From your earlier questions, we found
[tex]2\sin(4\pi t)+5\cos(4\pi t)=\sqrt{29}\sin\left(4\pi t+\tan^{-1}\left(\dfrac52\right)\right)[/tex]
so the wave has amplitude √29. The weight's maximum negative position from equilibrium is then -√29, so you are solving for t in the given interval for which
[tex]\sqrt{29}\sin\left(4\pi t+\tan^{-1}\left(\dfrac52\right)\right)=-\dfrac{\sqrt{29}}2[/tex]
Divide both sides by √29:
[tex]\sin\left(4\pi t+\tan^{-1}\left(\dfrac52\right)\right)=-\dfrac12[/tex]
Take the inverse sine of both sides, noting that we get two possible solution sets because we have
[tex]\sin\left(\dfrac{7\pi}6\right)=\sin\left(\dfrac{11\pi}6\right)=-\dfrac12[/tex]
and the sine wave has period 2π, so [tex]\sin x=\sin(x+2\pi)=\sin(x+4\pi)=\cdots[/tex].
[tex]\implies 4\pi t+\tan^{-1}\left(\dfrac52\right)=\dfrac{7\pi}6+2n\pi[/tex]
OR
[tex]\implies 4\pi t+\tan^{-1}\left(\dfrac52\right)=\dfrac{11\pi}6+2n\pi[/tex]
where n is any integer.
Now solve for t :
[tex]t=\dfrac{\frac{7\pi}6+2n\pi-\tan^{-1}\left(\frac52\right)}{4\pi}[/tex]
OR
[tex]t=\dfrac{\frac{11\pi}6+2n\pi-\tan^{-1}\left(\frac52\right)}{4\pi}[/tex]
We get solutions between 0 and 0.5 when n = 0 of t ≈ 0.196946 and t ≈ 0.363613.
help please I need help :(
A = 1 and 8
B = 2 and 4
C = 2 and 7
I’m pretty sure this is right? I’m still learning too :p
=======================================================
Explanations:
For the sake of simplicity, imagine that lines m and n are parallel. They don't necessarily need to be in order to answer this problem, but it might help with the terminology better.
When we use the term "interior" we basically mean the region between or inside the parallel lines. So "exterior" is everything but that, which is composed of two separate regions that don't overlap. Exterior angles shown in this diagram are
angle 1, angle 5, angle 4, angle 8
The "alternate" refers to the idea that we're on alternate sides of the transversal cutting line. One pair of alternate exterior angles is angle 1 and angle 8. We have angle 1 below the transversal while angle 8 is on the opposite side and above the transversal. For similar reasoning, angles 5 and 4 are alternate exterior angles as well.
---------------------------------
Notice how each line crosses to form an X shape, producing 4 angles that share the same common vertex point. For instance, angles 1, 5, 6 and 2 are all around the same point.
Angle 1 and angle 3 are corresponding angles because they
a) are to the left of each parallel line (m and n)b) both below the transversal lineSo in short, they are both in the same corner of each four corner angle configuration. They are both in the bottom left corner. This is the full list of all corresponding angle pairs
angle 1 and angle 3angle 2 and angle 4angle 5 and angle 7angle 6 and angle 8---------------------------------
As stated in the first section above, the interior region is between the parallel lines. Alternate interior angles alternate being above and below the transversal line.
So this applies to angle 2 and angle 7. It also works for angle 3 and angle 6.
In the figure below, angle y and angle x form vertical angles. Angle x forms a straight line with the 50° angle and the 40° angle. A straight line is shown and is marked with three angles. The first angle measures 50 degrees. The second angle measures 60 degrees. The third angle is labeled x. The line between the 40 degree angle and angle x extends below the straight line. The angle formed is labeled angle y. Write and solve an equation to determine the measure of angle y.
Step-by-step explanation:
sorry but u should provide with a diagram for better understanding of ur question
Stephanie is twice as old as her sister Rosa. If Stephanie is 18 years old, how old is Rosa?
Answer:
rose. is. 18/2=9 years old
Answer:
Stephanie is 18years old and she is twice older than her sister
so rosa is 18÷2(since stephanie is twice older than rosa
so rosa is 9 years old
Determine the Perimeter of the shape #1.
Answer:
56.8
Step-by-step explanation:
7.1*8=56.8
Which is the zero of the function f(x)=(x+3) (2x-1)(x+2) ?
