9514 1404 393
Answer:
A. 5 should have been subtracted in step 4
Step-by-step explanation:
No question is stated, so there is no "answer."
__
If we assume the question is, "What error did Keith make?" then choice A properly describes it.
Step 4 should look like ...
x -5 = 7y . . . . . . . 5 should be subtracted from both sides
and the final result should be ...
g(x) = (x -5)/7
The sum of the first ten terms of an arithmetic progression consisting of
positive integer terms is equal to the sum of the 20th, 21st and 22nd term.
If the first term is less than 20, find how many terms are required to give
a sum of 960.
Answer: [tex]n=13[/tex]
Step-by-step explanation:
Given
Sum of the first 10 terms is equal to sum of 20, 21, and 22 term
[tex]\Rightarrow \dfrac{10}{2}[2a+(10-1)d]=[a+19d]+[a+20d]+[a+21d]\\\\\Rightarrow 5[2a+9d]=3a+60d\\\Rightarrow 10a+45d=3a+60d\\\Rightarrow 7a=15d[/tex]
No of terms to give a sum of 960
[tex]\Rightarrow 960=\dfrac{n}{2}[2a+(n-1)d]\\\\\Rightarrow 1920=n[2a+(n-1)\cdot \dfrac{7}{15}a]\\\\\Rightarrow 28,800=n[30a+7a(n-1)]\\\\\Rightarrow a=\dfrac{28,800}{n[30+7n-7]}\\\\\Rightarrow a=\dfrac{28,800}{n[23+7n]}[/tex]
Value of first term is less than 20
[tex]\therefore \dfrac{28,800}{n[23+7n]}<20\\\\\Rightarrow 28,800<20n[23+7n]\\\Rightarrow 0<460n+140n^2-28,800\\\Rightarrow 140n^2+460n-28,800>0\\\\\Rightarrow n>12.79\\\\\text{For integer value }\\\Rightarrow n=13[/tex]
Answer:
15
Step-by-step explanation:
In the previous answer halfway through they used the equation: 960 = (n÷2)×(2a+(n-1)×(7a÷15))
Using this equation we can substitute an number to replace n, the higher the number is the smaller a would be.
When we substitute 15 into a, then it leaves us with the answer to be a = 15 which is a positive integer and also is smaller than 20, this then let’s us know that 15 is how many terms can be summed up to make 960.
To double check this answer you can find that d = 7 by changing the a into 15 in the formula 7a/15 (found in the previous answer.
Then in the expression: (n÷2)×(2a+(n-1)×d)
substitute:
n = 14 (must be an even number for the equation to work)
a = 15
d = 7
This will give you an answer of 847, but this is only 14 terms as we changed n into 14. To add the final term you need to complete the following equation: 847+(a+(n-1)×d)
substituting:
n = 15
a = 15
d = 7
This will give you the answer of 960, again proving that it takes 15 terms to sum together to make the number 960.
I hope this has helped you.
P.S. Everything in the previous solution was right apart from the start of the last section and the answer
15. The area of a triangle is 72 in the base is 12 in. Find the height.
Answer:
[tex]hright =12[/tex]
Step-by-step explanation:
----------------------------------------
The formula to find the area of a triangle is [tex]A=\frac{1}{2}bh[/tex] where [tex]b[/tex] stands for the base and [tex]h[/tex] stands for the height.
But we already know the area and the base. So to find the height, let's substitute 72 for [tex]A[/tex] and 12 for [tex]b[/tex], and solve.
[tex]72=\frac{1}{2}(12)(h)[/tex]
[tex]72=6h[/tex]
Here, divide both sides by 6
[tex]12=h[/tex]
--------------------
Hope this is helpful.
Answer:
height = 12
Step-by-step explanation:
.............
