Answer: Liz is further away. Her distance from Robert is 5 units.
=================================================
Work Shown:
R = Robert's location = (4,3)
L = Lucy's location = (6,1)
Z = Liz's location = (1,7)
We need to find the lengths of segments RL and RZ to find out which person (Lucy or Liz) is further from Robert.
Use the distance formula to find the length of each segment. Let's start with the distance from R to L
[tex]d = \sqrt{(x_1+x_2)^2+(y_1+y_2)^2}\\\\d = \sqrt{(4-6)^2+(3-1)^2}\\\\d = \sqrt{8}\\\\d \approx 2.828427\\\\[/tex]
The distance from Robert to Lucy is approximately 2.828427 units.
--------------
Now find the distance from R to Z
[tex]d = \sqrt{(x_1+x_2)^2+(y_1+y_2)^2}\\\\d = \sqrt{(4-1)^2+(3-7)^2}\\\\d = \sqrt{25}\\\\d = 5\\\\[/tex]
The distance from Robert to Liz is exactly 5 units. We see that Liz is further away from Robert, compared to Lucy's distance from him.
Write the slope-intercept form of the equation for the line. (-1,-3) (1,1)
Answer:
y = 2 x − 1
Step-by-step explanation:
Answer:
2
Step-by-step explanation:
We can find the slope from the slope equation
m = (y2-y1)/(x2-x1)
= ( 1- -3)/(1 - -1)
= (1+3)/(1+1)
= 4/2
=2
ASAP PLZ ANSWER 50 POINTS How do I determine if -3x+y =8 is a function?
Answer:
To determine if Y=-8 is a function, you must do the vertical line test. If you were to plot Y=-8 on a coordinate plane, you would see that at the point of (0,-8)[which is what Y=-8 is also] is on the Y axis and makes a horizontal linet hat passes through (o,-8).
Step-by-step explanation:
Answer:
graph
Step-by-step explanation:
did you mean in graph
Use a trigonometric ratio to find the value of x. Round your answer to the nearest tenth.
3.1
3.4
4.8
2.6
I'm really confused with this plz help
Answer:
4 terms
constant 10
third term is -7z
coefficient of the second term is 3
Step-by-step explanation:
-5x+3y -7z +10
There are 4 terms, -5x, 3y ,-7x, 10
The constant is the term without the variable ( letter)
The constant is 10
The third term is -7z
The coefficient is the number in front of the variable
The coefficient of the second term 3y is 3
For part a, we are asked how many terms does this expression have.
Well a term can be a number, a variable, or it can
even be a number times one or more variables.
So the terms would be -5x, +3y, -7z, and +10.
For part b, we are asked what is the constant.
Usually, constants are numbers all by themselves.
So here, the constant would be 10.
In part c, we are asked what is the third term.
Well, looking at the expression, we can see that -7z is the third term.
Finally, what is the coefficient of the second term.
The coefficient is the number before your variable.
So here, the coefficient would be 3.
I WILL GIVE BRAINLEST PLEASE HELP
Which of the following is an example of the difference of two squares?
A x2−9
B x3−9
C (x+9)2
D (x−9)2
I know the answer is either A or B i might be wrong tho pls help im not sure.
Answer:
A
Step-by-step explanation:
In this question, we are concerned with selecting which of the options best represents the difference of two squares.
Let’s have an exposition below as follows;
Consider two numbers, which are perfect squares and can be expressed as a square of their square roots;
a^2 and b^2
where a and b represents the square roots of the numbers respectively.
Inserting a difference between the two, we have;
a^2 - b^2
Now by applying the difference of two squares, these numbers will become;
a^2 - b^2 = (a + b)(a-b)
So our answer out of the options will be that option that could be expressed as above.
The correct answer to this is option A
Kindly note that;
x^2 -9 can be expressed as x^2 - 3^2 and consequently, this can be written as;
(x-3)(x + 3)
Theresa volunteers at a food shelf. Today she is filling bags of oranges. When she started, there were 213 oranges. After filling x bags with 3 oranges each, there were fewer than 51 oranges left. How many bags of oranges did Theresa fill? Part c
Answer:
Step-by-step explanation:
So we know that there are 213 oranges and Theresa fills each bag with 3 oranges, so we can represent each bag as 3x. She keeps filling until she reaches 51 oranges.