Answer:
x= -3 x = 1/2 x=-2
Step-by-step explanation:
f(x)=(x+3) (2x-1)(x+2)
Set equal to zero
0 =(x+3) (2x-1)(x+2)
Using the zero product property
x+3 =0 2x-1 =0 x+2 =0
x= -3 2x =1 x = -2
x= -3 x = 1/2 x=-2
What is the distance between the coordinates (4,2) and (0,2)
Answer: Hi!
The distance between the coordinates (4,2) and (0,2) is 4 units.
The coordinates have the same location on the y axis, but the coordinates have different locations on the x axis. (4,2) is 4 units to the right of the x axis and 2 up on the y axis, while (0,2) goes just straight up to 2 on the y axis. If we graphed these, the two points would be aligned with each other, but a distance of 4 units would separate them horizontally.
Hope this helps!
Find the missing side or angle.
Round to the nearest tenth.
Answer:
b=2.7
Step-by-step explanation:
using sine rule,,,
Step-by-step explanation:
So for this problem, we need the missing angle A. From there, we can use the law of sines to compute length of b.
So the sum of the interior angles of a triangle is 180. With that in mind, we can make an equation to fine the measure of angle A.
53 + 80 + A = 180
133 + A = 180
A = 47
Now that we have the angle of A, we can use the law of sines to fine the length of b.
b / sin(B) = a / sin(A)
b = sin(B) * a / sin(A)
b = sin(80) * 2 / sin(47)
b = 2.693
Now round that to the nearest tenth to get
b = 2.7
Cheers.
what number must be added to the sequence of 7,13 and 10 to get an average of 13
Answer:
22
Step-by-step explanation:
We can write an equation:
(7+13+10+x)/4=13
x represents the number that needs to be added to get an average of
(7+13+10+x)/4=13
(30+x)/4=13
30+x=52
x=22
The number is 22
Hope this helps! Have a wonderful day :)
1/3 is part of which set of numbers?
Answer:
[tex] \frac{1}{3} [/tex]Rational number as denominator is not equal to zero and numerator is a integer.
Rational numbers. denoted by [tex] \mathbb Q[/tex]
1/3 is clearly not a natural number or integer.
it is a fraction, =0.333 , it fits the definition of rational number ([tex] \frac pq [/tex]).
Suppose we randomly selected 250 people, and on the basis of their responses to a survey we assigned them to one of two groups: high-risk group and low-risk group. We then recorded the blood pressure for the members of each group. Such data are called
Answer:
Matched or paired data
Step-by-step explanation:
In statistics the different types of study included experimental and observational with the matched or paired data.
The observational study is one in which there is no alteration in the obseravtions or any change. It is purely based on observations.
The experimental study is one in which some experiment or change is brought about to see the effects of the experiment and the results are recorded as before and after treatment etc.
The matched or paired study is one in which two or more groups are simultaneously observed , recorded to find the difference between them or other parameters which maybe useful for the differences or similarities.
Please answer this correctly without making mistakes
Answer:
Put 1/10 in the box.
Step-by-step explanation:
Since, Bluepoint and Milford are at same distance from Weston, the distance further than this to Oakdale is 1/10 miles.
Best Regards!
Answer:
To Oakdale to Milford:
2/5 mi
Step-by-step explanation:
1/10 + 3/20 + 3/20
1/10 = 2/20
then;
2/20 + 3/20 + 3/20 = (2+3+3)/20 = 8/20
8/20 = 2/5
These box plots show daily low temperatures for a sample of days in two different towns.
A
---------------------------------------------------------
Answer: I just took the test and it is D
Use a definition, postulate, or theorem to find the value of x in the figure described. Point E is between points D and F. If DE = x − 3, EF = 6x + 5, and DF = 8x − 3, find x. Select each definition, postulate, or theorem you will use. A)definition of segment bisector B)definition of midpoint C)Linear Pair Theorem D)Segment Addition Postulate The solution is x =?
Answer:
Option (D)
x = 5
Step-by-step explanation:
Since point E is in the mid of the segment DF,
Therefore, by the Segment addition postulate,
DF = DE + EF
Since DF = (8x - 3), DE = (x - 3) and EF = (6x + 5)
By substituting these values in the given postulate,
(8x - 3) = (x - 3) + (6x + 5)
8x - 3 = (x + 6x) + (5 - 3)
8x - 3 = 7x + 2
8x - 7x = 3 + 2
x = 5
Therefore, x = 5 will be the answer.
Answer:
x=6 and D
Step-by-step explanation:
Please help! I’ll mark you as brainliest if correct.