At one point in history, the NBA finals required that one of the two teams win at least three of five games in order to win the Championship. If one team wins the first two games, what is the probability that the same team wins the Championship, assuming that the two teams are well matched and each team is equally likely to win each game
Answer:
50% i believe
Step-by-step explanation:
because in every scenario theres 2 teams and if they are well matched it be half and half on every game assuming they're the same level of comp
A school contains 140 boys and 160 girls. what is the ratio of boys to girls?
I need full working out please
Answer:
7 : 8
Step-by-step explanation:
that is the procedure above
The diagram shows triangle ABC.
С
Work out the sizes of angles x, y and z.
40°
110°
х
Z
A
В
Answer:
x=70
y=30
z=20
Step-by-step explanation:
x=180-110 (angles on a straight line)
y=180-110-40 (angle sum of triangle)
z= 180-90-70 (angle sum of triangle)
Answer:
x=70°
y=30°
z=20°
Step-by-step explanation:
x=180°-110°(anlges on a straight line)
x=70°
y+110°+40°=180°(sum of angles of triangle)
y+150°=180°
y=180°-150°
y=30°
z+x+90°=180°(sum of angles of triangle)
z+70°+90°=180°
z+160°=180°
z=180°-160°
z=20°
Meghan sells advertisements for a radio station. Each 30 second ad costs $20 per play, and each 60 second ad
costs $35 per play. Meghan sold 12 ads for $315. She wrote the system below letting x represent the number of 30
second ads and y represent the number of 60 second ads.
X+ y = 12
20x+35y = 315
What is the solution to the system of equations?
Need answers ASAP!!!!
Answer:
usai964s46s694s4o6s64694s946649s469 opps
Answer:
[tex](x,y)=(7,5)[/tex]
Step-by-step explanation:
Megan's equation will be:
[tex]20x+35y=315[/tex]
[tex]x+y=12[/tex]
Substitute [tex]x=12-y[/tex] in the first equation:
[tex]20(12-y)+35y=315[/tex]
[tex]15y=75[/tex]
[tex]y=75/15[/tex]
[tex]y=5[/tex]
Find x:
[tex]x=12-5[/tex]
[tex]x=7[/tex]
Where x and y represent 30-second and 60-second ads sold, we find that Meghan's sales were:
[tex](x,y)=(7,5)[/tex]
hope this helps....
What does y equal in the solution of the system of equations below? 5y-3x-4z=22 2z-2x=-6 2z+3x=-6
9514 1404 393
Answer:
y = 2
Step-by-step explanation:
Subtracting the second equation from the third gives ...
(2z +3x) -(2z -2x) = (-6) -(-6)
5x = 0
x = 0
Using this in the third equation, we have ...
2z +0 = -6
z = -3
And substituting these values into the first equation, we have ...
5y -3(0) -4(-3) = 22
5y = 10 . . . . . subtract 12
y = 2
__
The solution to the system is (x, y, z) = (0, 2, -3).
The parametric equations for the paths of two projectiles are given. At what rate is the distance between the two objects changing at the given value of t? (Round your answer to two decimal places.) x1 = 10 cos(2t), y1 = 6 sin(2t) First object x2 = 4 cos(t), y2 = 4 sin(t) Second object t = π/2
Answer:
- [tex]\frac{4}{\sqrt{29} }[/tex]
Step-by-step explanation:
The equations for the 1st object :
x₁ = 10 cos(2t), and y₁ = 6 sin(2t)
2nd object :
x₂ = 4 cos(t), y₂ = 4 sin(t)
Determine rate at which distance between objects will continue to change
solution Attached below
Distance( D ) = [tex]\sqrt{(10cos2(t) - 4cos(t))^2 + (6sin2(t) -4sin(t))^2}[/tex]
hence; dD/dt = - [tex]\frac{4}{\sqrt{29} }[/tex]
Which of the following is not true regarding the flow of information from the adjusted trial balance on the end-of-period spreadsheet?
The correct statement about the flow of information from the adjusted trial balance on the end-of-period spreadsheet is A. The revenue and expense account balances flow into the income statement.