First. let's write this as an equation, She is starting with 213 oranges and filling x bags with 3 oranges to the point she has less than 51 oranges.
213 - 3x < 51
Now add 3x to both sides,
213 - 3x + 3x < 51 + 3x
213 < 51 + 3x
Now we subtract 51 from both sides,
213 - 51 < 51 - 51 + 3x
162 < 3x
Now we divide both sides by 3,
162/3 < 3x/3
We find the answer,
54 < x
x > 54 bags
Water flows from a bathroom tap at a rate of 2 gallons every 6 seconds. At this rate, how many minutes will it take to fill an 80-gallon tub?
Answer:
240 minutes
Step-by-step explanation:
i divide 80 divided by 2 then multiply the answer which is 40 by 6 and get 240
PLS HELP I WILL GIVE BRAINLIST AND A THANK YOU!!!!!!!! Pls help me :)
Answer:
67°
Step-by-step explanation:
CGE + AGC + AGG = 180 (angles on a straight line)
23°+90°+x=180°
x=67°
Mrs.magar sold 40 kg of fruits at rate of RS 60 per kg and gained Rs 600 . calculate purchasing rate and profit percent.
Answer:
Purchasing rate = ₹45 per kg
Profit percent = 33.33%
Step-by-step explanation:
Selling price of 1 kg fruit = ₹60
Therefore, S. P. of 40 kg fruits = 40*60 = ₹2400
Gain = ₹ 600 (given)
Cost price (C. P.) = S. P. - Gain
= ₹2400 - ₹600
= ₹ 1800
Rate of purchasing
= C. P. /quantity of fruits
= 1800/40
= ₹45 per kg
Profit percent
= (Gain* 100)/C.P.
= (600*100)/1800
= 60000/1800
=33.33%
Use mathematical induction to prove the statement is true for all positive integers n. 8 + 16 + 24 + ... + 8n = 4n(n + 1)? Please show work
Answer:
The sum of the series is Sₙ = n/2 [2·a + (n - 1)·d] where a = 8 and d = 8, therefore 8 + 16 + 24 + ... + 8·n = 4·n·(n + 1)
Step-by-step explanation:
The parameters given are;
8 + 16 + 24 + ... + 8·n = 4·n·(n + 1)
The given series of numbers can be checked to find;
16 - 8 = 24 - 16 = 8
Therefore, the series of numbers is an arithmetic progression with first term = 8, and common difference = 8, we have;
The sum of n terms of an arithmetic progression, Sₙ, is given as follows;
Sₙ = n/2 [2·a + (n - 1)·d]
Where;
a = The first term of the series of numbers = 8
d = The common difference = 8
∴ Sₙ = n/2 × [2×8 + (n - 1)×8] = n [2×8/2 + (n - 1)×8/2] = n × [8 + (n - 1)×4]
Sₙ = n × [8 + (n - 1)×4] = n × [8 + 4·n - 4] = n × [8 - 4 + 4·n] = n × [4 + 4·n]
Sₙ =n × [4 + 4·n] = 4 × n×(n + 1) = 4·n·(n + 1).
For the function f(x) = -12x + 7, find the
matching value for x when f(x) = 17. Write
your answer as a fraction.
Answer:
[tex]\large\boxed{x=-\frac{5}{6}}[/tex]
Step-by-step explanation:
f(x) is the same value as y. Therefore, y = 17. We can place this into slope intercept form (except with a defined value for y) and solve for x.
Start by subtracting 7 from both sides. Then, divide by -12 to solve for x. Finally, simplify the fraction.
17 = -12x + 7
10 = -12x
-10/12 = x
-5/6 = x
[tex]\large\boxed{x=-\frac{5}{6}}[/tex]
Simplify 3(2x - 5). 1)-6x - 15 2) 6x - 15 3) 6x - 8 4) 5x - 2
Answer:
[tex] \boxed{ \bold{ \: 6x - 15}}[/tex]Option B is the correct option.