Answer:
160 liters of 25%, 20 liters of 40%, 60 liters of 60%
Step-by-step explanation:
x + y + z = 240
0.25x + 0.4y + 0.6z = 0.35*240 = 84
z = 3y
x = 160
y = 20
z = 60
In order to purchase a new backyard patio in 3 years, the Robinsons have decided to deposit $1,700 in an account that earns 6% per year compounded monthly for 3 years. How much money will be in the account in 3 years?
Answer: A = 2,034.356 ≈ $2,034.36
$2,034.36 will be in the account in 3 years
Step-by-step explanation:
Given that ;
P = $1,700
Rate r = 6%
Time period (t) = 3 years
now to find how much money will be in the account in 3 years
we say;
A = P ( 1 + r/n )^nt
A = 1,700 ( 1 + 0.06/12) ¹²ˣ³
A = 1,700 ( 1.19668)
A = 2,034.356 ≈ $2,034.36
Fresno County, California is the largest agricultural producing county in the country and almonds are an important crop with more than 99,000 acres harvested. Each acre produces about a ton of almonds and sold at a price of $4300 a ton. The Sagardia Brothers grew 600 acres of almonds . How many tons would the brothers sell if they priced the almonds at $4500 a ton?
Answer:
0 ton
Step-by-step explanation:
The question states that 99,000 acres are harvested. This suggest that there are plenty sellers of almonds.The Sagardia Brothers grew 600 acres of almonds. this is a small percentage of the total output of almonds. This suggests that the market for almonds is perfectly competitive.
In this type of market, if the price of a seller is above equilibrium price, zero units of the commodity would be bought. This is because the goods sold are homogenous and buyers can easily purchase from other buyers that sell at the market price
A segment with endpoints at $A(2, -2)$ and $B(14, 4)$ is extended through $B$ to point $C$. If $BC = \frac{1}{3} \cdot AB$, what are the coordinates for point $C$? Express your answer as an ordered pair.
Answer:
C = (18, 6)
Step-by-step explanation:
You have ...
AB : BC = 1 : 1/3 = 3 : 1
(B -A) / (C -B) = 3/1 . . . . . another way to write the distance relation
B -A = 3(C -B) . . . . . . . . . multiply by (C-B)
4B -A = 3C . . . . . . . . . . . add 3B
C = (4B -A)/3 . . . . . . . . . divide by 3 to get an expression for C
C = (4(14, 4) -(2, -2))/3 = (54, 18)/3
C = (18, 6)
4 Which object has the shape of a
rectangular prism?
O pencil
O book
O scissors
An Uber driver provides service in city A and city B only dropping off passengers and immediately picking up a new one at the same spot. He finds the following Markov dependence. For each trip, if the driver is in city A, the probability that he has to drive passengers to city B is 0.25. If he is in city B, the probability that he has to drive passengers to city A is 0.45. Required:a. What is the 1-step transition matrix? b. Suppose he is in city B, what is the probability he will be in city A after two trips? c. After many trips between the two cities, what is the probability he will be in city B?
Answer:
a. 1-step transition matrix is be expressed as:
[tex]P= \left[\begin{array}{cc}0.75&0.25\\0.45&0.55\\\end{array}\right][/tex]
b. The probability that he will be in City A after two trips given that he is in City B = 0.585
c. After many trips, the probability that he will be in city B = 0.3571
Step-by-step explanation:
Given that:
For each trip, if the driver is in city A, the probability that he has to drive passengers to city B is 0.25
If he is in city B, the probability that he has to drive passengers to city A is 0.45.
The objectives are to calculate the following :
a. What is the 1-step transition matrix?
To determine the 1 -step transition matrix
Let the State ∝ and State β denotes the Uber Driver providing service in City A and City B respectively.
∴ The transition probability from state ∝ to state β is 0.25.
The transition probability from state ∝ to state ∝ is 1- 0.25 = 0.75
The transition probability from state β to state ∝ is 0.45. The transition probability from state β to state β is 1 - 0.45 = 0.55
Hence; 1-step transition matrix is be expressed as:
[tex]P= \left[\begin{array}{cc}0.75&0.25\\0.45&0.55\\\end{array}\right][/tex]
b. Suppose he is in city B, what is the probability he will be in city A after two trips?
Consider [tex]Y_n[/tex] = ∝ or β to represent the Uber driver is in City A or City B respectively.
∴ The probability that he will be in City A after two trips given that he is in City B
=[tex]P(Y_0 = 2, Y_2 = 1 , Y_3 = 1) + P(Y_0 = 2, Y_2 = 2 , Y_3 = 1)[/tex]
= 0.45 × 0.75 + 0.55 × 0.45
= 0.3375 + 0.2475
= 0.585
c. After many trips between the two cities, what is the probability he will be in city B?