What is an Adjusted Trial Balance?This refers to the general ledger balance after some changes have been done an account balance such as accrued expenses, depreciation, etc.
Therefore, we can see that from the complete information, the statement that is false about the adjusted trial balance on the end-of-period spreadsheet is option A because the revenue and expense account balances does not flow into the income statement.
The other options from the complete text are:
a. The revenue and expense account balances flow into the income statement.b. The asset and liability account balances flow into the retained earnings statement.c. The revenue and expense account balances flow into the retained earnings statement.d. The retained earnings and dividends account balances flow into the balance sheet.
Read more about adjusted trial balance here:
https://brainly.com/question/14476257
#SPJ6
x(x-y) - y( x- y) simplify
Step-by-step explanation:
x²-xy-xy+y²
x²+2xy+y²
hope it helps
Please help me >_< will give out brainliest
====================================================
Explanation:
We have an octagon because there are n = 8 sides. The diagram below shows one way to number the sides so you can count them efficiently (without missing any or double counting any).
----------------
Plug n = 8 into the formula below
S = 180(n-2)
S = 180(8-2)
S = 180(6)
S = 1080
The 8 interior angles add up to 1080 degrees.
Find the solution of the differential equation that satisfies the given initial condition. (dP)/(dt)
Answer:
[tex]P = (\frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3})^2[/tex]
Step-by-step explanation:
Given
[tex]\frac{dP}{dt} = \sqrt{Pt[/tex]
[tex]P(1) = 2[/tex]
Required
The solution
We have:
[tex]\frac{dP}{dt} = \sqrt{Pt[/tex]
[tex]\frac{dP}{dt} = (Pt)^\frac{1}{2}[/tex]
Split
[tex]\frac{dP}{dt} = P^\frac{1}{2} * t^\frac{1}{2}[/tex]
Divide both sides by [tex]P^\frac{1}{2}[/tex]
[tex]\frac{dP}{ P^\frac{1}{2}*dt} = t^\frac{1}{2}[/tex]
Multiply both sides by dt
[tex]\frac{dP}{ P^\frac{1}{2}} = t^\frac{1}{2} \cdot dt[/tex]
Integrate
[tex]\int \frac{dP}{ P^\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
Rewrite as:
[tex]\int dP \cdot P^\frac{-1}{2} = \int t^\frac{1}{2} \cdot dt[/tex]
Integrate the left hand side
[tex]\frac{P^{\frac{-1}{2}+1}}{\frac{-1}{2}+1} = \int t^\frac{1}{2} \cdot dt[/tex]
[tex]\frac{P^{\frac{-1}{2}+1}}{\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
[tex]2P^{\frac{1}{2}} = \int t^\frac{1}{2} \cdot dt[/tex]
Integrate the right hand side
[tex]2P^{\frac{1}{2}} = \frac{t^{\frac{1}{2} +1 }}{\frac{1}{2} +1 } + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{t^{\frac{3}{2}}}{\frac{3}{2} } + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + c[/tex] ---- (1)
To solve for c, we first make c the subject
[tex]c = 2P^{\frac{1}{2}} - \frac{2}{3}t^\frac{3}{2}[/tex]
[tex]P(1) = 2[/tex] means
[tex]t = 1; P =2[/tex]
So:
[tex]c = 2*2^{\frac{1}{2}} - \frac{2}{3}*1^\frac{3}{2}[/tex]
[tex]c = 2*2^{\frac{1}{2}} - \frac{2}{3}*1[/tex]
[tex]c = 2\sqrt 2 - \frac{2}{3}[/tex]
So, we have:
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + c[/tex]
[tex]2P^{\frac{1}{2}} = \frac{2}{3}t^\frac{3}{2} + 2\sqrt 2 - \frac{2}{3}[/tex]
Divide through by 2
[tex]P^{\frac{1}{2}} = \frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3}[/tex]
Square both sides
[tex]P = (\frac{1}{3}t^\frac{3}{2} + \sqrt 2 - \frac{1}{3})^2[/tex]
Which simplified fraction is equal to 0.53? Need answers now plz
Answer:
8/15
Step-by-step explanation:
Answer:
8/15
Step-by-step explanation:
when you divide 8/15 its 0.53
A sample of 25 one-year-old girls had a mean weight of 24.1 pounds with a standard deviation of pounds. Assume that the population of weights is normally distributed. A pediatrician claims that the standard deviation of the weights of one-year-old girls is less than pounds. Do the data provide convincing evidence that the pediatrician's claim is true
Answer:
Paedtricians claim isn't true.
