D
Step-by-step explanation:
1-0.75=0.25
Therefore, it decreases Exponential decay,25 percent decrease
QUESTION TWO [25 MARKS] a) Your task is to interview a representative sample of attendees for the large concert venue where you work. The new season schedule includes 200 live concerts featuring all types of musicians and musical groups. Since neither the number of attendees nor their descriptive characteristics are known in advance you decide on nonprobability sampling. Based on past seating configurations, you can calculate the number of tickets that will be available for each of the 200 concerts. Thus, collectively, you will know the number of possible attendees for each type of music From attendance research conducted at concerts held by the Glacier Symphony during the previous two years, you can obtain gender data on attendees by type of music. How would you conduct a reasonably reliable nonprobability sampling? T5 marks] (b) A recent article in Nairobi Post Weekly Edition indicated that about 80% of the
Answer:
The answer to this question depends, in part, on the kinds of questions that you want to ask them. If the purpose of the survey is to try and figure out what concert patrons are thinking, then you want to try to get a good variety of ideas. In that case, you're no so interested in having a sample of individuals that's exactly representative of the population of concert goers. You only want to get a wide variety of the ideas that are out there. This is called heterogeneity sampling. That is, in this case, we'll be trying to get a sample not of people, but of ideas. In this case, we'd use brainstorming groups, panel sessions, and other group discussion methods to get all the ideas out there.
This approach is not an appropriate one if the purpose of the questions is to determine the preferences of the population of theater goers. That's because it doesn't communicate the popularity or prevalence of ideas in the sample. If this is a problem, and it likely is, it seems more appropriate to use some sort of purposive sampling method like modal interest sampling. This approach requires determining what the typical concert goer is like . If the company determines that the typical (or modal) attender is a young single person in college, then those people are sought out and interviewed. This is the sort of polling that is used in election polls where they interview "typical voters." For different genres of music and concert, a different typical concert goer could be postulated and different surveys and interview styles determined.
Probably most appropriate to this problem, though, is quota sampling. This form of purposive sampling uses demographic and other information to determine how many of different kinds of people to interview. For instance, if it is determined that only 20% of concert goers for a particular concert were women, then only 20% of the nonprobability sample should be made up of women. As long as these quotas are met, the sample can be sufficiently random.
I recommend using a combination of quota sampling and modal instance sampling. It seems to me that the kinds of people who attend concerts are idiosyncratic in some ways. Inasmuch as we can define universal characteristics of concert goers, we should seek to include only those people in the sample, but since we have demographic data as well, we should use these proportions as quotas as we select typical concert goers. For example, suppose we determine that the vast majority of people who attend operas make over $80,000/year, then we should limit our sample to people with that income level, but if we also know that 80% of opera attenders are women, we should work to insure that not more than 20% of our sample is men.
Weekly wages at a certain factory are
normally distributed with a mean of
$400 and a standard deviation of $50.
Find the probability that a worker
selected at random makes between
$450 and $500.
Answer:
13.59%
Step-by-step explanation:
Calculate the z-scores.
z = (x − μ) / σ
z₁ = (450 − 400) / 50
z₁ = 1
z₂ = (500 − 400) / 50
z₂ = 2
Use a chart or calculator to find the probability.
P(1 < Z < 2)
= P(Z < 2) − P(Z < 1)
= 0.9772 − 0.8413
= 0.1359
Answer:
13.5
Step-by-step explanation:
Acellus sux
What is the rate of change from x = 0 to x = pi over 2 ? (6 points) trig graph with points at: (0, negative 4) and (pi over 2, 0) and (pi, 4) and (3 pi over 2, 0) and (2 pi, negative 4)
Answer:
Rate of Change : 8 / π
Step-by-step explanation:
To determine this rate of change, we have to first consider the points at x = 0 and x = π / 2.
When x = 0, f( x ) = - 4,
When x = π / 2, f( x ) = 0
Remember that rate of change is represented by a change in y / change in x. Therefore,
( 0 - ( - 4 ) ) / ( π / 2 - 0 ),
( 0 + 4 ) / ( π / 2 ),
4 / π / 2 = 8 / π
Therefore the rate of change from x = 0 ➡ x = π / 2 will be 8 / π.
For f(x) = 3х – 5 and g(x) = х2+ 2, find (f+ g)(x).