Assuming that Ф = [ p q ] to represent the long run proportion of time that Uber driver is in City A or City B respectively.
Then, ФP = Ф , also p+q = 1 , q = 1 - p and p = 1 - q
∴
[tex][ p\ \ \ q ] = \left[\begin{array}{cc}0.75&0.25\\0.45&0.55\\\end{array}\right] [ p\ \ \ q ][/tex]
0.75p + 0.45q = q
-0.25p + 0.45q = 0
since p = 1- q
-0.25(1 - q) + 0.45q = 0
-0.25 + 0.25 q + 0.45q = 0
0.7q = 0.25
q = [tex]\dfrac{0.25} {0.7 }[/tex]
q = 0.3571
After many trips, the probability that he will be in city B = 0.3571
ASAP Which graph has a correlation coefficient, r, closest to 0.75?
Answer:
C. Graph C
Step-by-step explanation:
In a scatter plot, a positive correlation coefficient suggests that as one variable increases the other increases as well, or as one decreases, the other decreases.
Also, the more clustered the data points are along the line of best fit, the higher the value of the coefficient, whether positive or negative.
Graph C shows a positive correlation because as the variable on the x-axis increases, the variable on the y-axis also increases. The data points are more clustered along the line if best fit, if we draw one. This suggest a positive correlation coefficient (r) as strong as 0.75.
Graph C has a correlation coefficient, r, that is closer to 0.75.
Answer: graph A ‼️
Step-by-step explanation:
Find the next term of the sequence.
16, 9, 2, -5,
Answer: The next term is -12.
Step-by-step explanation:
16,9,2,-5
Looking at these numbers to go from 16 to 9 you will add -7 or subtract 7 . The same way you subtract 7 from 9 to get 2 and subtract 7 from 2 to get -5.
So to determine the next term subtract 7 from -7 or add -7.
-5 - 7 = -12
0r -5 + -7 = -12
[tex] 👋 [/tex] Hello ! ☺️
Step-by-step explanation:
•Find the next term of the sequence.
Let us find the interval between two successive terms:
16 - 9= 7
-7 is therefore the common différence of this sequence. (d)
Find the next term :
-5 + (-7)= -12
[tex]\boxed{\color{gold}{N = -12}} [/tex]
[tex]<marquee direction="left" scrollamount="2" height="100" width="150">💘Mynea04</marquee>[/tex]
i need help really bad
Answer:
see explanation
Step-by-step explanation:
If f(x) and [tex]f^{-1}[/tex] are inverse functions, then
f([tex]f^{-1}[/tex])(x) = x
Thus substitute x = [tex]f^{-1}[/tex] (x) into f(x)
f([tex]\frac{x+6}{5}[/tex] )
= 5 ([tex]\frac{x+6}{5}[/tex] ) - 6
= x + 6 - 6
= x
Thus f(x) and [tex]f^{-1}[/tex] (x) are inverse functions
What is the lateral area of the drawing is it a 200 km.b. 425.c.114d.1021km
Answer:
114 km
Step-by-step explanation:
Each side is an isosceles trapezoid, so ED=2 since you would need to add 2 to each end of the bottom line to get the top line. Now use Pythagorean Theorem to get ED^2+AD^2=AE^2. Plug in your numbers to solve for AE. This is the height of each trapezoid. Then use your formula for the area of a trapezoid, (B1+B2)h/2, to get the area of each side, then multiply by 4 to get the lateral area since there are 4 sides. Remember lateral area is just the sides, then surface area is when you include the area of the two bases.
donald is a taxi driver. for each ride in the taxi, the cost, c, is given by c = 500+130d, where c is in cents and d is the distance of the ride, in miles. what is the meaning of the value 500 in this equation? a) donald charges 500 cents per mile b) donald drives 500 customers per day c) donald charges at least 500 cents per taxi ride d) donald charges at most 500 cents per taxi ride
can u go to my page real quick and answer my question pls
What is the equation of the line that passes through the point (8,3) and has a slope
of
1/4
Answer:
y = 1/4x+1
Step-by-step explanation:
Using slope intercept form
y = mx+b
where m is the slope and b is the y intercept
y =1/4 x+b
Substituting in the point
3 = 1/4(8)+b
3 = 2+b
Subtract 2 from each side
3-2 = b
1 =b
y = 1/4x+1
Answer:
y=1/4x+1
Step-by-step explanation:
the equation for a line is y=mx+b
where m is the slope and b is the y-intercept. since we have our slope given and and x,y given we can use that to solve for b. we get:
3=1/4(8)+b
3=2+b
1=b
therefore the y-intercept is b
so the equation is y=1/4x+1
Was it evaluated correctly?