Step-by-step explanation:
The hypothesis :
H0 : σ = 7
H0 : σ > 7
The test statistic ; χ² :
χ² = [(n - 1) * s²] ÷ σ²
n = 25 ; s = 4.3, σ = 7
χ² = [(25 - 1) * 4.3²] ÷ 7²
χ² = [(24 * 4.3²] ÷ 49
χ² = 443.76 / 49
χ² = 9.056
At α = 0.01 ; critical value = 42.980
Since critical value > test statistic, we fail to reject the null, H0.
A 27% solution ( 27mg per 100 mL of solution) is given intravenously. Suppose a total of 1,36 L of the solution is given over a 10 -hour period. Complete parts (a) through (c) below.
a. What is the flow rate in units of mL/hr?
nothing mL/hr (Type an integer or decimal rounded to the nearest thousandth as needed.)
What is the flow rate in per hour?
nothing mg/hr (Type an integer or decimal rounded to the nearest thousandth as needed.)
b. If each mL contains 13 drops (the drop factor is expressed as gtt/mL), what is the flow rate in units of 13gtt/hr?
nothing gtt/hr (Type an integer or decimal rounded to the nearest thousandth as needed.)
c. During the 10 -hour period, how much is delivered?
nothing mg (Type an integer or decimal rounded to the nearest thousandth as needed.)
Answer:
Step-by-step explanation:
a.
(1.36 L)/(10 hr) = (0.136 L)/(hr)
Flow rate = (0.136 L)/(hr) × (1000 mL)/L = (136 mL)/(hr)
136 mL × (27 mg)/(100 mL) = 36.72 mg
Delivery rate = (36.72 mg)/(hr)
b.
(136 mL)/(hr) × (13 gtt)/(mL) = (1868 gtt)/(hr)
c.
10 hr × (36.72 mg)/)hr) = 367.2 mg
Please HELP!
How many pairs (A, B) are there where A and B are subsets of {1, 2, 3, 4, 5, 6, 7, 8} and A ∩ B has exactly two elements?
Answer:
There are 256 pairs in all.
HELP
-5(2m-3)-4<81
I need the steps also well
Answer:
m>-7
Step-by-step explanation:
expand
-10m+15-4<81
-10m+11<81
collect like terms
-10m<81-11
-10m<70
m>-7
If the cutoff Z score on the comparison distribution is 2.33 and the sample value has a score of 2.35 on the comparison distribution, the correct decision is to:____.
A) fail to reject the null hypothesis.
B) reject the null hypothesis.
C) accept the researc hypothesis.
D) reject the research hypothesis.
Answer:
B) reject the null hypothesis.
Step-by-step explanation:
Find the range of the data.
Scores: 81, 79, 80, 88, 72, 96, 86, 73, 79, 88
Answer:
24
Step-by-step explanation:
To find the range, you must subtract the lowest value from the highest value in the data set. If you organize the set from least to greatest, 72 is the lowest, and 96 is the highest.
So, 96 - 72 = 24, which is the range.
For each of the following, assume that the two samples are obtained from populations with the same mean, and calculate how much difference should be expected, on average, between the two sample means. Each sample has n =4 scores with s^2 = 68 for the first sample and s^2 = 76 for the second. (Note: Because the two samples are the same size, the pooled variance is equal to the average of the two sample variances).
a) 4.24.
b) 0.24.
c) 8.48.
d) 6.00.
