Answer:
sorting;
2,7002,5002,450 2,250greatest = 2,700
least = 2,250
HAVE A NİCE DAY
Step-by-step explanation:
GREETINGS FROM TURKEY ツ
please answer me as soon as posible
Answer:
yes your answer is right
Answer:
Yes it's Perfectly correct
1 Find the value of C to that the function probability density function defined as follow, also calculate the man and variance /4
X -1 0 1
f(x) 3c 3c 6c
Answer:
[tex]c = \frac{1}{12}[/tex]
The mean of the distribution is 0.25.
The variance of the distribution is of 0.6875.
Step-by-step explanation:
Probability density function:
For it to be a probability function, the sum of the probabilities must be 1. The probabilities are 3c, 3c and 6c, so:
[tex]3c + 3c + 6c = 1[/tex]
[tex]12c = 1[/tex]
[tex]c = \frac{1}{12}[/tex]
So the probability distribution is:
[tex]P(X = -1) = 3c = 3\frac{1}{12} = \frac{1}{4} = 0.25[/tex]
[tex]P(X = 0) = 3c = 3\frac{1}{12} = \frac{1}{4} = 0.25[/tex]
[tex]P(X = 1) = 6c = 6\frac{1}{12} = \frac{1}{2} = 0.5[/tex]
Mean:
Sum of each outcome multiplied by its probability. So
[tex]E(X) = -1(0.25) + 0(0.25) + 1(0.5) = -0.25 + 0.5 = 0.25[/tex]
The mean of the distribution is 0.25.
Variance:
Sum of the difference squared between each value and the mean, multiplied by its probability. So
[tex]V^2(X) = 0.25(-1-0.25)^2 + 0.25(0 - 0.25)^2 + 0.5(1 - 0.25)^2 = 0.6875[/tex]
The variance of the distribution is of 0.6875.
Consider the quadratic function y = 0.3 (x-4)2 - 2.5
Determine the axis of symmetry, x =
Answer:
[tex]x=4[/tex]
Step-by-step explanation:
We have the quadratic function:
[tex]\displaystyle y=0.3(x-4)^2-2.5[/tex]
And we want to determine its axis of symmetry.
Notice that this is in vertex form:
[tex]y=a(x-h)^2+k[/tex]
Where (h, k) is the vertex of the parabola.
From our function, we can see that h = 4 and k = -2.5. Hence, our vertex is the point (4, -2.5).
The axis of symmetry is equivalent to the x-coordinate of the vertex.
The x-coordinate of the vertex is 4.
Therefore, the axis of symmetry is x = 4.
Question:
which is a y-intercept of the graphed function?
Answers:
A. (-9,0)
B. (-3,0)
C. (0,-9)
D. (0,-3)
Answer:
(0, -9)
Step-by-step explanation:
The y intercept is the y value when x =0
(0, -9)
A storage box with a square base must have a volume of 80 cubic centimeters. The top and bottom cost $0.20 per square centimeter and the sides cost $0.10 per square centimeter. Find the dimensions that will minimize cost. (Let x represent the length of the sides of the square base and let y represent the height. Round your answers to two decimal places.) x
Answer:
Box dimensions:
x = 3.42 cm
y = 6.84 cm
C(min) = 14.04 $
Step-by-step explanation:
We need the surface area of the cube:
S(c) = 2*S₁ ( surface area of top or base) + 4*S₂ ( surface lateral area)
S₁ = x² 2*S₁ = 2*x²
Surface lateral area is:
4*S₂ = 4*x*h V(c) = 80 cm³ = x²*h h = 80/x²
4*S₂ = 4*80/x
4*S₂ = 320 / x
Costs
C (x) = 0.2* 2*x² + 0.1 * 320/x
Taking derivatives on both sides of the equation we get:
C´(x) = 0.8*x - 32/x²
C´(x) = 0 0.8*x - 32/x² = 0
0.8*x³ - 32 = 0 x³ = 32/0.8
x³ = 40
x = 3.42 cm
h = 80/(3.42)² h = 6.84 cm
To find out if x = 3.42 brings a minimum value for C we go to the second derivative
C´´(x) = 64/x³ is always positive for x > 0
The C(min) = 0.4*(3.42)² + 32/(3.42)
C(min) = 4.68 + 9.36
C(min) = 14.04 $
Which of the following numbers is rational? Assume that the decimal patterns continue.
