Answer:
503.75, 504.75, 505.75, 506.75
Step-by-step explanation:
x+(x+1)+(x+2)+(x+3)=2021
4x+6=2021
4x=2015
x=503.75
so it would be
503.75+504.75+505.75+506.75= 2021
Carin opened a money market account with a deposit of $3,000. This account earns 2% simple interest annually. How many years will it take for her $3,000 deposit to earn $430 in interest, assuming she does not withdraw any of the money?
Answer:
The correct answer is - 7.166 years
Step-by-step explanation:
Given:
principle amount: 3000
rate of interest: 2%
time?
Interent to get: 430
Formula:
I = P*t*r/100
here p = principle
I = interest
r = rate of intrest and t = time
Solution putting value and deriving Time as formula:
(3000*2*t)/100 = 430
t = 43000/3000*2
= 7.166 years.
The participants in a research study self-report their sleep quality levels by choosing the response option that best characterizes their average sleep quality per night from the following response options: 1 = extremely low sleep quality, 2 - very low sleep quality, 3 - low sleep quality, 4 = extremely high sleep quality. Which measurement scale is being used to classify sleep quality?
Answer:
This is a Categorical variable and the measurement scale is ordinal scale.
Step-by-step explanation:
The measurement scale that is being used to classify sleep is the ordinal measurement. In this question, the variable that is called sleep quality is a categorical variable. categorical variables are variables that have the data representing groups. sleep quality has been given this categorical order extremely low very low low and extreme high.
The ordinal scale is a scale that denotes order it has all variables in a specific order.
Find the area of the geometric figure.
3 yd
3 yd
Traperoid
7 yd
Step-by-step explanation:
The question isn't clear, so I'll just give you a formula to find the area of trapezoid,
(a+b)*h/2, where a = base side, b = top side, h = height.
So, let's say two sides are 3 yd and 7 yd, and height is 3 yd, so the area becomes,
(3+7)*3/2
= 10*3/2
= 30/2
= 15 yd²
Answered by GAUTHMATH
A shipment of 50 precision parts including 4 that are defective is sent to an assembly plant. The quality control division selects 10 at random for testing and rejects the entire shipment if 1 or more are found defective. What is the probability this shipment passes inspection?
Answer:
0.3968 = 39.68% probability this shipment passes inspection.
Step-by-step explanation:
The parts are chosen without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question:
50 parts means that [tex]N = 50[/tex]
4 defective means that [tex]k = 4[/tex]
10 are chosen, which means that [tex]n = 10[/tex]
What is the probability this shipment passes inspection?
Probability that none is defective, so:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 0) = h(0,50,10,4) = \frac{C_{4,0}*C_{46,10}}{C_{50,10}} = 0.3968[/tex]
0.3968 = 39.68% probability this shipment passes inspection.
You are certain to get a heart, diamond, club, or spade when selecting cards from a shuffled deck. Express the indicated degree of likelihood as a probability value between 0 and 1 inclusive.
Answer:
The probability of this event is represented by a value of 1.
Step-by-step explanation:
Probability of a certain event:
The probability of an event that is considered to be certain, that is, guaranteed to happen, is 100% = 1.
You are certain to get a heart, diamond, club, or spade when selecting cards from a shuffled deck.
This means that the probability of this event is represented by a value of 1.
6v^2x^3y^7 and 20v^8x^5
Answer:
LCD????
[tex]2v^2x^3[/tex]
Step-by-step explanation:
10=−4x+3x^2 solve
please help!
Answer:
-1.28 AND 2.61
Step-by-step explanation:
[tex]10= -4x+3x^2\\ 3x^2 -4x - 10 = 0\\\\[/tex]
use quadratic formula
x = [tex]\frac{-b+\sqrt{b^{2} -4ac} }{2a}[/tex] x = [tex]\frac{-b-\sqrt{b^{2} -4ac} }{2a}[/tex]
Solution/X-Intercepts: -1.28 AND 2.61
The following is a list of costs that were incurred in producing book:
a. Insurance on the factory building and equipment
b. Salary of the vice president of finance
c. Hourly wages of printing press operators during production
d. Electricity used to run the presses during the printing of the Book.
e. Sales commissions paid to book representatives for each book sold
f. Paper on which the text is printed
g. Book covers used to bind the pages
h. Straight-line depreciation on an office building
i. Salaries of staff used to develop artwork for the text
j. Glue used to bind pages to cover
Instructions: With respect to the manufacture and sale of this text, classify each cost as either a product cost or a
period cost. Indicate whether each product cost is a direct materials cost, a direct labor cost, or a factory overhead
cost. Indicate whether each period cost is a selling expense or an administrative expense.
