Answer:
4:10
Step-by-step explanation:
if they have to wait for plane B and it arrives every 10 mins then 4:10 is the anser
Module 8: Directions: Respond to this question to demonstrate your understanding of the topic/content. Be sure to provide adequate and relevant details learned in the module to support your response. Pay close attention to organizing your response so it makes sense and uses correct grammar. Your response should be at least 5-7 sentences at a minimum.
Question: Describe how to eliminate the parameter to change from parametric to rectangular form. How does this ability help us with graphing parametric equations?
Answer:
rectangular equation, or an equation in rectangular form is an equation composed of variables like xx and yy which can be graphed on a regular Cartesian plane. For example y=4x+3y=4x+3 is a rectangular equation.
A curve in the plane is said to be parameterized if the set of coordinates on the curve, (x,y)(x,y) , are represented as functions of a variable tt .
x=f(t)y=g(t)x=f(t)y=g(t)
These equations may or may not be graphed on Cartesian plane.
Step-by-step explanation:
I hope this helps
Solve the following equation for
a
a. Be sure to take into account whether a letter is capitalized or not.
Answer:
6/5 n = a
Step-by-step explanation:
n = 5/6a
Multiply each side by 6/5
6/5 n = 6/5 * 5/6a
6/5 n = a
Student Engineers Council at an Indiana college has one student representative from each of the five engineering majors (civil, electrical, industrial, materials, and mechanical). Compute how many ways a president, a vice president, and a secretary can be selected.
Answer:
A president, a vice president, and a secretary can be selected in 60 ways.
Step-by-step explanation:
The order in which the people are chosen is important(first president, second vice president and third secretary), which means that the permutations formula is used to solve this question.
Permutations formula:
The number of possible permutations of x elements from a set of n elements is given by the following formula:
[tex]P_{(n,x)} = \frac{n!}{(n-x)!}[/tex]
In this question:
3 students from a set of 5, so:
[tex]P_{(5,3)} = \frac{5!}{2!} = 5*4*3 = 60[/tex]
A president, a vice president, and a secretary can be selected in 60 ways.
Rachel and Hugo sorted 236 crayons into boxes for a local arts project. Each box had 10 crayons. How many crayons were left over?
Help please lol
Answer:
6
Step-by-step explanation:
236/10 = 23 remainder 6, so 6 crayons is the answer
Two workers finished a job in 12 days. How long would it take each worker to do the job by himself if one of the workers needs 10 more days to finish the job than the other worker
Two workers finished a job in 7.5 days.
How long would it take each worker to do the job by himself if one of the workers needs 8 more days to finish the job than the other worker?
let t = time required by one worker to complete the job alone
then
(t+8) = time required by the other worker (shirker)
let the completed job = 1
A typical shared work equation
7.5%2Ft + 7.5%2F%28%28t%2B8%29%29 = 1
multiply by t(t+8), cancel the denominators, and you have
7.5(t+8) + 7.5t = t(t+8)
7.5t + 60 + 7.5t = t^2 + 8t
15t + 60 = t^2 + 8t
form a quadratic equation on the right
0 = t^2 + 8t - 15t - 60
t^2 - 7t - 60 = 0
Factor easily to
(t-12) (t+5) = 0
the positive solution is all we want here
t = 12 days, the first guy working alone
then
the shirker would struggle thru the job in 20 days.
Answer:7 + 17 = 24÷2 (since there are 2 workers) =12. Also, ½(7) + ½17 = 3.5 + 8.5 = 12. So, we know that the faster worker will take 7 days and the slower worker will take 17 days. Hope this helps! jul15
Step-by-step explanation:
In 1995 the U.S. federal government debt totaled 5 trillion dollars. In 2008 the total debt reached 10 trillion dollars. Which of the following statements about the doubling time of the U.S. federal debt is true based on this information?
Where are the statements?
The scores for a particular examination are normally distributed with a mean of 68.5% and a standard deviation of 8.2%. What is the probability that a student who wrote the examination had a mark between 80% and 100%? Give your answer to the nearest hundredth.
