Answer:
The sum of squared errors for the regression equation is 62.
Step-by-step explanation:
The sum of squared errors can be computed as follows:
X Y Y* = 2 + 3X Y - Y* (Y - Y*)^2
0 5 2 3 9
3 5 11 -6 36
7 27 23 4 16
10 31 32 -1 1
20 68 68 0 62
From the above, we have:
Error = Y - Y*
Error^2 = (Y - Y*)^2
Sum of squared errors = Sum of Error^2 = Total of (Y - Y*)^2 = 62
Therefore, the sum of squared errors for the regression equation is 62.
what is the value of -2x²y³ when ×=2 and y=4?
Answer:
1024
Step-by-step explanation:
Given :-
x = 2 y = 4Value of -2x²y³
2x³ y³2 * (2)³ * (4)³2 * 8 * 64 1024Answer:
254
Step-by-step explanation:
^ <- this is the square sign
-2x^y^3
x=2
y=4
put x values in to x place and y value in to y place.
-2(2)^2(4)^3
Find the squares and - it with 2
-2(4)(64)
2-256=254
:. the value of -2x^2y^3 =254
That the answer.
Hope this is what you asked.
A school contains 140 boys and 160 girls. what is the ratio of boys to girls?
I need full working out please
Answer:
7 : 8
Step-by-step explanation:
that is the procedure above
ABCD is a square of side 12 cm. It is formed from two rectangles AEGD and
EBCG. H is a point on AD and F is a point on BC.
Find the area of EFGH.
Answer:72 [tex]cm^{2}[/tex]
Solution 1:
Step 1: Find EF use Pythagorean theorem
[tex]EF^{2} = EB^{2} + BF^{2}[/tex]
[tex]EF^{2} = 6^{2} + 6^{2}[/tex]
EF = [tex]\sqrt{6^{2} + 6^{2} }[/tex] = 6[tex]\sqrt{2}[/tex] cm
Step 2: The area of EFGH = [tex]EF^{2}[/tex]= [tex](6\sqrt{2} )^{2}[/tex] = 72
Solution 2: See that the area of EFGH is equal [tex]\frac{1}{2}[/tex] the area of ABCD
The area of ABCD = 12x12 = 144
Thus, the area of EFGH = 144: 2 = 72:)
Have a nice day!
If $3000 is invested at 3% interest, find the value of the investment at the end of 7 years if the interest is compounded as follows. (Round your answers to the nearest cent.)
(i) annually
(ii) semiannually
(iii) monthly
(iv) weekly
(v) daily
(vi) continuously
Answer:
annualy=$3689.62
semiannually=$3695.27
monthly=$3700.06
weekly=$3700.81
daily=$3701.00
Continuously=$3701.03
Step-by-step explanation:
Given:
P=3000
r=3%
t=7 years
Formula used:
Where,
A represents Accumulated amount
P represents (or) invested amount
r represents interest rate
t represents time in years
n represents accumulated or compounded number of times per year
Solution:
(i)annually
n=1 time per year
[tex]A=3000[1+\frac{0.03}{1} ]^1^(^7^)\\ =3000(1.03)^7\\ =3689.621596\\[/tex]
On approximating the values,
A=$3689.62
(ii)semiannually
n=2 times per year
[tex]A=3000[1+\frac{0.03}{2}^{2(4)} ]\\ =3000[1+0.815]^14\\ =3695.267192[/tex]
On approximating the values,
A=$3695.27
(iii)monthly
n=12 times per year
[tex]A=3000[1+\frac{0.03}{12}^{12(7)} \\ =3000[1+0.0025]^84\\ =3700.0644[/tex]
On approximating,
A=$3700.06
(iv) weekly
n=52 times per year
[tex]A=3000[1+\frac{0.03}{52}]^3^6 \\ =3000(1.23360336)\\ =3700.81003[/tex]
On approximating,
A=$3700.81
(v) daily
n=365 time per year
[tex]A=3000[1+\frac{0.03}{365}]^{365(7)} \\ =3000[1.000082192]^{2555}\\ =3701.002234[/tex]
On approximating the values,
A=$3701.00
(vi) Continuously
[tex]A=Pe^r^t\\ =3000e^{\frac{0.03}{1}(7) }\\ =3000e^{0.21} \\ =3000(1.23367806)\\ =3701.03418\\[/tex]
On approximating the value,
A=$3701.03
What is the y-intercept of the graph of y = 2.5x? a. 2.5 c. 0 b. 1 d. -1
Answer:
answer is C
Step-by-step explanation:
General equation of a line is expressed as shown:
y = mx+c where;
m is the slope or gradient of the line
c is the intercept of the line
Given the equation of the line graph as y =2.5x
Comparing the given equation with the general equation, it is seen that m = 2.5 and c = 0 (since there is no value for the intercept)
Based on the explanation, the y-intercept of the graph is therefore 0
Answer:
B
Step-by-step explanation:
To find the x-intercept, substitute in
0 for y and solve for x
To find the y-intercept, substitute in 0 for x and solve for y
x-intercept(s): None
y-intercept(s): (0,1)
10=−4x+3x^2 solve
please help!