If the range of the coordinate transformation (, ) = (−2,−3 +1) is (4, −2), (2, −5), (−6, 4), what is the domain?
A. (-2, 1), (-1, 2), (3, -1)
B. (-8, 7), (-4, 16), (19, -11)
C. (-8, 1), (-4, 2), (19, -1)
D. (-2, 7), (-1, 16), (3, -11)
Consider the below figure attached with this question.
Given:
The transformation is:
[tex]f(x,y)=(-2x,-3y+1)[/tex]
The range is (4,-2), (2, −5), (−6, 4).
To find:
The domain of the transformation.
Solution:
We have,
[tex]f(x,y)=(-2x,-3y+1)[/tex]
For the point (4,-2),
[tex](-2x,-3y+1)=(4,-2)[/tex]
On comparing both sides, we get
[tex]-2x=4[/tex]
[tex]x=\dfrac{4}{-2}[/tex]
[tex]x=-2[/tex]
And,
[tex]-3y+1=-2[/tex]
[tex]-3y=-2-1[/tex]
[tex]-3y=-3[/tex]
[tex]y=\dfrac{-3}{-3}[/tex]
[tex]y=1[/tex]
So, the domain of (4,-2) is (-2,1).
Similarly,
For the point (2,-5),
[tex](-2x,-3y+1)=(2,-5)[/tex]
On comparing both sides, we get [tex]x=-1,y=2[/tex]. So, the domain of (2,-5) is (-1,2).
For the point (-6,4),
[tex](-2x,-3y+1)=(-6,4)[/tex]
On comparing both sides, we get [tex]x=3,y=-1[/tex]. So, the domain of (-6,4) is (3,-1).
So, the domain of the given transformation is (-2, 1), (-1, 2), (3, -1).
Therefore, the correct option is A.
Estimate 620 / 17 by first rounding each number so that it has only 1 nonzero digit.
no links plz
Step-by-step explanation:
620 / 17 =36.47058.. ≈ 36.5
Which represents can be used to determine the slope of the linear function graphed below
The principal P is borrowed at a simple interest rate are for a period of time T. Find the loans future value A, or the total amount due at time T
Answer:
The total amount due after five years is $57,000.
Step-by-step explanation:
Recall that simple interest is given by the formula:
[tex]\displaystyle A=P(1+rt)[/tex]
Where A is the final amount, P is the principal amount, r is the rate, and t is the time (in years).
Since we are investing a principal amount of $38,000 at a rate of 10.0% for five years, P = 38000, r = 0.1, and t = 5. Substitute:
[tex]\displaystyle A=38000(1+(0.1)(5))[/tex]
Evaluate. Hence:
[tex]\displaystyle A=\$ 57,000[/tex]
The total amount due after five years is $57,000.
19. The sum of a number m and a number n, multiplied by ninety-one 20. Forty-one times the difference when six is subtracted from a num- bera 21. A number r divided by the difference between eighty-three and ten 22. The total of a number p and twelve, divided by eighteen 23. The product of a number c and three more than the sum of nine and twelve 24. The sum of a number y and ten, divided by the difference when a number x is decreased by five. I need to convert all of them into expressions. PLEASE HELP.
Answer:
Step-by-step explanation:
19.
The numbers are m and n
Sum of m and n = m + n
Sum is multiplied by 91 = 91 x ( m + n )
20.
Let the number be = m
Six subtracted from the number = m - 6
41 times the difference = 41 x ( m - 6)
21.
Let the number be = r
Difference between 83 and 10 = 83 - 10 = 73
[tex]The \ number\ divided \ by\ the \ difference \ = \frac{r}{73}[/tex]
22.
Total of p and 23 = p + 12
[tex]Total \ divided \ by \ 18 = \frac{p + 12 }{18}[/tex]
23.
The product of c and 3 = 3c
Sum of 9 and 12 = 21
Product is more than Sum = 3c + 21
24.