Answer:
[tex]P(80/100<x<100/100)=0.08[/tex]
Step-by-step explanation:
We are given that
Mean,[tex]\mu=68.5[/tex]%=68.5/100
Standard deviation, [tex]\sigma=8.2[/tex]%=8.2/100
We have to find the probability that a student who wrote the examination had a mark between 80% and 100%.
[tex]P(80/100<x<100/100)=P(\frac{80/100-68.5/100}{8.2/100}<\frac{x-\mu}{\sigma}<\frac{100/100-68.5/100}{8.2/100})[/tex]
[tex]P(80/100<x<100/100)=P(1.40<Z<3.84)[/tex]
We know that
[tex]P(a<Z<b)=P(Z<b)-P(Z<a)[/tex]
Using the formula
[tex]P(80/100<x<100/100)=P(Z<3.84)-P(Z<1.40)[/tex]
[tex]P(80/100<x<100/100)=0.99994-0.91924[/tex]
[tex]P(80/100<x<100/100)=0.0807\approx 0.08[/tex]
Find the tangent line equations for the given functions at the given point(s): f(x) = tan x + 9 sin x at (π, 0)
Answer:
[tex]{ \bf{f(x) = \tan x + 9 \sin x }}[/tex]
For gradient, differentiate f(x):
[tex]{ \tt{ \frac{dy}{dx} = { \sec }^{2}x + 9 \cos x }}[/tex]
Substitute for x as π:
[tex]{ \tt{gradient = { \sec }^{2} \pi + 9 \cos(\pi ) }} \\ { \tt{gradient = - 8 }}[/tex]
Gradient of tangent = -8
[tex]{ \bf{y =mx + b }} \\ { \tt{0 = ( - 8\pi) + b}} \\ { \tt{b = 8\pi}} \\ y - intercept = 8\pi[/tex]
Equation of tangent:
[tex]{ \boxed{ \bf{y = - 8x + 8\pi}}}[/tex]
Verify that the indicated family of functions is a solution of the given differential equation. Assume an appropriate interval I of definition for each solution.
d^2y/ dx^2 − 6 dy/dx + 9y = 0; y = c1e3x + c2xe3x When y = c1e3x + c2xe3x,
y'' - 6y' + 9y = 0
If y = C₁ exp(3x) + C₂ x exp(3x), then
y' = 3C₁ exp(3x) + C₂ (exp(3x) + 3x exp(3x))
y'' = 9C₁ exp(3x) + C₂ (6 exp(3x) + 9x exp(3x))
Substituting these into the DE gives
(9C₁ exp(3x) + C₂ (6 exp(3x) + 9x exp(3x)))
… … … - 6 (3C₁ exp(3x) + C₂ (exp(3x) + 3x exp(3x)))
… … … + 9 (C₁ exp(3x) + C₂ x exp(3x))
= 9C₁ exp(3x) + 6C₂ exp(3x) + 9C₂ x exp(3x))
… … … - 18C₁ exp(3x) - 6C₂ (exp(3x) - 18x exp(3x))
… … … + 9C₁ exp(3x) + 9C₂ x exp(3x)
= 0
so the provided solution does satisfy the DE.
Which of the following statements are correct? Select ALL that apply!
Select one or more:
O a. -1.430 = -1.43
O b. 2.36 < 2.362
O c.-1.142 < -1.241
O d.-2.33 > -2.29
O e. 2.575 < 2.59
O f. -2.25 -2.46
Translate the triangle. Then enter the new coordinates. A(-3, 4) A'([?], [?]) B'([ ], [ ] C([],[]) B(0, 1) C(-4,1)
or
Answer:
The new coordinates are [tex]A'(x,y) = (3, 0)[/tex], [tex]B'(x,y) = (6, -3)[/tex] and [tex]C'(x,y) = (2, -3)[/tex].
Step-by-step explanation:
Vectorially speaking, the translation of a point can be defined by the following expression:
[tex]V'(x,y) = V(x,y) + T(x,y)[/tex] (1)
Where:
[tex]V(x,y)[/tex] - Original point.
[tex]V'(x,y)[/tex] - Translated point.
[tex]T(x,y)[/tex] - Translation vector.
