Answer:
The numbers are 65, 67, and 69
Step-by-step explanation:
Hi there!
We need to find 3 consecutive odd integers.
Consecutive numbers are numbers that follow each other (ex. 1, 2, 3, 4)
We're given that 5 times the first number + 4 times the second + 3 times the third = 800
Let's make the first number x
Since the second number is consecutive to the first and odd, it will be x+2 (Why? Well, let's say x is 5. In that case, x+1=6, which is even. However, x+2=7)
Therefore, the third number is x+4 (once again, if x is 5, x+3=8, but x+4=9)
5 times the first number is 5x
4 times the second is 4(x+2)
3 times the third is 3(x+4)
And of course, that equals 800
As an equation, it'll be:
5x+4(x+2)+3(x+4)=800
open the parenthesis
5x+4x+8+3x+12=800
combine like terms
12x+20=800
Subtract 20 from both sides
12x=780
Divide by 12 on both sides
x=65
The first number is x, so the first number is 65
The second number is x+2, or 65+2=67
The third number is x+4, or 65+4=69
Hope this helps!
Barnaby decided to count the number of ducks and geese flying south for the winter. On the first day he counted 175 ducks and 63 geese. By the end of migration, Barnaby had counted 4,725 geese. If the ratio of ducks to geese remained the same (175 to 63), how many ducks did he count?
Answer:
13,125 ducks
Step-by-step explanation:
The ratio of ducks:geese on the first day was:
175:63
On the last day (end of migration), he counted 4,725 geese.
To find the number of ducks using the same ratio, we are first going to divide 4,725 by 63 to find what number all the ducks and geese multiplied by:
4,725/63 = 75
The geese multiplied by 75. This means the ducks also multiplied by 75:
175*75 = 13,125
Barnaby counted 13,125 ducks.
Hope it helps (●'◡'●)
The function in the table is quadratic:
True**
False
Answer:
false...
to be quadratic you need an "x^2" in the
function
(0,1) might be 0^2 + 1
but then 1^2 + 1 = 2 than would be (1,2) NOT (1,3)
Step-by-step explanation:
19.Find dy/dx
of the function y = f(x) definded by x²+xy-y2 = 4.
Answer:
2x + y
Step-by-step explanation:
x² + xy - y² = 4
→ Remember the rule, bring the power down then minus 1
2x + y
If BcA, AnB=(1,4,5)and AuB= (1,2,3,4,5,6) find B?
Hello,
if B ⊂ A then A∩B=B
So B={1,4,5}
As per the given value of sets, B is (1,4,5).
What is a set?A set is a collection of one or multiple data.
Given,
B ⊂ A
[tex]A[/tex] ∩ [tex]B = (1,4,5)[/tex]
[tex]A[/tex] ∪ [tex]B = (1,2,3,4,5,6)[/tex]
As B ⊂ A, therefor, B is a subset of A.
Therefore, [tex]A[/tex] ∩ [tex]B = B[/tex] and [tex]A[/tex] ∪ [tex]B = A[/tex]
Hence, [tex]B = A[/tex] ∩ [tex]B = (1,4,5)[/tex].
Learn more about a set here:
https://brainly.com/question/20516078
#SPJ2
Choose ASA SAA or neither to describe this figure
Answer:
SAA
Step-by-step explanation:
HOPE IT HELPS YOU IN YOUR LEARNING PROCESS.
pls answer fast I need to submit in 5 mins !!
What is the volume of the prism?
Enter your answer, as a mixed number in simplest form, in the box.
4
920
26°
?
74°
find the missing angle.
9514 1404 393
Answer:
44°
Step-by-step explanation:
The sum of the marked angles on the right is equal to the sum of the marked angles on the left:
? + 74 = 92 + 26
? = 92 +26 -74 = 44
The missing angle is 44°.
_____
Additional comment
The vertical angles in the center of the figure are v = 62°, the measure required to bring the total to 180° in each triangle. We have shortcut the equation(s) ...
? + 74 + v = 180 = 92 + 26 + v
by subtracting v from both sides, giving ...
? +74 = 92 +26
Help someone please
A car uses 3/4% of a tank of gasoline to go 600 kilometers. What must one know to be able to determine how many kilometers the car gets per liter?
(1) the number of liters the tank holds
(2) the cost of gasoline per liter
(3) the average daily mileage of the driver (4) the relative age of the car
(5) the ratio of the mass to volume of the car
Answer:
(1) the number of liters the tank holds
Step-by-step explanation:
The sum of 9 and c is less than or
equal to 15.