Answer:
-1.28 AND 2.61
Step-by-step explanation:
[tex]10= -4x+3x^2\\ 3x^2 -4x - 10 = 0\\\\[/tex]
use quadratic formula
x = [tex]\frac{-b+\sqrt{b^{2} -4ac} }{2a}[/tex] x = [tex]\frac{-b-\sqrt{b^{2} -4ac} }{2a}[/tex]
Solution/X-Intercepts: -1.28 AND 2.61
The parametric equations for the paths of two projectiles are given. At what rate is the distance between the two objects changing at the given value of t? (Round your answer to two decimal places.) x1 = 10 cos(2t), y1 = 6 sin(2t) First object x2 = 4 cos(t), y2 = 4 sin(t) Second object t = π/2
Answer:
- [tex]\frac{4}{\sqrt{29} }[/tex]
Step-by-step explanation:
The equations for the 1st object :
x₁ = 10 cos(2t), and y₁ = 6 sin(2t)
2nd object :
x₂ = 4 cos(t), y₂ = 4 sin(t)
Determine rate at which distance between objects will continue to change
solution Attached below
Distance( D ) = [tex]\sqrt{(10cos2(t) - 4cos(t))^2 + (6sin2(t) -4sin(t))^2}[/tex]
hence; dD/dt = - [tex]\frac{4}{\sqrt{29} }[/tex]
In the diagram, WZ=StartRoot 26 EndRoot.
On a coordinate plane, parallelogram W X Y Z is shown. Point W is at (negative 2, 4), point X is at (2, 4), point Y is at (1, negative 1), and point Z is at (negative 3, negative 1).
What is the perimeter of parallelogram WXYZ?
units
units
units
units
Answer:
[tex]P = 8 + 2\sqrt{26}[/tex]
Step-by-step explanation:
Given
[tex]W = (-2, 4)[/tex]
[tex]X = (2, 4)[/tex]
[tex]Y = (1, -1)[/tex]
[tex]Z = (-3,-1)[/tex]
Required
The perimeter
First, calculate the distance between each point using:
[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 -y_2)^2[/tex]
So, we have:
[tex]WX = \sqrt{(-2- 2)^2 + (4-4)^2 } =4[/tex]
[tex]XY = \sqrt{(2- 1)^2 + (4--1)^2 } =\sqrt{26}[/tex]
[tex]YZ = \sqrt{(1- -3)^2 + (-1--1)^2 } =4[/tex]
[tex]ZW = \sqrt{(-3--2)^2 + (-1-4)^2 } =\sqrt{26}[/tex]
So, the perimeter (P) is:
[tex]P = 4 + \sqrt{26} + 4 + \sqrt{26}[/tex]
[tex]P = 8 + 2\sqrt{26}[/tex]
Answer:
its D.
Step-by-step explanation:
took test
Which figure can be formed from the net?
pls answer fast for brainiest !
Answer:
It should be the top right one
(with 6ft as the height)
Step-by-step explanation:
Answer:
It must be the lower to the left choice.
Step-by-step explanation:
As you can see, the net we have is composed of only triangles.
So we should be choosing a figure with a triangular base.
Our answers are narrowed down into the top right and lower left choices because both figures have triangular bases.
The other person down there chose the top right choice and was incorrect, so the answer should be the lower to the left figure.