Sum of y and 10 = y + 10
Number x decreased by 5 = x - 5
[tex]Sum \ divided \ by \ difference = \frac{ y + 10 }{x - 5}[/tex]
If you have 3/8 of one pie, what does the denominator tells you ?
Step-by-step explanation:
There was originally 8 pieces of pie.
Answer:
if you have 3/8 of one pie, the denominator tells you that the pie was divided into 8 piece.
PLEASE HELP!!! I have been adding and multiplying many different ways however my answer are wrong. How do I go about solving the perimeter then?
Answer:
66 m
Step-by-step explanation:
First, lets add up the numbers you know. It should be:
16, 8, 17, and 7.
Add them all up, and you will get:
48.
For the last two sides, subtract 7 from 16 to get 9.
For the last slide, subtract 8 from 17 to get 9.
Add them all up, and get 66.
The volume of a pyramid is 240 cubic centimeters. The pyramid has a rectangular base with sides 6cm by 4cm. Find the altitude and lateral surface area of the pyramid if the pyramid has equal lateral edges
Answer:
altitude = 30 cm
lateral surface area = 301 cm² (approximately)
Step-by-step explanation:
let the altitude be x,
240=6*4*x/3
or, x=30 cm
Lateral surface area,
=l×√(w/2)²+h²]+w×√[(l/2)²+h²]
=6×√[(4/2)²+30²]+4×√[(6/2)²+30²]
≈300.99806
≈ 301 cm²
Answered by GAUTHMATH
Consider the probability that no less than 37 out of 295 cell phone calls will be disconnected. Choose the best description of the area under the normal curve that would be used to approximate binomial probability.
a. Area to the right of 36.5
b. Area to the right of 37.5
c. Area to the left of 36.5
d. Area to the left of 37.5
e. Area between 36.5 and 37.5
==========================================================
Explanation:
The phrasing "no less than" means the same as "at least".
Saying "at least 37" means 37 is the lowest we can go.
If x is the number of disconnected calls, then [tex]x \ge 37[/tex] and we want to find the probability of this happening (the max being 295).
We could use the binomial distribution to find the answer, but that would require adding 295-37+1 = 259 different values which could get tedious. So we could use the normal approximation to make things relatively straight forward.
Assuming this binomial meets the requirements of the normal approximation, then we'd look under the normal curve for the area to the right of 36.5; which is why the answer is choice A.
Why 36.5 and not 37? This has to do with the continuity correction factor when translating from a discrete distribution (binomial) to a continuous one (normal).
If we used 37, then we'd be missing out on the edge case. So we go a bit beyond 37 to capture 36.5 instead. It's like a fail safe to ensure we do account for that endpoint of 37. It's like adding a buffer or padding.
------------
Side notes:
Choice B would be the answer if we wanted to excluded 37 from the group, ie if we wanted to calculate [tex]P(x > 37)[/tex] instead of [tex]P(x \ge 37)[/tex]. So we're moving in the opposite direction of choice A to avoid that edge case. We go with "right" instead of "left" since this is what the inequality sign says.The population standard deviation for the temperature of beers found in Scooter's Tavern is 0.26 degrees. If we want to be 90% confident that the sample mean beer temperature is within 0.1 degrees of the true mean temperature, how many beers must we sample
Answer:
19 beers must be sampled.
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.9}{2} = 0.05[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a pvalue of [tex]1 - 0.05 = 0.95[/tex], so Z = 1.645.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
The population standard deviation for the temperature of beers found in Scooter's Tavern is 0.26 degrees.
This means that [tex]\sigma = 0.26[/tex]
If we want to be 90% confident that the sample mean beer temperature is within 0.1 degrees of the true mean temperature, how many beers must we sample?
This is n for which M = 0.1. So
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
[tex]0.1 = 1.645\frac{0.26}{\sqrt{n}}[/tex]
[tex]0.1\sqrt{n} = 1.645*0.26[/tex]
[tex]\sqrt{n} = \frac{1.645*0.26}{0.1}[/tex]
[tex](\sqrt{n})^2 = (\frac{1.645*0.26}{0.1})^2[/tex]
[tex]n = 18.3[/tex]
Rounding up:
19 beers must be sampled.
A die is rolled 5 times and a 5 or 6 is considered a success. Find the peobability of no success
Answer:
0.1317 = 13.17% probability of no successes.