Answer:
less than or equal to -26
Answer:
9+c < 15
OR
c < 6
Step-by-step explanation:
"the sum of 9 and c" means: 9+c
"is less than or equal to 15" means: < 15
If you need to simplify it, then subtract 9 from both sides, and you get
c < 6
Find the maximum and the minimum value of the following objective function, and the value of x and y at which they occur. The function F=2x+16y subject to 5x+3y≤37, 3x+5y≤35, x≥0, y≥0
The maximum value of the objective function is ___ when x=___ and y=___
Answer:
The maximum value of the objective function is 112 when x = 0 and y = 7.
Step-by-step explanation:
Given the constraints:
5x+3y≤37, 3x+5y≤35, x≥0, y≥0
Plotting the above constraints using geogebra online graphing tool, we get the solution to the constraints as:
A(0, 7), B(7.4, 0), C(5, 4) and D(0, 0)
The objective function is given as E =2x+16y, therefore:
At point A(0, 7): E = 2(0) + 16(7) = 112
At point B(7.4, 0): E = 2(7.4) + 16(0) = 14.8
At point C(5, 4): E = 2(5) + 16(4) = 74
At point D(0, 0): E = 2(0) + 16(0) = 0
Therefore the maximum value of the objective function is at A(0, 7).
The maximum value of the objective function is 112 when x = 0 and y = 7.
Overige
1) IF A = {2,3, 5, 7, 11 OR Write four subdivisions of this set.
2) A set of sub-sets of any set from the figure below.
с
5
25
35
D
15
10
30
20
3) Find out which of the following sets is a subset of which set of figures.
1
с
B
A
1) X = A set of self-contained lines
U
Y- set of all the elements above line AB
Answer:
the answae is D THEN C THE. 1
the difference when a number doubled is subtracted from 3
Answer: Let the number be x
3-2x is the equation.
Based on a sample survey, a company claims that 86% of their customers are satisfied with their products. Out of 1,100 customers, how many would you predict to be satisfied?
Answer:
946 people
Step-by-step explanation:
Find how many you would predict to be satisfied by multiplying 1,100 by 0.86:
1,100(0.86)
= 946
So, you could expect 946 people to be satisfied
Factor completely 4x2 − 8x + 4.
Given :-
4x² - 8x - 4 .To Find :-
To find the factorised form .Answer :-
Taking the given expression,
→ 4x² - 8x + 4
→ 4x² - 4x -4x + 4
→ 4x ( x - 1 ) -4( x -1)
→ (4x - 4)(x-1)
Hence the required answer is (4x - 4)( x - 1) .
how many student have a grade lower than 80
Is this the whole question?
Step-by-step explanation:
Are you done typing or there's more to it.
Answer:
You look at your graph and or chart and start to make note
Your looking for the following tyoe data
1-5, 5-10 etc such distribution is usually done on y axes for histograms and x axes for all other graphs.
If there is a group data or frequency then you need to multiply the highest group data ie) from 0-5 it is 2.5
Then 2.5 times the actual frequency which is in the chart = say it says 4
Then 2.5 x 4 = 10
Then do the same for 5-10 = 7.5 midpoint
7.5 x frequency of 2 = 15 and so on
Then 10-15 = 12.5 midpoint you show this by 10+15/2 = 12.5 frequency of 12.5 could be 6 as in example so 6 x 12.5 = 72 etc...
When you get all totals 10+ 15+ 72 in the fx bar you cna plot on graph and then see how many have a grade lower than 80
For histograms we dont do midpoint we do highest value then times it by frequency and so our grades for 0-5 = 5
and frequency is the number of students that got such mark so we do 5 x 4 = 20 and so on then divide this number by 5 again showing that 5 students got 5 or under
and keep adding these up, the reason we would need the fx totals ie) 20 for 0-5 is that you cna map it in a histogram by adding the number below it say its 0-5 = 5 and 5 x 4 = 20
but instead of doing separately thereafter 0-5 we just add the frequency amount to 20 so if its 5-10 = 10 then we get 10 x 2 = 20 and from 20 + 20 = 40
If no frequency was given we do 5 + 10 + 15 etc. until we get to our frequency that way.
Then after adding them all up we can use this amount to get our mean etc.
and to find how many are less than 80 if histograms boxes are shown we have to distribute from how many we know as total being first one 0-5 = 5 and count 5 into the box to see the frequency there.
Say the box is 25 little boxes we know then that 25/5 = 5 so the rate of frequency is 5 for each and that each box has the same frequency or the same distribution depending if frequency is shown a different way or not.