Step-by-step explanation:
[tex] \mathsf{3(2x - 5)}[/tex]
Distribute 3 through the parentheses
⇒[tex] \mathsf{3 \times 2x - 3 \times 5}[/tex]
Calculate the product
⇒[tex]6x - 15[/tex]
Hope I helped!
Best regards!!
Charles has 24 marbles. He has 6
more yellow marbles than blue marbles.
Which equation represents this situation?
Answer:
6+x=24
Step-by-step explanation:
he has 6 more marbles than the blue
the amount of blue marbles is unknown
so let blue marble be x
we know that the total number of marbles is 24
so 6+x=24
The pepper plant has 2/3 as many fruits on it as the tomato plant has. The tomato plant has 9 fruits on it. How many fruits does the pepper plant have on it?
Answer:
The pepper plant has 15 fruits on it.
Step-by-step explanation:
Let the tomato plant have x plants. Let the pepper plant have y plants. Since the pepper plant has 2/3 more fruits on it than the tomato plant, we have that y - x = 2x/3
collecting like terms,
y = 2x/3 + x
The above is the number of plants the pepper plant has.
y = 2x/3 + x
y = (2x + 3x)/3
y = 5x/3
Since x = number of fruits on tomato plant = 9, then
y = 5x/3
y = 5(9)/3
y = 5 × 3
y = 15
Since y = number of fruits on pepper plant = 15
So, the pepper plant has 15 fruits on it.
Show that the 9x^2-24xy+16y^2-12x+16y-12=0 represents a pair of parallel lines .Find the distance between the lines.
First of all u will 9x^2-24xy+16y^2-12×16y-12=0 u will add the 9x^ then u will subtract 2-24
CAN U PLS HELP ME OUT I WILL GIVE BRAINLIST AND A THANK YOU!!!!!! :)
Answer:
Step-by-step explanation:
Vertically opposite angles are equal
x = 25°
plz help asap i only have limited time i will give brainliest
Answer:
The answer is none.
Step-by-step explanation:
BecauseSide of the square is greater than breadth of rectangle. Answer: How can this be possible? Side of any square cannot be more than breadth of rectangle unless and until the square is bigger than the rectangle.Side of the square can be greater than length of triangle: Answer: Not at all possible. How can the length of a square be greater than the length of a rectangle? then the square would no longer have the same sides. And as i said before, squares cant be long unless and until they are bigger than the rectangle.Hope this helps....
Have a nice day!!!!
2x+6y=7draw graph and check x=1,y=2 is solution of this equation
Answer:
The solution in the photo
I hope it helps ^_^
what is the sum of the interior angles of a regular hexagon
Answer:
see below
Step-by-step explanation:
The sum of the interior angles of any polygon can be found with the formula 180(n - 2) where n = number of sides. In this case, n = 6 so the answer is 180(6 - 2) = 180 * 4 = 720°.
Answer:
The sum of the interior angles of a regular hexagon is 720°
Step-by-step explanation:
As we know that the sum of interior angle is 180(n-2). So the number of sides of hexagon is 6. Now, 180(6-2)=180*4=720°
What is the values of x and y
Answer:
If you have given an equation, you see the x and y in it. Just taking second equation and think any common factor between x's variable. With common factor, multiply both and you will find the value of y and put it in any equation, you will find the value of X.
Answer:
Hey there!
I can't see the full problem, but if when x=0.5, y=4, then when x=4, y=32, and when x=9, y=72. You multiply by a common multiple to get from x to y.
Hope this helps :)
4.
Aliyah, Brenda and Candy share a sum of money in the ratio of 3:5:6. After
Candy gives $100 to Aliyah and $50 to Brenda, the ratio becomes 2 : 3:3.
(a) Suppose Aliyah has $3x at the start, express Candy's initial sum of money in
terms of x.
(b) Find the value of x.
(c) Hence, how much money does Brenda have in the end?