Step-by-step explanation:
For each toss, there are only two possible outcomes. Either there is a success, or there is not. The probability of a success on a toss is independent of any other toss, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
A die is rolled 5 times.
This means that [tex]n = 5[/tex]
5 or 6 is considered a success.
2 out of 6 sides are successes, so:
[tex]p = \frac{2}{6} = 0.3333[/tex]
Find the probability of no success:
This is P(X = 0). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{5,0}.(0.3333)^{0}.(0.6667)^{5} = 0.1317[/tex]
0.1317 = 13.17% probability of no successes.
What is the standard form equation of the quadratic function shown in this graph?
Answer:
A is the equation in standard form
Step-by-step explanation:
An urn contains 2 small pink balls, 7 small purple balls, and 6 small white balls.
Three balls are selected, one after the other, without replacement.
Find the probability that all three balls are purple
Express your answer as a decimal, rounded to the nearest hundredth.
Answer:
The probability is P = 0.08
Step-by-step explanation:
We have:
2 pink balls
7 purple balls
6 white balls
So the total number of balls is just:
2 + 7 + 6 = 15
We want to find the probability of randomly picking 3 purple balls (without replacement).
For the first pick:
Here all the balls have the same probability of being drawn from the urn, so the probability of getting a purple one is equal to the quotient between the number of purple balls (7) and the total number of balls (15)
p₁ = 7/15
Second:
Same as before, notice that because the balls are not replaced, now there are 6 purple balls in the urn, and a total of 14 balls, so in this case the probability is:
p₂ = 6/14
third:
Same as before, this time there are 5 purple balls in the urn and 13 balls in total, so here the probability is:
p₃ = 5/13
The joint probability (the probability of these 3 events happening) is equal to the product between the individual probabilities, so we have:
P = p₁*p₂*p₃ = (7/15)*(6/14)*(5/13) = 0.08
-8(9r - 1) - 9(-8r+2)
Simplest form
Answer:
-10
Step-by-step explanation:
Step-by-step explanation:
-8(9r-1)-9(-8r+2)-72r+8-72r-18-72r-72r+8-18-144r-10-(144r+10)hope it helps
stay safe healthy and happy...how do you write in numerals
Answer:
Basic numbersNumbers up to nine should always be written in words, anything higher than nine can be written in numerals. Alternatively, some guides suggest that if you can write the number in two words or fewer then use words rather than number.hope it's helpful for u !! stay safe ...Step-by-step explanation:
1 : a conventional symbol that represents a number. 2 numerals plural : numbers that designate by year a school or college class and that are awarded for distinction in an extracurricular activity. Other Words from numeral Synonyms Example Sentences Learn More About numeral.A numeral is a symbol or name that stands for a number. Examples: 3, 49 and twelve are all numerals. So the number is an idea, the numeral is how we write it.hope it helps.stay safe healthy and happy...The time to complete an exam in a statistics class is a normal random variable with a mean of 50 minutes and a standard deviation of 10 minutes. What is the probability, given a class size of 30 students, the average time to complete the test is less than 48.5 minutes
Answer:
0.2061 = 20.61% probability, given a class size of 30 students, the average time to complete the test is less than 48.5 minutes
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Mean of 50 minutes and a standard deviation of 10 minutes.
This means that [tex]\mu = 50, \sigma = 10[/tex]
Class size of 30 students
This means that [tex]n = 30, s = \frac{10}{\sqrt{30}}[/tex]
What is the probability, given a class size of 30 students, the average time to complete the test is less than 48.5 minutes.
This is the p-value of Z when X = 48.5. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{48.5 - 50}{\frac{10}{\sqrt{30}}}[/tex]
[tex]Z = -0.82[/tex]
[tex]Z = -0.82[/tex] has a p-value of 0.2061
0.2061 = 20.61% probability, given a class size of 30 students, the average time to complete the test is less than 48.5 minutes
A screw manufacturer makes specialized tiny screws that are 15mm long. The manufacturing process does not make every screw exactly 15mm long. The lengths of the screws are normally distributed with mean 15mm and standard deviation 0.04mm. To test for quality control, 36 screws are to be measured. What is the probability that a sample mean is less than 14.99mm?