IF its box plot then the middle line is the median and you know its exactly half of frequency and can therafter work out quartiles and count down from 80 either using the given 79 number to the set start number at start of the whiskers.
Step-by-step explanation:
For each of the following, assume that the two samples are obtained from populations with the same mean, and calculate how much difference should be expected, on average, between the two sample means. Each sample has n =4 scores with s^2 = 68 for the first sample and s^2 = 76 for the second. (Note: Because the two samples are the same size, the pooled variance is equal to the average of the two sample variances).
a) 4.24.
b) 0.24.
c) 8.48.
d) 6.00.
Next, each sample has n=16 scores with s^2 = 68 for the first sample and s^2 = 76 for the second.
a) 0.12.
b) 2.12.
c) 4.24.
d) 3.00.
Answer:
d)6.00
d)3.00
Step-by-step explanation:
We are given that
n=4 scores
[tex]S^2_1=68[/tex]
[tex]S^2_2=76[/tex]
We have to find the difference should be expected, on average, between the two sample means.
[tex]S_{M_1-M_2}=\sqrt{\frac{S^2_1}{n_1}+\frac{S^2_2}{n_2}}[/tex]
[tex]n_1=n_2=4[/tex]
Using the formula
[tex]S_{M_1-M_2}=\sqrt{\frac{68}{4}+\frac{76}{4}}[/tex]
[tex]S_{M_1-M_2}=\sqrt{\frac{68+76}{4}}[/tex]
[tex]S_{M_1-M_2}=\sqrt{36}=6[/tex]
Option d is correct.
Now, replace n by 16
[tex]n_1=n_2=16[/tex]
[tex]S_{M_1-M_2}=\sqrt{\frac{68}{16}+\frac{76}{16}}[/tex]
[tex]S_{M_1-M_2}=\sqrt{\frac{68+76}{16}}[/tex]
[tex]S_{M_1-M_2}=\sqrt{9}=3[/tex]
Option d is correct.
1. Using the factorisation method, simplify the following √32
Answer:
[tex]4 \sqrt{2} [/tex]
[tex] \sqrt{32} = \sqrt{16 \times 2} = 4 \sqrt{2} [/tex]
In a survey of 302 registered voters, 167 of them wished to see Mayor Waffleskate lose her next election. Find a point estimate for the proportion of registered voters who wish to see Mayor Waffleskate defeated.
Answer:
A point estimate for the proportion of registered voters who wish to see Mayor Waffleskate defeated is of 0.553.
Step-by-step explanation:
Point estimate:
The point estimate of a proportion is the sample proportion(number of desired outcomes divided by the number of total outcomes).
Find a point estimate for the proportion of registered voters who wish to see Mayor Waffleskate defeated.
167 out of 302. So
[tex]p = \frac{167}{302} = 0.553[/tex]
A point estimate for the proportion of registered voters who wish to see Mayor Waffleskate defeated is of 0.553.
Each side of a square is increasing at a rate of 4 cm/s. At what rate (in cm2/s) is the area of the square increasing when the area of the square is 25 cm2
Answer:
The area of the square is increasing at a rate of 40 square centimeters per second.
Step-by-step explanation:
The area of the square ([tex]A[/tex]), in square centimeters, is represented by the following function:
[tex]A = l^{2}[/tex] (1)
Where [tex]l[/tex] is the side length, in centimeters.
Then, we derive (1) in time to calculate the rate of change of the area of the square ([tex]\frac{dA}{dt}[/tex]), in square centimeters per second:
[tex]\frac{dA}{dt} = 2\cdot l \cdot \frac{dl}{dt}[/tex]
[tex]\frac{dA}{dt} = 2\cdot \sqrt{A}\cdot \frac{dl}{dt}[/tex] (2)
Where [tex]\frac{dl}{dt}[/tex] is the rate of change of the side length, in centimeters per second.
If we know that [tex]A = 25\,cm^{2}[/tex] and [tex]\frac{dl}{dt} = 4\,\frac{cm}{s}[/tex], then the rate of change of the area of the square is:
[tex]\frac{dA}{dt} = 2\cdot \sqrt{25\,cm^{2}}\cdot \left(4\,\frac{cm}{s} \right)[/tex]
[tex]\frac{dA}{dt} = 40\,\frac{cm^{2}}{s}[/tex]
The area of the square is increasing at a rate of 40 square centimeters per second.