Answer:
(a) Candy's initial sum as a terms of x is $6x
(b) x = $60
(c) $350
Step-by-step explanation:
The given parameters are;
The ratio in which Aliyah, Brenda and Candy share the sum of money = 3:5:6
The amount Candy later gives Aliyah = $100
The amount Candy later gives Brenda = $50
The new ratio of the sum of the shared money between Aliyah, Brenda and Candy = 2:3:3
(a) Whereby Aliyah has $3x at the start, we have;
Total sum of mony = Y
Amount of Aliyah's initial share = Y × 3/(3 + 5 + 6) = Y×3/14
Therefore, Y×3/14 = $3x
x = Y×3/14 ÷ 3 = Y/14
Amount of Candy's initial share = Y × 6/14
Therefore Candy's initial sum as a terms of x = $6x
(b) Given that Aliyah's and Candy's initial sum as a function of x are $3x and $6x, therefore, in the ratio 3:5:6, Brenda's initial sum as a function of x = $5x
Which gives;
Total amount of money = $14x
With
6x - 150, 3x + 100, and 5x + 50, the ratio =is 2:3:3
Therefore, we have;
14·x × 2/(2 + 3 + 3) = (6·x - 150)
14·x × 2/(8) = (6·x - 150)
14·x × 1/4 = (6·x - 150)
7·x/2 = (6·x - 150)
12·x - 300 = 7·x
12·x - 7·x = 300
5·x = 300
x = $60
(b) The final amount of money with Brenda = 5x + 50 = 5 × 60 + 50 = $350
The final amount of money with Brenda = $350.
For the function f(x) = x + 7, what is the ordered pair for the point on the graph where x = 2b? (2b, 2b + 7) (2b, x + 7) (x, x + 7) (x, 2b + 7)
Answer:
(2b, 2b + 7).
Step-by-step explanation:
y = x + 7 and x = 2b ,
therefore y = 2b + 7.
Answer:
(2b, 2b + 7)
Step-by-step explanation:
have two one-quart jars; the first is filled with water, and the second is empty. I pour half of the water in the first jar into the second, then a third of the water in the second jar into the first, then a fourth of the water in the first jar into the second, then a fifth of the water in the second jar into the first, and so on. How much water in quarts is in the first jar after the $10^{\textrm{th}}$ pour? Express your answer as a common fraction.
Answer:
water in quarts is in the first jar after 10th pour = 12/11
Step-by-step explanation:
Let X represent first jar and Y represents second jar.
have two one-quart jars; the first is filled with water, and the second is emptyLets give the initial value of 2 to the first jar which is filled with water. Lets say there are two liters of water in first jar.
Lets give the initial value of 0 to the second as it is empty.
So before any pour, the values are:
X: 2
Y: 0
pour half of the water in the first jar into the secondAfter first pour the value of jar X becomes:
Previously it was 2.
Now half of water is taken i.e. half of 2
2 - 1 = 1
So X = 1
The value of jar Y becomes:
The half from jar X is added to second jar Y which was 0:
After first pour the value of jar Y becomes:
0 + 1 = 1
Y = 1
a third of the water in the second jar into the firstAfter second pour the value of jar X becomes:
Previously it was 1.
Now third of the water in second jar Y is added to jar X
1 + 1/3
= (3 + 1)/3
= 4/3
X = 4/3
After second pour the value of jar Y becomes:
Previously it was 1.
Now third of the water in Y jar is taken and added to jar X so,
1 - 1/3
= (3 - 1)/3
= 2/3
Y = 2/3
a fourth of the water in the first jar into the secondAfter third pour the value of jar X becomes:
Previously it was 4/3.
Now fourth of the water in the first jar X is taken and is added to jar Y
= 3/4 * (4/3)
= 1
X = 1
After third pour the value of jar Y becomes:
Previously it was 2/3
Now fourth of the water in the second jar X is added to jar Y
= 2/3 + 1/4*(4/3)
= 2/3 + 4/12
= 1
Y = 1
a fifth of the water in the second jar into the firstAfter fourth pour the value of jar X becomes:
Previously it was 1
Now fifth of the water in second jar Y is added to jar X
= 1 + 1/5*(1)
= 1 + 1/5
= (5+1) / 5
= 6/5
X = 6/5
After fourth pour the value of jar Y becomes:
Previously it was 1.