Also, its the lower left figure because look at the triangular base, it is an isosceles meaning that two sides have the same length.
If the net says that the long side measures 9 ft, then the other two sides should be the same length and shorter than 9 ft. So the answer is the lower left figure.
Hope this helps
Complete the information for that object by making estimates using appropriate units of measurement of the dimensions and by getting the actual measurements using an appropriate measuring instrument.
Answer:
hlo how are u?whats ur day is going
PLSHELPASAPDFFFFFFFFFFFFFFFFFFFFFFFFFF
im struggling with the same one
x(x-y) - y( x- y) simplify
Step-by-step explanation:
x²-xy-xy+y²
x²+2xy+y²
hope it helps
15. The area of a triangle is 72 in the base is 12 in. Find the height.
Answer:
[tex]hright =12[/tex]
Step-by-step explanation:
----------------------------------------
The formula to find the area of a triangle is [tex]A=\frac{1}{2}bh[/tex] where [tex]b[/tex] stands for the base and [tex]h[/tex] stands for the height.
But we already know the area and the base. So to find the height, let's substitute 72 for [tex]A[/tex] and 12 for [tex]b[/tex], and solve.
[tex]72=\frac{1}{2}(12)(h)[/tex]
[tex]72=6h[/tex]
Here, divide both sides by 6
[tex]12=h[/tex]
--------------------
Hope this is helpful.
Answer:
height = 12
Step-by-step explanation:
.............
Find the median: 16.12.7.9.10.16
Answer:
hey hi mate
hope you like it
plz mark it as brainliest
J. Aitchison collected expenditures data for 20 randomly selected single men and 20 randomly selected single women. He uses the data to conduct a hypothesis test to determine if the mean percent of expenditures that goes toward housing (including fuel and light) is different for men and women. What is the correct alternative hypothesis?
a. Md = 0
b. μα = 0
c. ud > 0
d. Opmen — Вwomen
e. Himen > Mwomen
f. Mmen Mwomen
Answer:
The alternative hypothesis is [tex]H_1: \mu_M - \mu_W \neq 0[/tex], considering M for men and W for women.
Step-by-step explanation:
He uses the data to conduct a hypothesis test to determine if the mean percent of expenditures that goes toward housing (including fuel and light) is different for men and women.
At the null hypothesis, we test if there is not difference, that is, the difference of the mean is 0, so:
[tex]H_0: \mu_M - \mu_W = 0[/tex]
At the alternative hypothesis, we test if there is a difference, that is, the difference of the means is different of 0, so:
[tex]H_1: \mu_M - \mu_W \neq 0[/tex]
Private nonprofit four-year colleges charge, on average, $26,208 per year in tuition and fees. The standard deviation is $7,040. Assume the distribution is normal. Let X be the cost for a randomly selected college. Round all answers to 4 decimal places where possible.
a. What is the distribution of X? X ~ N(
26208
Correct,
7040
Correct)
b. Find the probability that a randomly selected Private nonprofit four-year college will cost less than 22,924 per year.
c. Find the 60th percentile for this distribution. $
(Round to the nearest dollar.)
Answer:
#########
Step-by-step explanation:
The following data was collected to explore how the average number of hours a student studies per night and the student's GPA affect their ACT score. The dependent variable is the ACT score, the first independent variable (x1)is the number of hours spent studying, and the second independent variable (x2) is the student's GPA
Effects on ACT Scores
Study Hours GPA ACT Score
5 4 27
5 2 18
5 3 18
1 3 20
2 4 21
Step 1 of 2: Find the p-value for the regression equation that fits the given data. Round your answer to four decimal places.
Step 2 of 2: Determine if a statistically significant linear relationship exists between the independent and dependent variables at the 0.01 level of significance. If the relationship is statistically significant, identify the multiple regression equation that best fits the data, rounding the answers to three decimal places. Otherwise, indicate that there is not enough evidence to show that the relationship is statistically significant.