Explain your reasoning
help i need to turn it in a hour
Answer:
no
Step-by-step explanation:
2(4+10)+20
2(14)+20
28+20
48
What is the common difference in the arithmetic sequence 1,1.25,1.5,1.75,… ?
Answer:
0.25.
Step-by-step explanation:
To find the common difference, you need to find the number that each value increases by.
1.75 - 1.5 = 0.25.
1.5 - 1.25 = 0.25.
1.25 - 1 = 0.25.
All values apparently increase by 0.25. So, that is your common difference.
Hope this helps!
Answer:
0.25
Step-by-step explanation:
The common difference is the value added to the first term to get the second term, then added to the second to get the third and so on.
To find the common difference, subtract the first term from the second. Then check by subtracting the second term from the third.
The sequence is: 1,1.25,1.5,1.75
second term - first term
1.25- 1= 0.25
third term- second term
1.5 -1.25= 0.25
The common difference in the arithmetic sequence is 0.25
A box is filled with 8 blue cards, 6 red cards, and 6 yellow cards. A card is chosen at a random from the box. What is the probability that the card is not red ? Write your answer as a fraction.
Answer:
14/20 or .7 or 70%
Step-by-step explanation:
Total Number of cards: 20
Number of Red cards: 6
The leftover cards: 20 -6 = 14
The probability of not getting a red = 14/20
14/20 as a decimal = 14/20 = 70/100 = .7
14/20 as a percent = 14/20 = 70/100 = 70%
A factory produces plate glass with a mean thickness of 4 mm and a standard deviation of 1.1 mm. A simple random sample of 100 sheets of glass is to be measured, and the mean thickness of the 100 sheets is to be computed. What is the probability that the average thickness of the 100 sheets is less than 3.74 mm
Answer:
0.0090483
Approximately = 0.00905
Step-by-step explanation:
z = (x - μ)/σ, where
x is the raw score = 3.74
μ is the sample mean = population mean = 4 mm
σ is the sample standard deviation
This is calculated as:
= Population standard deviation/√n
Where n = number of samples = 100
σ = 1.1/√100
σ = 1.1/10 = 0.11
z = (3.74 - 4) / 0.11
z = -2.36364
Using the z score table to determine the probability,
The probability that the average thickness of the 100 sheets is less than 3.74 mm
P(x<3.74) = 0.0090483
Approximately = 0.00905
Using the normal distribution and the central limit theorem, it is found that there is a 0.0091 = 0.91% probability that the average thickness of the 100 sheets is less than 3.74 mm.
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
It measures how many standard deviations the measure is from the mean. After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.By the Central Limit Theorem, the sampling distribution of sample means for size n has standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].In this problem:
Mean thickness of 4 mm, thus [tex]\mu = 4[/tex].Standard deviation of 1.1 mm, thus [tex]\sigma = 1.1[/tex].Sample of 100, thus [tex]n = 100, s = \frac{1.1}{\sqrt{100}} = 0.11[/tex].The probability is the p-value of Z when X = 3.74, then:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{3.74 - 4}{0.11}[/tex]
[tex]Z = -2.36[/tex]
[tex]Z = -2.36[/tex] has a p-value of 0.0091.
0.0091 = 0.91% probability that the average thickness of the 100 sheets is less than 3.74 mm.
A similar problem is given at https://brainly.com/question/14228383
The volume of a gas in a container varies inversely as the pressure on the gas. If a gas has a volume of 356 cubic inches under a pressure of 6 pounds per square inch, what will be its volume if the pressure is increased to 7 pounds per square inch? Round your answer to the nearest integer if necessary.
Answer:
[tex]V_2=305.14\ \text{inch}^3[/tex]
Step-by-step explanation:
The volume of a gas in a container varies inversely as the pressure on the gas.
[tex]V\propto \dfrac{1}{P}\\\\V_1P_1=V_2P_2[/tex]
If V₁ = 356 inch³, P₁ = 6 pounds/in², P₂ = 7 pounds/in², V₂ = ?
So, using the above relation.
So,
[tex]V_2=\dfrac{V_1P_1}{P_2}\\\\V_2=\dfrac{356\times 6}{7}\\\\V_2=305.14\ \text{inch}^3[/tex]
So, the new volume is [tex]305.14\ \text{inch}^3[/tex].