ОА. ? + 3х – 7
ОВ. 3х2 – 30
Ос. 3х3 – 3
OD. х2 + 3х - з
Answer:
x^2 +3x -3
Step-by-step explanation:
f(x) = 3х – 5
g(x) = х^2+ 2,
(f+g)(x) = 3х – 5 +х^2+ 2
Combine like terms
= x^2 +3x -3
Reduce 18/24 to its lowest terms
Answer:
3/4
Step-by-step explanation:
find a common number that 18 and 24 are both divisible by. I chose 6. So when i divide 6 by 18, I got 3. Which I put on my numerator, when I divided 24 by 6 I got 4 which I put on my denominator. My end result was 3/4
Answer:
3/4
Step-by-step explanation:
18/24
=2*9=18
=2*12=24
=9/12
=3/4
Which of the following is not a characteristic of the F distribution? Multiple Choice It is always right-skewed. It describes the ratio of two variances. It is a family based on two sets of degrees of freedom. It is negative when s12 is smaller than s22.
Answer:
It is negative when s12 is smaller than s22.
Step-by-step explanation:
The F distribution has the following properties.
1) It is always right-skewed. but as the degrees of freedom v1 and v2 become large F distribution approaches normal distribution.
2) It describes the ratio of two variances.
3) It is a family based on two sets of degrees of freedom.
4) It is negative when s12 is smaller than s22. This is not true sometimes as the F distribution does not depend on the population variance but on the two parameters v1 and v2.
Point R divides PG in the ratio 1:3. If the x-coordinate of R is -1 and the x-coordinate of P is -3, what is the x-coordinate of Q
Answer:
option C . 5
Step-by-step explanation:
For two points (x1,y1) and (x2,y2) divided by a point p in ratio m:n then coordinates of that point is given by
p : (nx1+mx2)/(m+n), (ny1+my2)/(m+n),
Given
x coordinate of P (-3)
x coordinate of Q (a) since we have to find it , let it be a
x coordinate of R(-1)\
ratio = 1:3
_______________________________________
Using the above formula to find the point of division
we can get value of x coordinate for point Q
x coordinate of R = 3*-3 + 1*a/(1+3)
-1 = (-9 + a)/4
=> -4 = -9 +a
=>a = -4+9 = 5
Thus, x coordinate of Q is 5
y =
1
8
x + 3
A) Slope: 8; y-intercept: 3
B) Slope: 1
3
; y-intercept: 1
8
C) Slope: 1; y-intercept: 1
8
D) Slope: 1
8
; y-intercept: 3
Answer:
The slope is 1/8 and the y intercept is 3
Step-by-step explanation:
y = 1/8 x +3
This is in slope intercept form
y = mx+b where m is the slope and b is the y intercept
The slope is 1/8 and the y intercept is 3
Find an exact value of sin(17pi/12)
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
[tex]\frac{(17)(3.141593)}{12}[/tex]
= [tex]\frac{53.407075}{12}[/tex]
= [tex]4.45059[/tex]
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
If this helped you, could you maybe give brainliest..?
Also Have a great day/night!
❀*May*❀
I have an answer and explanation but I can't type so search up the question you asked and you should get an answer and explanation from s0cratic.
Mark has a collection of 80 coins. There are only nickels and dimes in the collection. The total value of the coins is $5.00. How many dimes does Mark have?
Answer:
number of nickel = 60
number of dimes = 20
Step-by-step explanation:
1 nickel = 5 cents
1 dimes = 10 cents
$1 = 100 cents
we will use these value to solve the questions
_______________________________
Total no of coins = 80
let the number of nickels be x
let the number of dimes be y
thus,
x+y = 80
y = 80-x equation 2
value of x nickels = 5x
value of y dimes = 10y
Total value of x nickels and y dimes = 5x+10y
The total value of the coins is $5.00
total value of the coins in cents = 5*100 = 500
thus
5x+10y = 500
using y = 80-x from equation 2
5x + 10(80 - x) = 500
5x + 800 - 10x = 500
-5x = 500 - 800 = -300
x = -300/-5 = 60
Thus,
number of nickel = 60
number of dimes = 80-60 = 20
Do numbers below 0 make sense outside of the context of temperature? If you think so, give some examples to show how they make sense. If you don’t think so, give some examples to show otherwise.