Answer:
Pvalue = 0.1505
y = 0.550x1 + 3.600x2 + 7.300
Step-by-step explanation:
Given the data :
Study Hours GPA ACT Score
5 4 27
5 2 18
5 3 18
1 3 20
2 4 21
Using technology, the Pvalue obtained using the Fratio :
F = MSregression / MSresidual = 30.228571/ 8.190476 = 3.69
The Pvalue for the regression equation is:
Using the Pvalue from Fratio calculator :
F(1, 3), 3.69 = 0.1505
Using the Pvalue approach :
At α = 0.01
Pvalue > α ; Hence, we fail to reject H0 and conclude that ; There is not enough evidence to show that the relationship is statistically significant.
The regression equation :
y = A1x1 + A2x2 +... AnXn
y = 0.550x1 + 3.600x2 + 7.300
x1 and x2 are the predictor variables ;
y = predicted variable
Which represents can be used to determine the slope of the linear function graphed below
Indicate the method you would use to prove the two 's . If no method applies, enter "none".
Answer:
AAS
Step-by-step explanation:
It will be angle angle side because you are given a side and two angles, and when you put them in the correct order, you will get AAS, or SAA (not the correct way to say it)
HELPPP PLEASEEE! I tried everything from adding to dividing, subtracting, multiplying but still no correct answer. Can someone help me out here please? I am not sure where to start either now. Thank you for your time.
You have some data points labeled by [tex]x[/tex]. They form the set {3, 5, 7}.
The mean, [tex]\bar x[/tex], is the average of these values:
[tex]\bar x = \dfrac{3+5+7}3 = \dfrac{15}3 = 5[/tex]
Then in the column labeled [tex]x-\bar x[/tex], what you're doing is computing the difference between each data point [tex]x[/tex] and the mean [tex]\bar x[/tex]:
[tex]x=3 \implies x-\bar x = 3 - 5 = -2[/tex]
[tex]x=5 \implies x-\bar x = 5-5 = 0[/tex]
[tex]x=7 \implies x-\bar x = 7 - 5 = 2[/tex]
These are sometimes called "residuals".
In the next column, you square these values:
[tex]x=3 \implies (x-\bar x)^2 = (-2)^2 = 4[/tex]
[tex]x=5 \implies (x-\bar x)^2 = 0^2 = 0[/tex]
[tex]x=7 \implies (x-\bar x)^2 = 2^2 = 4[/tex]
and the variance of the data is the sum of these so-called "squared residuals".
Which answers describe the shape below? Check all that apply.
A. Square
B. Quadrilateral
C. Rhombus
D. Trapezoid
E. Rectangle
F. Parallelogram
Answer:
b and f
Step-by-step explanation:
An urn contains 2 small pink balls, 7 small purple balls, and 6 small white balls.
Three balls are selected, one after the other, without replacement.
Find the probability that all three balls are purple
Express your answer as a decimal, rounded to the nearest hundredth.
Answer:
The probability is P = 0.08
Step-by-step explanation:
We have:
2 pink balls
7 purple balls
6 white balls
So the total number of balls is just:
2 + 7 + 6 = 15
We want to find the probability of randomly picking 3 purple balls (without replacement).
For the first pick:
Here all the balls have the same probability of being drawn from the urn, so the probability of getting a purple one is equal to the quotient between the number of purple balls (7) and the total number of balls (15)
p₁ = 7/15
Second:
Same as before, notice that because the balls are not replaced, now there are 6 purple balls in the urn, and a total of 14 balls, so in this case the probability is:
p₂ = 6/14
third:
Same as before, this time there are 5 purple balls in the urn and 13 balls in total, so here the probability is:
p₃ = 5/13
The joint probability (the probability of these 3 events happening) is equal to the product between the individual probabilities, so we have:
P = p₁*p₂*p₃ = (7/15)*(6/14)*(5/13) = 0.08
5. Lisa has a cubed-shaped box with a
volume of 512 cm. If Lisa fills the box
with 1-cubic centimeter blocks, how
many blocks make up each layer?
Answer:
64
Step-by-step explanation:
[tex]\sqrt[3]{512} = 8\\8x8 = 64[/tex]
1. Find the Perimeter AND Area of the figure
below.
2 ft
5 ft
2 ft
5 ft
Answer:
A = 16 ft^2
P = 20 ft
Step-by-step explanation:
P = perimeter
A = area
STEP 1: divide the shape into rectangles
Rectangle 1: 2ft*3ft
Rectangle 2: 2ft*5ft
STEP 2: Find the area of each rectangle
Equation for area of a rectangle = bh
Rectangle 1: b = 2, h = 3
Rectangle 2: b = 2, h = 5
(2 * 3) + (2 * 5)
6 + 10
16 ft^2
Now, we have to find the perimeter
STEP 1: Find the unknown side lengths.