Answer:
[tex]\sqrt{49}[/tex]
Step-by-step explanation:
Define a rational number by a number able to expressed a fraction where the denominator is not 0 or 1.
Non-terminating (never-ending) decimals cannot be expressed as a fraction and therefore are irrational. However, recall that [tex]\sqrt{49}=7[/tex], which can be expressed as a fraction (e.g. [tex]\frac{14}{2}[/tex], etc). Thus, the answer is [tex]\boxed{\sqrt{49}}[/tex].
In which quadrant do the points have negative x-coordinates and negative y-coordinates?
Hi there!
»»————- ★ ————-««
I believe your answer is:
Quadrant III
»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻
The plane is split into four quadrants. Quadrant III houses all the points with negative signs for both X and Y values.⸻⸻⸻⸻
See the attached picture for reference.
⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
What is the volume of a cone with a height of 27 cm
and a radius of 13 cm? Round your answer to the
nearest tenth.
Use the button on your calculator to complete this
problem.
V=
cm3
Answer:4778.3 cm^3
Step-by-step explanation: The formula for volume of a cone is V=1/3h pi r^2. By plugging in the height and the radius we get our answer.
Answer:
4778.4 :)
Step-by-step explanation:
Choose the system of inequalities that best matches the graph below.
Answer:
"D" is the correct answer
Step-by-step explanation:
Solve using the substitution method
16x – 4y = 16
4x - 4 = y
Answer:
y = 4 x − 4
Step-by-step explanation:
HELP!!!!!! I need an answer fasttttt
Answer:
see the attachment
Step-by-step explanation:
Hope it helps you
HELP HELP HELP MATH⚠️⚠️⚠️⚠️⚠️
Find four consecutive integers with the sum of 2021
Answer:
This problem has not solution
Step-by-step explanation:
lets the integers be:
x
x+1
x+2
x+3
so:
x+(x+1)+(x+2)+(x+3)=2021
x+x+x+x+1+2+3=2021
4x+6=2021
4x=2021-6=2015
x=2015/4=503.75
x is not a integer
Can someone solve this for me and a couple more questions ?
Answer:
C. -4
Step-by-step explanation:
Answer:
(c) - 4
is your right answer
Components arriving at a distributor are checked for defects by two different inspectors (each component is checked by both inspectors). The first inspector detects 83% of all defectives that are present, and the second inspector does likewise. At least one inspector does not detect a defect on 34% of all defective components. What is the probability that the following occur
Complete question is;
Components arriving at a distributor are checked for defects by two different inspectors (each component is checked by both inspectors). The first inspector detects 83% of all defectives that are present, and the second inspector does likewise. At least one inspector does not detect a defect on 34% of all defective components. What is the probability that the following occurs?
(a) A defective component will be detected only by the first inspector?
b) A defective component will be detected by exactly one of the two inspectors?
(c) All three defective components in a batch escape detection by both inspectors (assuming inspections of different components are independent of one another)?
Answer:
A) 0.17
B) 0.34
C) 0
Step-by-step explanation:
a) We are told that the first inspector(A) detects 83% of all defectives that are present, and the second inspector(B) also does the same.
This means that;
P(A) = P(B) = 83% = 0.83
We are also told that at least one inspector does not detect a defect on 34% of all defective components.