If we know that [tex]A(x,y) = (-3,4)[/tex], [tex]B(x,y) = (0,1)[/tex], [tex]C(x,y) = (-4,1)[/tex] and [tex]T(x,y) = (6, -4)[/tex], then the resulting points are:
[tex]A'(x,y) = (-3, 4) + (6, -4)[/tex]
[tex]A'(x,y) = (3, 0)[/tex]
[tex]B'(x,y) = (0,1) + (6, -4)[/tex]
[tex]B'(x,y) = (6, -3)[/tex]
[tex]C'(x,y) = (-4, 1) + (6, -4)[/tex]
[tex]C'(x,y) = (2, -3)[/tex]
The new coordinates are [tex]A'(x,y) = (3, 0)[/tex], [tex]B'(x,y) = (6, -3)[/tex] and [tex]C'(x,y) = (2, -3)[/tex].
Which set of statements explains how to plot a point at the location (Negative 3 and one-half, negative 2)?
A: Start at the origin. Move 3 and one-half units right because the x-coordinate is Negative 3 and one-half. Negative 3 and one-half is between 3 and 4. Move 2 units down because the y-coordinate is -2.
B: Start at the origin. Move 3 and one-half units down because the x-coordinate is Negative 3 and one-half. Negative 3 and one-half is between -3 and -4. Move 2 units left because the y-coordinate is -2.
C: Start at the origin. Move 3 and one-half units down because the x-coordinate is Negative 3 and one-half. Negative 3 and one-half is between -3 and -4. Move 2 units right because the y-coordinate is -2.
D: Start at the origin. Move 3 and one-half units left because the x-coordinate is Negative 3 and one-half. Negative 3 and one-half is between -3 and -4. Move 2 units down because the y-coordinate is -2.
Answer:
D: Start at the origin. Move 3 and one-half units left because the x-coordinate is Negative 3 and one-half. Negative 3 and one-half is between -3 and -4. Move 2 units down because the y-coordinate is -2.
Use what you know about decomposing fractions to write 11/10 as a mixed number.
Help please :(
Answer:
11/10 is 1 1/10
Step-by-step explanation:
X = The set of months in a year?
there are 12 set of months in a year
Which answer choice correctly identifies the extraneous information in the problem?
Anna babysat 2 children on Saturday night. She charges $8 an hour to babysit. She wants to save the money she earns babysitting to buy a stereo system that cost $225. If Nina babysat for 5 hours, how much money did she earn?
Answer: $40 / $80
Step-by-step explanation: 40$ if it's $8 for BOTH per hour, or if it's $8 for ONE per hour it's $80
A cable that weighs 6 lb/ft is used to lift 600 lb of coal up a mine shaft 500 ft deep. Find the work done. Show how to approximate the required work by a Riemann sum. (Let x be the distance in feet below the top of the shaft. Enter xi* as xi.)
Answer:
A cable that weighs 6 lb/ft is used to lift 600 lb of coal up a mine shaft 500 ft deep. Find the work done. Show how to approximate the required work by a Riemann sum.
Step-by-step explanation:
The electric cooperative needs to know the mean household usage of electricity by its non-commercial customers in kWh per day. They would like the estimate to have a maximum error of 0.09 kWh. A previous study found that for an average family the variance is 5.76 kWh and the mean is 16.6 kWh per day. If they are using a 98% level of confidence, how large of a sample is required to estimate the mean usage of electricity
Answer:
A sample of 3851 is required.
Step-by-step explanation:
We have that to find our level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.98}{2} = 0.01[/tex]
Now, we have to find z in the Z-table as such z has a p-value of .
That is z with a pvalue of , so Z = 2.327.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
Variance is 5.76 kWh
This means that [tex]\sigma = \sqrt{5.76} = 2.4[/tex]
They would like the estimate to have a maximum error of 0.09 kWh. How large of a sample is required to estimate the mean usage of electricity?