Next, each sample has n=16 scores with s^2 = 68 for the first sample and s^2 = 76 for the second.
a) 0.12.
b) 2.12.
c) 4.24.
d) 3.00.
Answer:
d)6.00
d)3.00
Step-by-step explanation:
We are given that
n=4 scores
[tex]S^2_1=68[/tex]
[tex]S^2_2=76[/tex]
We have to find the difference should be expected, on average, between the two sample means.
[tex]S_{M_1-M_2}=\sqrt{\frac{S^2_1}{n_1}+\frac{S^2_2}{n_2}}[/tex]
[tex]n_1=n_2=4[/tex]
Using the formula
[tex]S_{M_1-M_2}=\sqrt{\frac{68}{4}+\frac{76}{4}}[/tex]
[tex]S_{M_1-M_2}=\sqrt{\frac{68+76}{4}}[/tex]
[tex]S_{M_1-M_2}=\sqrt{36}=6[/tex]
Option d is correct.
Now, replace n by 16
[tex]n_1=n_2=16[/tex]
[tex]S_{M_1-M_2}=\sqrt{\frac{68}{16}+\frac{76}{16}}[/tex]
[tex]S_{M_1-M_2}=\sqrt{\frac{68+76}{16}}[/tex]
[tex]S_{M_1-M_2}=\sqrt{9}=3[/tex]
Option d is correct.
The function f is defined by the following rule. f(x) = 5x+1 Complete the function table.
Answer:
[tex]-5 \to -24[/tex]
[tex]-1 \to -4[/tex]
[tex]2 \to 11[/tex]
[tex]3 \to 16[/tex]
[tex]4 \to 21[/tex]
Step-by-step explanation:
Given
[tex]f(x) = 5x + 1[/tex]
Required
Complete the table (see attachment)
When x = -5
[tex]f(-5) = 5 * -5 + 1 = -24[/tex]
When x = -1
[tex]f(-1) = 5 * -1 + 1 = -4[/tex]
When x = 2
[tex]f(2) = 5 * 2 + 1 = 11[/tex]
When x = 3
[tex]f(3) = 5 * 3 + 1 = 16[/tex]
When x = 4
[tex]f(4) = 5 * 4 + 1 = 21[/tex]
So, the table is:
[tex]-5 \to -24[/tex]
[tex]-1 \to -4[/tex]
[tex]2 \to 11[/tex]
[tex]3 \to 16[/tex]
[tex]4 \to 21[/tex]
Write the range of the function using interval notation.
Given:
The graph of a function.
To find:
The range of the given function using interval notation.
Solution:
Range: The set of y-values or output values are known as range.
From the given graph, it is clear that the function is defined for [tex]0<x<4[/tex] and the values of the functions lie between -2 and 2, where -2 is excluded and 2 is included.
Range [tex]=\{y|-2<y\leq 2\}[/tex]
The interval notation is:
Range [tex]=(-2,2][/tex]
Therefore, the range of the given function is (-2,2].
Suppose that you are thinking about buying a car and have narrowed down your choices to two options.
The new-car option: The new car costs $25,000 and can be financed with a four-year loan at 6.12%.
The used-car option: A three-year old model of the same car costs $17,000 and can be financed with a three-year loan at 7.72%.
=||)
[1-(2-4) 11
What is the difference in monthly payments between financing the new car and financing the used car? Use PMT
The difference in monthly payments between financing the new car and financing the used car is $
(Round to the nearest cent as needed.)
Answer:
sjsjsuduhr r ki snsbtsuwi 3 38yv4r djvs
Christian and Tanae both leave Disneyland at the same time. Christian travels north at 65 mph. Tanae travels south at 55 mph. How long will it take them to be 540 miles apart? Which of the following equations would you use to solve this word problem?