Thus;
P(A' ⋃ B') = 0.34
Also, we now that;
P(A ⋂ B) = 1 - P(A' ⋃ B')
P(A ⋂ B) = 1 - 0.34
P(A ⋂ B) = 0.66
Probability that A defective component will be detected only by the first inspector is;
P(A ⋂ B') = P(A) - P(A ⋂ B)
P(A ⋂ B') = 0.83 - 0.66
P(A ⋂ B') = 0.17
B) probability that a defective component will be detected by exactly one of the two inspectors is given as;
P(A ⋂ B') + P(A' ⋂ B) = P(A) + P(B) - 2P(A ⋂ B)
P(A) + P(B) - 2P(A ⋂ B) ; 0.83 + 0.83 - 2(0.66) = 0.34
C) Probability that All three defective components in a batch escape detection by both inspectors is written as;
P(A' ⋃ B') - (P(A ⋂ B') + P(A' ⋂ B))
Plugging in the relevant values, we have;
0.34 - 0.34 = 0
Use the parametric equations of an ellipse, x=acosθ, y=bsinθ, 0≤θ≤2π , to find the area that it encloses.
Answer:
Area of ellipse=[tex]\pi ab[/tex]
Step-by-step explanation:
We are given that
[tex]x=acos\theta[/tex]
[tex]y=bsin\theta[/tex]
[tex]0\leq\theta\leq 2\pi[/tex]
We have to find the area enclose by it.
[tex]x/a=cos\theta, y/b=sin\theta[/tex]
[tex]sin^2\theta+cos^2\theta=x^2/a^2+y^2/b^2[/tex]
Using the formula
[tex]sin^2x+cos^2x=1[/tex]
[tex]\frac{x^2}{a^2}+\frac{y^2}{b^2}=1[/tex]
This is the equation of ellipse.
Area of ellipse
=[tex]4\int_{0}^{a}\frac{b}{a}\sqrt{a^2-x^2}dx[/tex]
When x=0,[tex]\theta=\pi/2[/tex]
When x=a, [tex]\theta=0[/tex]
Using the formula
Area of ellipse
=[tex]\frac{4b}{a}\int_{\pi/2}^{0}\sqrt{a^2-a^2cos^2\theta}(-asin\theta)d\theta[/tex]
Area of ellipse=[tex]-4ba\int_{\pi/2}^{0}\sqrt{1-cos^2\theta}(sin\theta)d\theta[/tex]
Area of ellipse=[tex]-4ba\int_{\pi/2}^{0} sin^2\theta d\theta[/tex]
Area of ellipse=[tex]-2ba\int_{\pi/2}^{0}(2sin^2\theta)d\theta[/tex]
Area of ellipse=[tex]-2ba\int_{\pi/2}^{0}(1-cos2\theta)d\theta[/tex]
Using the formula
[tex]1-cos2\theta=2sin^2\theta[/tex]
Area of ellipse=[tex]-2ba[\theta-1/2sin(2\theta)]^{0}_{\pi/2}[/tex]
Area of ellipse[tex]=-2ba(-\pi/2-0)[/tex]
Area of ellipse=[tex]\pi ab[/tex]
In an examination every student took history or geography or both of 500 candidates 60% took history whiles 72% took geography. How many students took both subjects
Answer:
80 students
Step-by-step explanation:
Answer:
80
Step-by-step explanation:
60% of 500 = 300
72% of 500 = 360
40% of 500 = 200
28% of 500 = 140
300+360 = 660
660 - 2x = 500
660 - 500 = 2x
160 = 2x
2x = 160
x = 80
If y- 1 equals 10 then y
Answer:
11
Step-by-step explanation:
y-1=10
Any figure that crosses equal sign, the operational sign changes.
y=10+1
y= 11
ab=6cm ac=12 calculate the length of cd
Answer:
is that the full question?
Answer:
Solution:-
Given,
ab =perpendicular (p)= 6cm
ac =hypotenuse (h)= 12cm
cd =base (b)= ?
using , Pythagoras theorem we have ,
b²=√h²-p²
or,cd²=√ac²-ab²
= √12²-6²
= √144-36
=√108
=√10.8²
=10.8cm
the length of cd is 10.8 cm
hope it is helpful to you
Solve. SHOW ALL YOUR WORK
2.51 * .2
77/ 1.2
Answer:
0.502
64.1666
Step-by-step explanation:
Detained explanation of the product operation and division operation is attached below.
2.51 * 0.2 = 0.502
(after multiplying) the number of decimal places of the town values is added and counted from the right in the product to place the data Comal point appropriately.
77/1.2 ; values were multiplied by 10 in other to obtain inter values for the denominator.
What type of line is PQ⎯⎯⎯⎯⎯⎯⎯⎯?
Answer:
median
Step-by-step explanation:
Q is at the midpoint of RS and so PQ is a median
A median is a segment from a vertex to the midpoint of the opposite side.
We want to define what type of line is PQ (the line that passes through points P and Q) by looking at the given image, one can easily see that the line PQ is a median, now let's explain why.
First, let's analyze the image:
In the image, we can see that P is one vertex of the triangle, and Q is the midpoint of the segment RS (you can see that RQ = 4 and QS = 4) , where R and S are the other two vertexes of the triangle.
Particularly, we can define a median of a triangle as the line that passes through the midpoint of one side of the triangle and by the vertex that does not belong to that side.
With that definition, we can see that PQ is a median because Q is the midpoint of one side of the triangle and P is the vertex that does not belong to that side.
If you want to learn more, you can read:
https://brainly.com/question/2272632
evaluate the expression when b= -6 and c=3
-4c+b
Answer:
-18
Step-by-step explanation:
b = -6
c = 3
-4c + b = ?
Plug in the value of each variable into the equation
-4c + b = ?
= -4(3) + (-6)
= -12 - 6
= -18
Let v=-9i+j and w=-i-6j find 8v-6w
Answer:
78i+52j
Step-by-step explanation:
8(9i+2j)-6(-i-6j)
72i+16j+6i+36j
=78i+52j
HELP ASAP! I don’t know how to solve this problem nor where to start. Can someone please help me out here?
===============================================
Explanation:
It might help to draw out the picture as shown below. The pool itself (just the water only) is the inner rectangle. The outer rectangle is the pool plus the border of those 1 by 1 tiles.
The pool is a rectangle 90 feet by 80 feet. If we add on the tiles, then we get a larger rectangle that is 90+2 = 92 feet by 80+2 = 82 feet.
We add on 2 since we're adding two copies of "1" on either side of each dimension.
The larger rectangle's area is 92*82 = 7544 square feet
The smaller rectangle's area is 90*80 = 7200 square feet
The difference in areas is 7544-7200 = 344 square feet.
Each 1 by 1 tile is of area 1*1 = 1 sq foot, meaning that 344 tiles will get us the 344 square foot border around the pool.
An automatic machine inserts mixed vegetables into a plastic bag. Past experience revealed that some packages were underweight and some were overweight, but most of them had satisfactory weight.
Weight % of Total Underweight 2.5 Satisfactory 90.0 Overweight 7.5a) What is the probability of selecting and finding that all three bags are overweight?b) What is the probability of selecting and finding that all three bags are satisfactory?
Answer:
a) 0.000016 = 0.0016% probability of selecting and finding that all three bags are overweight.
b) 0.729 = 72.9% probability of selecting and finding that all three bags are satisfactory
Step-by-step explanation:
The condition of the bags in the sample is independent of the other bags, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
a) What is the probability of selecting and finding that all three bags are overweight?
2.5% are overweight, which means that [tex]p = 0.025[/tex]
3 bags means that [tex]n = 3[/tex]
This probability is P(X = 3). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 3) = C_{3,3}.(0.025)^{3}.(0.975)^{0} = 0.000016[/tex]
0.000016 = 0.0016% probability of selecting and finding that all three bags are overweight.
b) What is the probability of selecting and finding that all three bags are satisfactory?