This is n for which M = 0.09. So
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
[tex]0.09 = 2.327\frac{2.4}{\sqrt{n}}[/tex]
[tex]0.09\sqrt{n} = 2.327*2.4[/tex]
[tex]\sqrt{n} = \frac{2.327*2.4}{0.09}[/tex]
[tex](\sqrt{n})^2 = (\frac{2.327*2.4}{0.09})^2[/tex]
[tex]n = 3850.6[/tex]
Rounding up:
A sample of 3851 is required.
The height (in meters) of a shot cannonball follows a trajectory given by h(t) = -4.9t^2 + 14t - 0.4 at time t (in seconds). As an improper fraction, for how long is the cannonball above a height of 6 meters? Please show steps. Thank you!
use the figure to find y
Answer:
y = 3
Step-by-step explanation:
6sin(30) = 3
I need help ASAP is anyone available
Answer:
C
Step-by-step explanation:
The graph has asymptotes at x = 2 and x = -1 corresponding to the denominator of option C.
Hi, help with question 18 please. thanks
Answer:
See Below.
Step-by-step explanation:
We are given the equation:
[tex]\displaystyle y^2 = 1 + \sin x[/tex]
And we want to prove that:
[tex]\displaystyle 2y\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right) ^2 + y^2 = 1[/tex]
Find the first derivative by taking the derivative of both sides with respect to x:
[tex]\displaystyle 2y \frac{dy}{dx} = \cos x[/tex]
Divide both sides by 2y:
[tex]\displaystyle \frac{dy}{dx} = \frac{\cos x}{2y}[/tex]Find the second derivative using the quotient rule:
[tex]\displaystyle \begin{aligned} \frac{d^2y}{dx^2} &= \frac{(\cos x)'(2y) - (\cos x)(2y)'}{(2y)^2}\\ \\ &= \frac{-2y\sin x-2\cos x \dfrac{dy}{dx}}{4y^2} \\ \\ &= -\frac{y\sin x + \cos x\left(\dfrac{\cos x}{2y}\right)}{2y^2} \\ \\ &= -\frac{2y^2\sin x+\cos ^2 x}{4y^3}\end{aligned}[/tex]
Substitute:
[tex]\displaystyle 2y\left(-\frac{2y^2\sin x+\cos ^2 x}{4y^3}\right) + 2\left(\frac{\cos x}{2y}\right)^2 +y^2 = 1[/tex]
Simplify:
[tex]\displaystyle \frac{-2y^2\sin x-\cos ^2x}{2y^2} + \frac{\cos ^2 x}{2y^2} + y^2 = 1[/tex]
Combine fractions:
[tex]\displaystyle \frac{\left(-2y^2\sin x -\cos^2 x\right)+\left(\cos ^2 x\right)}{2y^2} + y^2 = 1[/tex]
Simplify:
[tex]\displaystyle \frac{-2y^2\sin x }{2y^2} + y^2 = 1[/tex]
Cancel:
[tex]\displaystyle -\sin x + y^2 = 1[/tex]
Substitute:
[tex]-\sin x + \left( 1 + \sin x\right) =1[/tex]
Simplify. Hence:
[tex]1\stackrel{\checkmark}{=}1[/tex]
Q.E.D.
HELP ME WITH THIS MATHS QUESTION
PICTURE IS ATTACHED
Answer:
In picture.
Step-by-step explanation:
To do this answer, you need to count the boxes up to the mirror line. This will give us the exact place to draw the triangle.
The picture below is the answer.
according to the fundemental theorem of algebra, how many roots exist for the polynomial function? f(x) = (x^3-3x+1)^2
Answer:
6
Step-by-step explanation:
First, we can expand the function to get its expanded form and to figure out what degree it is. For a polynomial function with one variable, the degree is the largest exponent value (once fully expanded/simplified) of the entire function that is connected to a variable. For example, x²+1 has a degree of 2, as 2 is the largest exponent value connected to a variable. Similarly, x³+2^5 has a degree of 2 as 5 is not an exponent value connected to a variable.