Now fifth of the water in Y jar is taken and added to jar X so,
= 1 - 1/5
= (5 - 1) / 5
= 4/5
Y = 4/5
a sixth of the water in the first jar into the secondAfter fifth pour the value of jar X becomes:
Previously it was 6/5
Now sixth of the water in the first jar X is taken and is added to jar Y
5/6 * (6/5)
= 1
X = 1
After fifth pour the value of jar Y becomes:
Previously it was 4/5
Now sixth of the water in the first jar X is taken and is added to jar Y
= 4/5 + 1/6 (6/5)
= 4/5 + 1/5
= (4+1) /5
= 5/5
= 1
Y = 1
a seventh of the water in the second jar into the firstAfter sixth pour the value of jar X becomes:
Previously it was 1
Now seventh of the water in second jar Y is added to jar X
= 1 + 1/7*(1)
= 1 + 1/7
= (7+1) / 7
= 8/7
X = 8/7
After sixth pour the value of jar Y becomes:
Previously it was 1.
Now seventh of the water in Y jar is taken and added to jar X so,
= 1 - 1/7
= (7-1) / 7
= 6/7
Y = 6/7
a eighth of the water in the first jar into the secondAfter seventh pour the value of jar X becomes:
Previously it was 8/7
Now eighth of the water in the first jar X is taken and is added to jar Y
7/8* (8/7)
= 1
X = 1
After seventh pour the value of jar Y becomes:
Previously it was 6/7
Now eighth of the water in the first jar X is taken and is added to jar Y
= 6/7 + 1/8 (8/7)
= 6/7 + 1/7
= 7/7
= 1
Y = 1
a ninth of the water in the second jar into the firstAfter eighth pour the value of jar X becomes:
Previously it was 1
Now ninth of the water in second jar Y is added to jar X
= 1 + 1/9*(1)
= 1 + 1/9
= (9+1) / 9
= 10/9
X = 10/9
After eighth pour the value of jar Y becomes:
Previously it was 1.
Now ninth of the water in Y jar is taken and added to jar X so,
= 1 - 1/9
= (9-1) / 9
= 8/9
Y = 8/9
a tenth of the water in the first jar into the secondAfter ninth pour the value of jar X becomes:
Previously it was 10/9
Now tenth of the water in the first jar X is taken and is added to jar Y
9/10* (10/9)
= 1
X = 1
After ninth pour the value of jar Y becomes:
Previously it was 8/9
Now tenth of the water in the first jar X is taken and is added to jar Y
= 8/9 + 1/10 (10/9)
= 8/9 + 1/9
= 9/9
= 1
Y = 1
a eleventh of the water in the second jar into the firstAfter tenth pour the value of jar X becomes:
Previously it was 1
Now eleventh of the water in second jar Y is added to jar X
= 1 + 1/11*(1)
= 1 + 1/11
= (11 + 1) / 11
= 12/11
X = 12/11
After tenth pour the value of jar Y becomes:
Previously it was 1.
Now eleventh of the water in Y jar is taken and added to jar X so,
= 1 - 1/11
= (11-1) / 11
= 10/11
Y = 10/11
Answer:
6/11
Step-by-step explanation:
1/2 + (1/2)(2/11) = 6/11
sus
A.) Pinky bought 1. 1/2 kg of apples and 5. 1/4 kg of mangoes 1. 1/2 kg of oranges. Find the total weight of fruits B.) if her family eats 3/4 kg of apples and 2. 1/2 kg of mangoes and 1/2 kg of oranges. Find the weight of fruits left (Please say the answer with explanation who says the answer first I will mark them as the brainliest)
Answer:
A. Total weight of the fruits is 2.25 kg
B. There are no more fruits left.
Step-by-step explanation:
A.
To get the total weight of the fruits, we will first of all have to sort out the fruits and multiply the weight of the fruits by the number available.
Weight of apples:
we have one 1apple weighing 1/2 kg. The weight will be 1 |X 1/2 = 1/2 kg
Weight of mangoes:
We have five mangoes weighing 1/4 kg. Total weight will be 5 X 1/4 = 5/4 kg
Weight of oranges:
We have one orange weighing 1/2 kg. Total weight will be 1X 1/2 = 1/2 kg
Total weight of the fruits will be total weight of Mangoes + oranges + apples
= 1/2 + 5/4 + 1/2 = 2.25kg
B.
If her family begins to eat off some portions of the fruits, we will have to calculate the sum total of all the weights of fruits eaten
The portion eaten will be 3/4 + (2 X 1/2) + 1/2 = 2.25kg
If this happens the family would have eaten all of the fruits because
the original weight present is only 2.25kg of fruits to start with
A family club keeps a small amount of money on hand for members to borrow for short periods of time. The simple interest charged is 7.5%. Stephen borrowed $5,000 for 3 months. How much, to the nearest dollar, was he required to pay back at the end of 3 months?
Answer:
$6125
Step-by-step explanation:
5000 x 3 x .075 = 1,125
5000 + 1125 = 6125
find the multiplicative inverse of 3 by 4 minus 5 by 7
Answer:
28
Step-by-step explanation:
[tex]\frac{3}{4}-\frac{5}{7}[/tex]
Least Common Denominator of 4 & 7 is 4 * 7 = 28
[tex]\frac{3}{4}-\frac{5}{7}=\frac{3*7}{4*7}-\frac{5*4}{7*4}\\\\\\=\frac{21}{28}-\frac{20}{28}\\\\\\=\frac{21-20}{28}\\\\\\=\frac{1}{28}[/tex]
Multiplicative inverse of [tex]\frac{1}{28}[/tex] is [tex]\frac{28}{1} = 28[/tex]
I need help on this question!!!
Answer:
The answer is 17.
Step-by-step explanation:
200/3 is approximately 67, and divided by 4 again to represent the second checkpoint will become 16.75. Obviously there can't be a fraction of a bag, so the answer is 17.
Answer:
16
Step-by-step explanation:
the lcm for 3 and 4 is 12
200 ÷ 12 = 16.667
≈16
PLEASE help me with this question!!! REALLY URGENT!
Answer:
B
Step-by-step explanation:
So we have a table of values of a used car over time. At year 0, the car is worth $20,000. By the end of year 8, the car is only worth $3400.
We can see that this is exponential decay since each subsequent year the car depreciates by a different value.
To find the rate of change the car depreciates, we simply need to find the value of the exponential decay. To do this (and for the most accurate results) we can use the last term (8, 3400).
First, we already determined that the original value (year 0 value) of the car is 20,000. Therefore, we can say:
[tex]f(t)=20000(r)^t[/tex]
Where t is the time in years and r is the rate (what we're trying to figure out).
Now, to solve for r, use to point (8, 3400). Plug in 8 for t and 3400 for f(t):
[tex]3400=20000(r)^8\\3400/20000=17/100=r^8\\r=\sqrt[8]{17/100}\approx0.8[/tex]
In other words, the rate of change modeled by the function is 0.8.
As expected, this is exponential decay. The 0.8 tells us that the car depreciates by 20% per year.
PLZ HELP!!!!!!!!!!!!!! WILL MARK BBRAINLIST
Answer:
B. The second choice.
Step-by-step explanation:
A function cannot have two points with the same x-coordinate.
If you graph two different points that have the same x-coordinate, they will both lie on the same vertical line. Therefore, if in a relation, more than one point lie on the same vertical line, then the relation is not a function.
a farmer has 40 4/5 of beans 3/4 of the beans are pinto beans how many pounds of pinto bean are there
Answer: Amount of pinto beaks [tex]=30\dfrac{3}{5}\text{ pounds}[/tex]
Step-by-step explanation:
Given: Amount of beans a farmer has = [tex]40\dfrac{4}{5}\text{ pounds}=\dfrac{40\times5+4}{5}\text{ pounds}[/tex]
[tex]=\dfrac{204}{5}\text{ pounds}[/tex]
Also, [tex]\dfrac{3}{4}[/tex] of the beans are pinto beans .
Amount of pinto beaks = [tex]\dfrac 34\times[/tex] (Amount of beans a farmer has)
= [tex]\dfrac34\times\dfrac{204}{5}=\dfrac{153}{5}\text{ pounds}[/tex]
[tex]=30\dfrac{3}{5}\text{ pounds}[/tex]
Amount of pinto beaks [tex]=30\dfrac{3}{5}\text{ pounds}[/tex]