Answer:
Yes, they make sense outside the context of temperature.
Step-by-step explanation:
If you are standing in a line, and mark your current position as 0 then if you take two steps ahead it can be counted as positive and if you take two steps back from your current position it can be counted as negative. The positive and negative can denote your forward and backward movement respectively.
If we denote the growth in companies revenue as positive and dip as negative then it would also make sense. A positive number would mean profit for the company while a negative sign would show loss.
To apply Central Limit Theorem on sample proportions in One Sample Proportion test, the sample size and the population proportion under null hypothesis need to satisfy certain conditions. Which of the following scenarios meet the requirement?
A. The sample size is 50 and the population proportion under null hypothesis is 25%.
B. The sample size is 70 and the population proportion under null hypothesis is 90%.
C. The sample size is 50 and the population proportion under null hypothesis is 15%.
D. The sample size is 200 and the population proportion under null hypothesis is 4%.
Answer:
The sample size is 50 and population proportion under null hypothesis is 25% ( A ) meets the requirement
Step-by-step explanation:
when applying the central limit theorem on sample proportions in one sample proportion test .The conditions needed to be satisfied are np > 10, and n( 1-p ) > 10
A) sample size ( n ) = 50
population proportion = 25%
np = 50 * 0.25 = 12.5 which is > 10 ( 1st condition met )
n( 1 - p ) = 50( 1 - 0.25 ) = 37.5 which is > 10 ( second condition met )
B ) sample size (n) = 70
population proportion = 90%
np = 70*0.9 = 63 which is > 10 ( 1st condition met )
n(1-p) = 70 ( 1 - 0.9 ) = 7 which is < 10 ( second condition not met )
C) sample size ( n ) = 50
population proportion = 15% = 0.15
np = 50 * 0.15 = 7.5 which is < 10 ( 1st condition not met )
n ( 1 - p ) = 50 ( 1 - 0.15 ) = 50 * 0.85 = 42.5 which is > 10 ( second condition met )
D) sample size ( n ) = 200
population proportion = 4% = 0.04
np = 200 * 0.04 = 8 which is < 10 ( 1st condition not met )
n ( 1 - p ) = 200 ( 1 - 0.04 ) = 192 which is > 10 ( second condition met )
hence : The sample size of 50 with population proportion under null hypothesis of 25% meets the requirement
Name the vertex ot XYZ.
Answer:
Line BStep-by-step explanation:
When naming lines, you can use the label of the line, in this case, m, and can also name the points in either direction, since the line goes on forever in both directions (it's different with rays). The leaves only line B as an answer.
The vertex of XYZ would be Y, since the vertex is always the middle number.
I'm always happy to help :)What numbers are equivalent to 25%
Answer:
0.25 decimal
1/4 decimal
Step-by-step explanation:
A shopping centre wants to examine the amount of space required for parking. Studies indicated that 50% of staff and shoppers use public transportation. A survey of 1002 was taken, and 483 responded that they used public transportation. At 5% level of significance, is it reasonable to conclude that the survey results indicate a change?
Answer:
We accept H₀ data from the survey is not enough to claim that 50% of the proportion indicated in previous studies have change
Step-by-step explanation:
To get conclusions about the survey we need to develop a hypothesis test of proportion
According to previous studies, (p₀ ) 50 % of staff and customers use public transportation, and we got from a survey 0f 1002 people 483 responded they also use then p = 483/1002 then
n sample size is 1002 and p = 0,482 (48,2 % )
Test Hypothesis
Null hypothesis H₀ p = p₀
Alternative hypothesis Hₐ p < p₀
CI = 95 % α = 5 % α = 0,05 and from z-table we find z score for that value z(c) = - 1,64
z(s) = ( p - p₀ ) / √ (p₀*q₀)/ n p₀ = q₀ = 0,5
z(s) = - 0,018* 31,65 / 0,5
z(s) = - 1,1394
To compare
z(s) and z(c) -1,1394 > 1,64
Then z(s) is inside the acceptance region. We accept H₀ , because we don´t have enough evidence to claim that the survey results indicate a change in
the original proportion
What is the slope of the line shown below?
A.
B.
C.
-
D.
3
Answer:
D
Step-by-step explanation:
Option D is correct. Slope of the line shown in the graph is 3.
The slope of the line is the ratio of the rise to the run, or rise divided by the run.