To find the lengths of the sides not labeled, you have to use the lengths of the sides we already know.
The length of one parallel side is 5, and the length of another parallel side is 2. The length of the unknown side starts at the same place as the top of the side length that is 5, and ends at the top of the side length that is 2. This means that we have to subtract 2 from 5 in order to find the unknown side length.
STEP 2: Add up all the side lengths
P = 2 + 5 + 5 + 2 + 3 + 3
P = 20 ft
Don't forget to label your answers!!
I hope this made sense, it's is a little hard to explain in simple terms without being able to draw, but I hope it helped.
Find the solution of the differential equation that satisfies the given initial condition. (dP)/(dt)
Answer:
[tex]P = (\frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3})^2[/tex]
Step-by-step explanation:
Given
[tex]\frac{dP}{dt} = \sqrt{Pt[/tex]
[tex]P(1) = 2[/tex]
Required
The solution
We have:
[tex]\frac{dP}{dt} = \sqrt{Pt[/tex]
[tex]\frac{dP}{dt} = (Pt)^\frac{1}{2}[/tex]
Split
[tex]\frac{dP}{dt} = P^\frac{1}{2} * t^\frac{1}{2}[/tex]
Divide both sides by [tex]P^\frac{1}{2}[/tex]
[tex]\frac{dP}{ P^\frac{1}{2}*dt} = t^\frac{1}{2}[/tex]
Multiply both sides by dt
[tex]\frac{dP}{ P^\frac{1}{2}} = t^\frac{1}{2} \cdot dt[/tex]
Integrate
[tex]\int \frac{dP}{ P^\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
Rewrite as:
[tex]\int dP \cdot P^\frac{-1}{2} = \int t^\frac{1}{2} \cdot dt[/tex]
Integrate the left hand side
[tex]\frac{P^{\frac{-1}{2}+1}}{\frac{-1}{2}+1} = \int t^\frac{1}{2} \cdot dt[/tex]
[tex]\frac{P^{\frac{-1}{2}+1}}{\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
[tex]2P^{\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
Integrate the right hand side
[tex]2P^{\frac{1}{2}} = \frac{t^{\frac{1}{2} +1 }}{\frac{1}{2} +1 } + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{t^{\frac{3}{2}}}{\frac{3}{2} } + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + c[/tex] ---- (1)
To solve for c, we first make c the subject
[tex]c = 2P^{\frac{1}{2}} - \frac{2}{3}t^\frac{3}{2}[/tex]
[tex]P(1) = 2[/tex] means
[tex]t = 1; P =2[/tex]
So:
[tex]c = 2*2^{\frac{1}{2}} - \frac{2}{3}*1^\frac{3}{2}[/tex]
[tex]c = 2*2^{\frac{1}{2}} - \frac{2}{3}*1[/tex]
[tex]c = 2\sqrt 2 - \frac{2}{3}[/tex]
So, we have:
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + 2\sqrt 2 - \frac{2}{3}[/tex]
Divide through by 2
[tex]P^{\frac{1}{2}} = \frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3}[/tex]
Square both sides
[tex]P = (\frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3})^2[/tex]
19. The sum of a number m and a number n, multiplied by ninety-one 20. Forty-one times the difference when six is subtracted from a num- bera 21. A number r divided by the difference between eighty-three and ten 22. The total of a number p and twelve, divided by eighteen 23. The product of a number c and three more than the sum of nine and twelve 24. The sum of a number y and ten, divided by the difference when a number x is decreased by five. I need to convert all of them into expressions. PLEASE HELP.
Answer:
Step-by-step explanation:
19.
The numbers are m and n
Sum of m and n = m + n
Sum is multiplied by 91 = 91 x ( m + n )
20.
Let the number be = m
Six subtracted from the number = m - 6
41 times the difference = 41 x ( m - 6)
21.
Let the number be = r
Difference between 83 and 10 = 83 - 10 = 73
[tex]The \ number\ divided \ by\ the \ difference \ = \frac{r}{73}[/tex]
22.