90% are satisfactory, which means that [tex]p = 0.9[/tex]
3 bags means that [tex]n = 3[/tex]
This probability is P(X = 3). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 3) = C_{3,3}.(0.9)^{3}.(0.1)^{0} = 0.729[/tex]
0.729 = 72.9% probability of selecting and finding that all three bags are satisfactory
Which of the following is a like radical to cube rt of 7x
Answer:
[tex]\sqrt[3]{7x}[/tex]
Step-by-step explanation:
Given
[tex]7x[/tex]
Required
The radical statement
Cube root is represented as:
[tex]\sqrt[3]{}[/tex]
Considering [tex]7x[/tex], the expression is:
[tex]\sqrt[3]{7x}[/tex]
rotation 180 degrees about the origin.
Answer:
Click the rotate 'button' twice.
Observe.
The rotate button is rotating the image about the orgin.
Answer:
Click the rotate 'button' twice.
Observe.
The rotate button is rotating the image about the orgin.
Step-by-step explanation:
A statistician calculates that 7% of Americans are vegetarians. If the statistician is correct, what is the probability that the proportion of vegetarians in a sample of 403 Americans would differ from the population proportion by more than 3%
Answer:
0.0182 = 1.82% probability that the proportion of vegetarians in a sample of 403 Americans would differ from the population proportion by more than 3%.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
A statistician calculates that 7% of Americans are vegetarians.
This means that [tex]p = 0.07[/tex]
Sample of 403 Americans
This means that [tex]n = 403[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.07[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.07*0.93}{403}} = 0.0127[/tex]
What is the probability that the proportion of vegetarians in a sample of 403 Americans would differ from the population proportion by more than 3%?
Proportion below 7 - 3 = 4% or above 7 + 3 = 10%. Since the normal distribution is symmetric, these probabilities are equal, which means that we find one of them, and multiply by 2.
Probability the proportion is below 4%
p-value of Z when X = 0.04.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.04 - 0.07}{0.0127}[/tex]
[tex]Z = -2.36[/tex]
[tex]Z = -2.36[/tex] has a p-value of 0.0091
2*0.0091 = 0.0182
0.0182 = 1.82% probability that the proportion of vegetarians in a sample of 403 Americans would differ from the population proportion by more than 3%.
You are dealt one card from a 52-card deck.
a) Find the odds in favor of getting a red king.
b) Find the odds against getting a red king.
Answer:
(a)So, there are 2 kings in red- one of hearts and the other of diamonds. Therefore, the probability of selecting a red king from a deck of cards= 2/52 or 1/26.
(b) There are 6 red face cards in a 52-card deck (so 46 other cards). PROBABILITIES compare the number of favorable outcomes to the total number of possible outcomes: The PROBABILITY of getting a red face card is 6/52 = 3/26.
The odds in favor of getting a red king will be 1/26. And the odds against getting a red king will be 25/26.
What is probability?Its basic premise is that something will almost certainly happen. The percentage of favorable events to the total number of occurrences.
You are dealt one card from a 52-card deck.
Total events = 52
The odds in favor of getting a red king will be
Favorable events = 2
Then the probability will be
P = 2/52
P = 1/26
The odds against getting a red king will be
q = 1 – P
q = 1 – 1/26
q = 25/26
More about the probability link is given below.
https://brainly.com/question/795909
#SPJ2
You are making a committee from the class and need to have 6 students on it. There are 32 students in the class.
answer in permutations
Answer:
32P6
Step-by-step explanation:
nPr
n=32
r=6
What is y=-2(x+3)^2+2
Answer:
y = -2(x + 3)² + 2
y = 2{ -(x + 3)²+ 1}
y = 2{ -(x² + 6x + 9) + 1}
y = 2{ -x² - 6x - 9 + 1}
y = 2{ -x² - 6x - 8 }
y = -2 { x² + 6x + 8}
OR
y = -2{(x + 4)(x + 2)}