It describes the steepness of line in the coordinate plane.
The slope intercept form of a line is y=mx+b, where m is slope and b is the y intercept.
The slope of line passing through two points (x₁, y₁) and (x₂, y₂) is
m=(y₂-y₁)/(x₂-x₁)
The line is passing through point (2, 2) and (4, 8).
Lets find the corresponding point values y₂= 8, y₁ = 2, x₂= 4 and x₁ =2.
Plug in the values in slope formula:
Slope = (8-2)/(4-2)
=6/2
=3
Hence, slope of the line shown in the graph is 3. Option D is correct.
To learn more on slope of line click:
https://brainly.com/question/16180119
#SPJ4
True or false? "In any sample data set, the sum of all the values is equal to the product of the mean and the sample size."
Answer:
TRUEStep-by-step explanation:
One of the method of analysing the distribution of a dataset is by finding the mean of the dataset which is part of the measure of central of tendency.
Mean of a dataset is also known as the average and it is the ratio of the sum of the individual dataset to the sample size.
Mathematically xbar = ΣXi/N where
ΣXi is the sum of the individual dataset
N is the sample size
xbar is the mean
From the formula, ΣXi = xbar * N
This means that the sum of the individual dataset (all values in the dataset) is equal to the product of the mean (xbar) and the sample size(N).
Hence the statement that In any sample data set, the sum of all the values is equal to the product of the mean and the sample size."is TRUE
Paisley is playing with a yo-yo. The following graph traces the path of the yo-yo while it is in the air, where y is the height of the yo-yo above the
ground, and x is the time, in seconds, from when the yo-yo leaves Paisley's hand Five stages of the yo-yo's path are marked on the graph.
Which of the five stages shows the slowest rate of change in the yo-yo's height above the ground?
А
В
C
D
Answer:
C
Step-by-step explanation:
From the graph we can notice that the yo-yo crosses five positions: A,B,C,D and E.
The path created by the yo-yo has a parabolic form.
● In the area C, the yoyo crosses the vertex in wich the rate of change equals 0.
●In A the parabola decreases dramatically
● In B, the parabola is decreasing but slower than A.
● In D, the parabola is increasing in a fast way
● In E, the parabola is increasing faster than D.
● In the first half of C, the parabola is decreasing slower than B and A.
● At the vertex, the parabola has a null rate of change.
● In the second half of C, the parabola is increasing but slower than D and E.
So we deduce that C has the slowest rate of change.
Answer:
The answer is C i took the test
Step-by-step explanation:
cherry pies ratio is 240 to 3 pies.how many Cherry's to make 9 pies
Answer:
720
Step-by-step explanation:
It takes 240 cherries to make 3 pies.
9 pies are 3 times 3 pies, so it takes 3 times as many cherries.
3 * 240 cherries = 720 cherries.
[tex]\text{Find how many cherries is needed for 9 pies}\\\\\text{We know that there are 240 total cherries on 3 pies}\\\\\text{Now we need to find how many cherries will 9 pies need}\\\\\text{We simply have to multiply 240 by 3, since 3 multiplied by 3 is 9 pies}\\\text{So we would do the same with the cherries by multiplying it by 3}\\\\240\cdot3=720\\\\\boxed{\text{720 cherries}}[/tex]
use the product of powers property to simplify the numeric expression.
4 1/3 • 4 1/5 = _____
Answer:
The value of [tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex] is [tex]4^{\dfrac{8}{15}}[/tex] .
Step-by-step explanation:
We need to simplify the numeric expression using property. The expression is as follows :
[tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex]
The property to be used is : [tex]x^a{\cdot} x^b=x^{a+b}[/tex]
This property is valid if the base is same. Here, base is x.
In this given problem, x = 4, a = 1/3 and b = 1/5
So,
[tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}}=4^{\dfrac{1}{3}+\dfrac{1}{5}}\\\\=4^{\dfrac{5+3}{15}}\\\\=4^{\dfrac{8}{15}}[/tex]
So, the value of [tex]4^{\dfrac{1}{3}} {\cdot} 4^{\dfrac{1}{5}[/tex] is [tex]4^{\dfrac{8}{15}}[/tex] .
An IQ test is designed so that the mean is 100 and the standard deviation is for the population of normal adults. Find the sample size necessary to estimate the mean IQ score of statistics students such that it can be said with % confidence that the sample mean is within IQ points of the true mean. Assume that and determine the required sample size.