65t + 55(t − 1) = 540.
65t + 55t = 540.
65t + 55(t + 1) = 540.
None of these choices are correct.
Answer:
Step-by-step explanation:
B looks like it would work.
You add speeds * time when you are travelling in opposite directions.
I don't know why you would add or subtract 1 as in A and C
120 * t = 540
t = 540/120
t = 4.5 hours.
So after 4.5 hours they are 540 miles apart.
Answer:
b
Step-by-step explanation:
A professor is interested in whether or not college students have a preference (indicated by a satisfaction score) for reading a textbook that has a layout of one column or layout of two columns. In the above experiment, what is the dependent variable
Answer:
Satisfaction score
Step-by-step explanation:
The dependent variable may be described as the variable which is being measured in a research experiment. In the scenario described above, the dependent variable is the satisfaction score which is used to measure preference for a one or two column textbook. The dependent variable can also seen as the variable which we would like to predict, also called the predicted variable . The predicted variable here is the satisfaction score.
Last softball season, Pamela had 46 hits, a combination of singles (1 base), doubles (2 bases), and triples (3 bases). These 46 hits totaled 66 bases, and she had 4 times as many singles as doubles. How many doubles did she have?
Answer:
She had 8 doubles.
Step-by-step explanation:
This question is solved by a system of equations.
I am going to say that:
x is the number of singles.
y is the number of doubles
z is the number of triples.
46 hits
This means that [tex]x + y + z = 46[/tex]
46 hits totaled 66 bases
This means that:
[tex]x + 2y + 3z = 66[/tex]
4 times as many singles as doubles
This means that [tex]x = 4y[/tex]
So
[tex]x + 2y + 3z = 66[/tex]
[tex]4y + 2y + 3z = 66[/tex]
[tex]6y + 3z = 66[/tex]
And
[tex]x + y + z = 46[/tex]
[tex]4y + y + z = 46[/tex]
[tex]5y + z = 46 \rightarrow z = 46 - 5y[/tex]
Then
[tex]6y + 3z = 66[/tex]
[tex]6y + 3(46 - 5y) = 66[/tex]
[tex]6y + 138 - 15y = 66[/tex]
[tex]9y = 72[/tex]
[tex]y = \frac{72}{9}[/tex]
[tex]y = 8[/tex]
She had 8 doubles.
Which answers describe the shape below? Check all that apply.
A. Square
B. Quadrilateral
C. Rhombus
D. Trapezoid
E. Rectangle
F. Parallelogram
Answer:
b and f
Step-by-step explanation:
Let f(x)
2x + 8, g(x) = x2 + 2x – 8, and h(x) = 3x – 6.
Perform the indicated operation. (Simplify as far as possible.)
(h · f)(3) =
Answer:
36
Step-by-step explanation:
(h · f)(x) = h(f(x))
h(f(x)) = h(2x+8)
h(f(x))= 3(2x+8) - 6
h(f(x)) = 6x + 24 - 6
h(f(x))= 6x + 18
If x = 3
h(f(x))= 6(3) + 18
h(f(x))= 18 + 18
h(f(x))= 36
Hence (h · f)(3) = 36
Private nonprofit four-year colleges charge, on average, $26,208 per year in tuition and fees. The standard deviation is $7,040. Assume the distribution is normal. Let X be the cost for a randomly selected college. Round all answers to 4 decimal places where possible.
a. What is the distribution of X? X ~ N(
26208
Correct,
7040
Correct)
b. Find the probability that a randomly selected Private nonprofit four-year college will cost less than 22,924 per year.
c. Find the 60th percentile for this distribution. $
(Round to the nearest dollar.)
Answer:
#########
Step-by-step explanation:
How would 0.42 be shown as a percent?
A. 0.42%
B. 4%
C. 4.2%
D. 42%
Answer:
42%
Step-by-step explanation:
to find percentages, you move the decimal point twice to the right