Expanding, we get
(x³-3x+1)² = (x³-3x+1)(x³-3x+1)
= x^6 - 3x^4 +x³ - 3x^4 +9x²-3x + x³-3x+1
= x^6 - 6x^4 + 2x³ +9x²-6x + 1
In this function, the largest exponential value connected to the variable, x, is 6. Therefore, this is to the 6th degree. The fundamental theorem of algebra states that a polynomial of degree n has n roots, and as this is of degree 6, this has 6 roots
Write an expression representing the unknown quantity.
There are 5,682,953 fewer men than women on a particular social media site. If x represents the number of women using that site, write an expression for the number of men using that site.
The expression for the number of men is
.
9514 1404 393
Answer:
x - 5,682,953
Step-by-step explanation:
If x is the number of women, and the number of men is 5,682,953 less, then the number of men is x -5,682,953
Multiply (8 + 3i)(3 + 5i).
39 + 491
9+ 491
24 + 152
24 + 491 + 15/2
(8+3)(3+5)=88
88+(39+491)= 618.
88+(9+491)= 588
88+(24+152)= 264.
sorry could not find the last ansswer..
help me please pls this ur really hard help
Given f(x) = 3sqrt(2x-1).
6(2x-1)^2-3
What is lim f(x)?
Answer:
[tex]\displaystyle 51[/tex]
General Formulas and Concepts:
Algebra I
Terms/CoefficientsFactoringFunctionsFunction NotationAlgebra II
Piecewise functionsCalculus
Limits
Right-Side Limit: [tex]\displaystyle \lim_{x \to c^+} f(x)[/tex]Limit Rule [Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to c} x = c[/tex]
Limit Property [Addition/Subtraction]: [tex]\displaystyle \lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)[/tex]
Limit Property [Multiplied Constant]: [tex]\displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle f(x) = \left \{ {{3\sqrt{2x - 1}, \ x \leq 2} \atop {6(2x - 1)^2 - 3, \ x > 2}} \right.[/tex]
Step 2: Solve
Substitute in function [Limit]: [tex]\displaystyle \lim_{x \to 2^+} 6(2x - 1)^2 - 3[/tex]Factor: [tex]\displaystyle \lim_{x \to 2^+} 3[2(2x - 1)^2 - 1][/tex]Rewrite [Limit Property - Multiplied Constant]: [tex]\displaystyle 3\lim_{x \to 2^+} 2(2x - 1)^2 - 1[/tex]Evaluate [Limit Property - Variable Direct Substitution]: [tex]\displaystyle 3[2(2 \cdot 2 - 1)^2 - 1][/tex]Simplify: [tex]\displaystyle 51[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Book: College Calculus 10e
PLEASE HELP please I need this done now
The total cost of a truck rental, y, for x days, can be modeled by y = 35x + 25.
What is the rate of change for this function?
Answers
A- 35$
B-25$
C-60$
D-10$
Answer:
35
Step-by-step explanation:
y = 35x+23 is in the form
y = mx+b where m is the slope and b is the y intercept
The slope can also be called the rate of change
35 is the slope
many ® Black pencils cost N75 each and coloured pencils cost N105 each. If 24 mixed pencils cost #2010, how of them were black? (Hint: Let there be x black pencils. Thus there are 24 - x) coloured pencils.)
Answer:
85
Step-by-step explanation:
I hope my answer help you
Jarvis invested some money at 6% interest. Jarvis also invested $58 more than 3 times that amount at 9%. How much is invested at each rate if Jarvis receives $1097.19 in interest after one year? (Round to two decimal places if necessary.)
Use the variables x and y to set up a system of equations to solve the given problem.
9514 1404 393
Answer:
$3309 at 6%$9985 at 9%Step-by-step explanation:
Let x and y represent amounts invested at 6% and 9%, respectively.
y = 3x +58 . . . . . . . the amount invested at 9%
0.06x +0.09y = 1097.19 . . . . . . total interest earned
__
Substituting for y, we have ...
0.06x +0.09(3x +58) = 1097.19
0.33x + 5.22 = 1097.19 . . . . . . . . . simplify
0.33x = 1091.97 . . . . . . . . . . . . subtract 5.22
x = 3309 . . . . . . . . . . . . . . . . divide by 0.33
y = 3(3309) +58 = 9985
$3309 is invested at 6%; $9985 is invested at 9%.