Complete Question
An IQ test is designed so that the mean is 100 and the standard deviation is 24 for the population of normal adults. Find the sample size necessary to estimate the mean IQ score of statistics students such that it can be said with 95% confidence that the simple mean is with in 3 IQ points of the true mean. Assume that standard deviation = 24 and determine the required sample size using technology. Determine if this is a reasonable sample size for a real world calculation.
The required sample size ______ (round up to the nearest integer.
Answer:
The sample size is [tex]n = 246[/tex]
Step-by-step explanation:
From the question we are told that
The mean is [tex]\mu = 100[/tex]
The standard deviation is [tex]\sigma = 24[/tex]
The margin of error is [tex]E = 3[/tex]
Given that the confidence level is 95% then the level of significance is mathematically evaluated as
[tex]\alpha = 100 - 95[/tex]
[tex]\alpha = 5\%[/tex]
=> [tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table the value is
[tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
The sample size is evaluated as
[tex]n = [ \frac{ Z_{\frac{\alpha }{2} } * \sigma }{E }]^2[/tex]
=> [tex]n = [ \frac{ 1.96 * 24 }{3 }]^2[/tex]
=> [tex]n = 246[/tex]
to check if this n is applicable in real world then we calculate E and compare it with the given E
List the sides in order from the largest to the smallest. A. XY, YW, WX B. XY, WX, YW C. WX, YW, XY D. WX, XY, YW
Answer:
Option (D)
Step-by-step explanation:
By applying Sine rule in the given triangle WXY,
[tex]\frac{\text{SinW}}{\text{XY}}=\frac{\text{SinY}}{\text{XW}}=\frac{\text{SinX}}{\text{WY}}[/tex]
[tex]\frac{\text{Sin59}}{\text{XY}}=\frac{\text{Sin82}}{\text{XW}}=\frac{\text{Sin39}}{\text{WY}}[/tex]
[tex]\frac{\text{Sin59}}{\text{XY}}=\frac{\text{Sin82}}{\text{XW}}[/tex]
[tex]\frac{\text{XW}}{\text{XY}}=\frac{\text{Sin82}}{\text{Sin59}}[/tex]
= 1.1489
XW : XY ≈ 1.15 : 1
[tex]\frac{\text{Sin59}}{\text{XY}}=\frac{\text{Sin39}}{\text{WY}}[/tex]
[tex]\frac{\text{XY}}{\text{WY}}=\frac{\text{Sin59}}{\text{Sin39}}[/tex]
[tex]\frac{\text{XY}}{\text{WY}}=\frac{1.36}{1}[/tex]
[tex]\frac{\text{XY}}{\text{WY}}=\frac{\frac{1}{1}}{\frac{1}{1.36} }[/tex]
[tex]\frac{\text{XY}}{\text{WY}}=\frac{1}{0.7342}[/tex]
XY : WY = 1 : 0.7342
XW : XY : WY = 1.15 : 1 : 0.7342
Therefore, WX > XY > WY
Option (D). will be the correct option.
A sequence of 1 million iid symbols(+1 and +2), Xi, are transmitted through a channel and summed to produce a new random variable W. Assume that the probability of transmitting a +1 is 0.4. Show your work
a) Determine the expected value for W
b) Determine the variance of W
Answer:
E(w) = 1600000
v(w) = 240000
Step-by-step explanation:
given data
sequence = 1 million iid (+1 and +2)
probability of transmitting a +1 = 0.4
solution
sequence will be here as
P{Xi = k } = 0.4 for k = +1
0.6 for k = +2
and define is
x1 + x2 + ................ + X1000000
so for expected value for W
E(w) = E( x1 + x2 + ................ + X1000000 ) ......................1
as per the linear probability of expectation
E(w) = 1000000 ( 0.4 × 1 + 0.6 × 2)
E(w) = 1600000
and
for variance of W
v(w) = V ( x1 + x2 + ................ + X1000000 ) ..........................2
v(w) = V x1 + V x2 + ................ + V X1000000
here also same as that xi are i.e d so cov(xi, xj ) = 0 and i ≠ j
so
v(w) = 1000000 ( v(x) )
v(w) = 1000000 ( 0.24)
v(w) = 240000