Answer:
The probability that a sample mean is less than 14.99mm=0.066808
Step-by-step explanation:
We are given that
Mean,[tex]\mu=15 mm[/tex]
Standard deviation,[tex]\sigma=0.04 mm[/tex]
n=36
We have to find the probability that a sample mean is less than 14.99mm.
We know that
[tex]P(\bar{x}<a)=P(Z<\frac{\bar{x}-a}{\frac{\sigma}{\sqrt{n}}})[/tex]
Using the formula
[tex]P(\bar{x}<14.99)=P(Z<\frac{14.99-15}{\frac{0.04}{\sqrt{36}}})[/tex]
[tex]P(\bar{x}<14.99)=P(Z<-1.5)[/tex]
=[tex]1-P(Z\geq -1.5)[/tex]
[tex]=1-0.93319[/tex]
=0.066808
Hence, the probability that a sample mean is less than 14.99mm=0.066808
What conclusion can be determined from the dot plot below?
A dot plot showing five dots above 9, six dots above 10, three dots above 11, and one dot above 12.
The number of observations is 10.
The median of the data set is 10.
The mean of the data set is 15.
The range of the data set is 12.
g Use properties of logarithms to condense the logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Evaluate logarithmic expressions if possible.
Answer:
[tex]4\log_bx - \log_by = \log(\frac{x^4}{y})[/tex]
Step-by-step explanation:
Given
[tex]4\log_bx - \log_by[/tex]
Required
Express as a single expression
Using power rule of logarithm, we have:
[tex]n\log m = \log m^n[/tex]
So, we have:
[tex]4\log_bx - \log_by = \log_bx^4 - \log_by[/tex]
Apply quotient rule of logarithm
[tex]4\log_bx - \log_by = \log(\frac{x^4}{y})[/tex]
A plane flying horizontally at an altitude of 2 miles and a speed of 410 mi/h passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 5 miles away from the station.
Answer:
[tex]82\sqrt{21}\text{ or approximately 375.77 miles per hour}[/tex]
Step-by-step explanation:
Please refer to the diagram below. R is the radar station and x is the distance from the station to the plane.
We are given that the plane is flying horizontally at an altitude of two miles and at a speed of 410 mph. And we want to find the rate at which the distance from the plane to the station is increasing when it is five miles away from the station.
In other words, given da/dt = 410 and x = 5, find dx/dt.
From the Pythagorean Theorem:
[tex]a^2+4=x^2[/tex]
Implicitly differentiate both sides with respect to time t. Both a and x are functions of t. Hence:
[tex]\displaystyle 2a\frac{da}{dt}=2x\frac{dx}{dt}[/tex]
Simplify:
[tex]\displaystyle a\frac{da}{dt}=x\frac{dx}{dt}[/tex]
Find a when x = 5:
[tex]a=\sqrt{5^2-2^2}=\sqrt{21}[/tex]
Therefore, dx/dt when da/dt = 410, x = 5, and a = √(21) is:
[tex]\displaystyle \frac{dx}{dt}=\frac{(\sqrt{21})(410)}{5}=82\sqrt{21}\approx 375.77\text{ mph}[/tex]
The rate at which is distance from the plane to the radar station is increasing at a rate of approximately 375.77 miles per hour.
Which of the following is not true regarding the flow of information from the adjusted trial balance on the end-of-period spreadsheet?
The correct statement about the flow of information from the adjusted trial balance on the end-of-period spreadsheet is A. The revenue and expense account balances flow into the income statement.
What is an Adjusted Trial Balance?This refers to the general ledger balance after some changes have been done an account balance such as accrued expenses, depreciation, etc.
Therefore, we can see that from the complete information, the statement that is false about the adjusted trial balance on the end-of-period spreadsheet is option A because the revenue and expense account balances does not flow into the income statement.
The other options from the complete text are:
a. The revenue and expense account balances flow into the income statement.b. The asset and liability account balances flow into the retained earnings statement.c. The revenue and expense account balances flow into the retained earnings statement.d. The retained earnings and dividends account balances flow into the balance sheet.
Read more about adjusted trial balance here:
https://brainly.com/question/14476257
#SPJ6
Select the correct answer. What is the range of the function shown on the graph above?
A. -8
B.-2y <-7
C. -7 Sy < -2
D. -9
Answer: The answer would be D
Step-by-step explanation: