Explanation:
Let's set the x-axis to be parallel to the and positive up the plane. Likewise, the y-axis will be positive upwards and perpendicular to the plane. As the problem stated, we are going to assume that m1 will move downwards so its acceleration is negative while m2 moves up so its acceleration is positive. There are two weight components pointing down the plane, [tex]m_1g \sin \theta[/tex] and [tex]m_2g \sin \theta[/tex] and two others pointing up the plane, the two tensions T along the strings. There is a normal force N pointing up from the plane and two pointing down, [tex]m_1g \sin \theta[/tex] and [tex]m_2g \sin \theta[/tex]. Now let's apply Newton's 2nd law to this problem:
x-axis:
[tex]m1:\:\:\:\displaystyle \sum_i F_i = T - m_1g \sin \theta = - m_1a\:\:\:\:(1)[/tex]
[tex]m2:\:\:\:\displaystyle \sum_i F_i = T - m_2g \sin \theta = m_2a\:\:\:\:(2)[/tex]
y-axis:
[tex]\:\:\:\displaystyle \sum_i F_i = N - m_1g \cos \theta - m_2g \cos \theta = 0[/tex]
Use Eqn 1 to solve for T,
[tex]T = m_1(g \sin \theta - a)[/tex]
Substitute this expression for T into Eqn 2,
[tex]m_1g \sin \theta - m_1a - m_2g \sin \theta = m_2a[/tex]
Collecting all similar terms, we get
[tex](m_1 + m_2)a = (m_1 - m_2)g \sin \theta[/tex]
or
[tex]a = \left(\dfrac{m_1 - m_2}{m_1 + m_2} \right)g \sin \theta[/tex]
Your car breaks down in the middle of nowhere. A tow truck weighing 4000 lbs. comes along and agrees to tow your car, which weighs 2000 lbs., to the nearest town. The driver of the truck attaches his cable to your car at an angle of 20 degrees to horizontal. He tells you that his cable has a strength of 500 lbs. He plans to take 10 secs to tow your car at a constant acceleration from rest in a straight line along a flat road until he reaches the maximum speed of 45 m.p.h. Can the driver carry out the plan
Answer:
F = 1010 Lb
the tension on the cable is greater than its resistance, which is why the plan is not viable
Explanation:
For this exercise we can use the kinematic relations to find the acceleration and with Newton's second law find the force to which the cable is subjected.
v = v₀ + a t
how the car comes out of rest v₀ = 0
a = v / t
let's reduce to the english system
v = 45 mph (5280 ft / 1 mile) (1h / 3600) = 66 ft / s
let's calculate
a = 66/10
a = 6.6 ft / s²
now let's write Newton's second law
X axis
Fₓ = ma
with trigonometry
cos 20 = Fₓ / F
Fₓ = F cos 20
we substitute
F cos 20 = m a
F = m a / cos20
W = mg
F = [tex]\frac{W}{g} \ \frac{a}{cos 20}[/tex]
let's calculate
F = [tex]\frac{2000}{32} \ \frac{6.6 }{cos20}[/tex](2000/32) 6.6 / cos 20
F = 1010 Lb
Under these conditions, the tension on the cable is greater than its resistance, which is why the plan is not viable.
If the loading is 0.4, the coinsurance rate is 0.2, the number of units of medical care is 100, and the number of units of medical care is 1. What is the premium of this insurance?
Answer:
72 is the premimum of the insurance.
Explanation:
Below is the given values:
The loading = 0.4
Coinsurance rate = 0.2
Number of units = 100
Total number of units = 100 * 0.4 = 40
Remaining units = 60 * 0.2 = 12
Add the 60 and 12 values = 60 + 12 = 72
Thus, 72 is the premimum of the insurance.
what is the frequency of a wave related to
Answer:
Frequency is the number of complete oscillations or cycles or revolutions made in one second.
help asap PLEASE I will give u max everything all that
steps if possible
Explanation:
2. [tex]R_T = R_1 + R_2 + R_3 = 625\:Ω + 330\:Ω + 1500\:Ω[/tex]
[tex]\:\:\:\:\:\:\:= 2455\:Ω = 2.455\:kΩ[/tex]
3. Resistors in series only need to be added together so
[tex]R_T = 8(140\:Ω) = 1120\:Ω = 1.12\:kΩ[/tex]