Total of p and 23 = p + 12
[tex]Total \ divided \ by \ 18 = \frac{p + 12 }{18}[/tex]
23.
The product of c and 3 = 3c
Sum of 9 and 12 = 21
Product is more than Sum = 3c + 21
24.
Sum of y and 10 = y + 10
Number x decreased by 5 = x - 5
[tex]Sum \ divided \ by \ difference = \frac{ y + 10 }{x - 5}[/tex]
Please help me >_< will give out brainliest
====================================================
Explanation:
We have an octagon because there are n = 8 sides. The diagram below shows one way to number the sides so you can count them efficiently (without missing any or double counting any).
----------------
Plug n = 8 into the formula below
S = 180(n-2)
S = 180(8-2)
S = 180(6)
S = 1080
The 8 interior angles add up to 1080 degrees.
Thomas Supply Company Inc. is a distributor of gas-powered generators. As with any business, the length of time customers take to pay their invoices is important. Listed below, arranged from smallest to largest, is the time, in days, for a sample of The Thomas Supply Company Inc. invoices.
13 13 13 20 26 29 32 33 34 34 35 35 36 37 38
41 41 41 45 46 47 47 48 52 54 55 56 62 67 82
(Round your answers to 2 decimal places.)
a. Determine the first and third quartiles.
Q1 =
Q3 =
b. Determine the second decile and the eighth decile.
D2 =
D8 =
c. Determine the 67th per
Answer:
Q1 = 32.5
Q3 = 50
D2 = 29
D8 = 52
67th percentile = 46.5
Step-by-step explanation:
Given the ordered data:
13, 13, 13, 20, 26, 29, 32, 33, 34, 34, 35, 35, 36, 37, 38, 41, 41, 41, 45, 46, 47, 47, 48, 52, 54, 55, 56, 62, 67, 82
The first quartile :
Q1 = 1/4(n+1)th term
n = sample size = 30
Q1 = 1/4(31) = 7.75 = (7th + 8th) / 2 = (32+33) / 2 = 32.5
Q3 = 3/4(n+1)th term
n = sample size = 30
Q3 = 3/4(31) = 23.25 = (23rd + 24th) / 2 = (48+52) / 2 = 50
D2 = 2nd decile
2 * 10% = 20%
20% * n
0.2 * 30 = 6th = 29
D8 = 8th decile
8 * 10% = 80%
80% * 30 = 24th = 52
67th percentile :
0.67 * 30 = 20.1 th
(20th + 21th) / 2
(46 + 47) / 2
= 46.5
The function f is defined by the following rule. f(x) = 5x+1 Complete the function table.
Answer:
[tex]-5 \to -24[/tex]
[tex]-1 \to -4[/tex]
[tex]2 \to 11[/tex]
[tex]3 \to 16[/tex]
[tex]4 \to 21[/tex]
Step-by-step explanation:
Given
[tex]f(x) = 5x + 1[/tex]
Required
Complete the table (see attachment)
When x = -5
[tex]f(-5) = 5 * -5 + 1 = -24[/tex]
When x = -1
[tex]f(-1) = 5 * -1 + 1 = -4[/tex]
When x = 2
[tex]f(2) = 5 * 2 + 1 = 11[/tex]
When x = 3
[tex]f(3) = 5 * 3 + 1 = 16[/tex]
When x = 4
[tex]f(4) = 5 * 4 + 1 = 21[/tex]
So, the table is:
[tex]-5 \to -24[/tex]
[tex]-1 \to -4[/tex]
[tex]2 \to 11[/tex]
[tex]3 \to 16[/tex]
[tex]4 \to 21[/tex]
Yellowstone National Park is a popular held trip destination. This year the senior class at
High School A and the senior class at High School B both planned trips there. The senior
class at High School A rented and filed 2 vans and 3 buses with 153 students. High
School Brented and nited il vans and 10 buses with 534 students. Every van had the
same number of students in it as did the buses. Find the number of students in each van
and in each bus.
Van: 39
Bus: 18
Van: 21
Bus: 21
o
Van: 27
Bus: 19
.
Van: 18
Bus: 39
Answer:
Who was the first president of United States?