Find the measure of ∠C in the image below. 60+55+m∠C=180
Answer:
angle C= 65 degree
Step-by-step explanation:
60+55+x= 180
115+x= 180
x= 180-115
x= 65
angle C= 65 degree
Please mark me as brainliest.
fill in the blink
Given ,Simplify ,BC=EF ,Multiplication Property of Equality ,Substitution Property of Equality AC=DF DE+EF=DF Reflexive Property of Equality Transitive Property of Equality ,Segment Addition Postulate, Division Property of Equality ,Addition Property of Equality, Distributive Property, Subtraction Property of Equality
Answer:
see below
Step-by-step explanation:
[tex] \displaystyle AB = DE[/tex]
[given]
[tex] \displaystyle \boxed{BC = EF}[/tex]
[given]
[tex] \displaystyle AB + BC = AC[/tex]
[segment addition Postulate]
[tex] \displaystyle \boxed{DE+ EF=DF}[/tex]
[segment addition Postulate]
[tex] \rm\displaystyle DE+ BC = AC \: \: \text{and} \: \: DE+ BC = DF[/tex]
[Substitution Property of Equality]
[tex] \displaystyle \boxed{AE= DE}[/tex]
[Proven]
The histogram below shows the distribution of the assets (in millions of dollars) of 71 companies. Does the distribution appear to be normal? Why or why not?
No, the assets do not appear to follow a normal distribution, the values are evenly concentrated.
Yes, the assets appear to follow a normal distribution, the values are evenly distributed. No, the assets do not appear to follow a normal distribution, the values are concentrated in the center and taper off towards the ends.
Yes, the assets appear to follow a normal distribution, the values are concentrated in the center and taper off towards the ends.
Answer:
Yes, the assets appear to follow a normal distribution, the values are concentrated in the center and taper off towards the ends
Step-by-step explanation:
The distribution shown above is normal as it exhibits symmetry. This means thatvtge values are concentrated in the middle with the peak so situated in the middle of the distribution which is exactly what is displayed above. As we move towards either side of the center, the values begin to decrease and we have the tail at either side of the midpoint and not on one side of the distribution.
Please ignore the writing in blue as I tried to work it out but couldn’t
Answer:
[tex]k=35[/tex]°
Step-by-step explanation:
The degree measure of a straight line is (180) degrees. Therefore, when a line intersects another line, the sum of angle measures on any one side of the line is (180). One can apply this here to find the supplement (the angle on the same side of the line) of the angle with a measure of (130) degrees, and (85) degrees.
[tex]130 + (unknown_1)=180\\unknown_1=50\\\\85+(unknown_2)=180\\unknown_2=95[/tex]
The sum of angle measures in a triangle is (180) degrees, one can apply this here by stating the following;
[tex](unknown_1)+(unknown_2)+(k)=180[/tex]
Substitute,
[tex]50+95+k=180[/tex]
Simplify,
[tex]50+95+k=180\\\\145+k=180\\\\k=35[/tex]
[tex]\sf \bf {\boxed {\mathbb {TO\:FIND :}}}[/tex]
The measure of angle [tex]k[/tex].
[tex]\sf \bf {\boxed {\mathbb {SOLUTION:}}}[/tex]
[tex]\implies {\blue {\boxed {\boxed {\purple {\sf {k\:=\:35°}}}}}}[/tex]
[tex]\sf \bf {\boxed {\mathbb {STEP-BY-STEP\:\:EXPLANATION:}}}[/tex]
We know that,
[tex]\sf\pink{Sum\:of\:angles\:on\:a\:straight\:line\:=\:180°}[/tex]
➪ [tex]x[/tex] + 85° = 180°
➪ [tex]x[/tex] = 180° - 85°
➪ [tex]x[/tex] = 95°
Also,
Exterior angle of a triangle is equal to sum of two opposite interior angles.
And so we have,
➪ 130° = [tex]k[/tex] + [tex]x[/tex]
➪ [tex]k[/tex] + 95° = 130°
➪ [tex]k[/tex] = 130°- 95°
➪ [tex]k[/tex] = 35°
Therefore, the value of [tex]k[/tex] is 35°.
[tex]\sf \bf {\boxed {\mathbb {TO\:VERIFY :}}}[/tex]
[tex]\sf\blue{Sum\:of\:angles\:of\:a\:triangle\:=\:180°}[/tex]
➪ 50° + 35° + 95° = 180°
( where 50° = 180° - 130°)
➪ 180° = 180°
➪ L. H. S. = R. H. S.
Hence verified.
(Note: Kindly refer to the attached file.)
[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{ヅ}}}}}[/tex]
help me with these questions
Answer:
24
Step-by-step explanation:
:) im in 8th do i already know this stuff
Can someone please help me??
Answer:
The maximum value of the function = 11, at x = 3 and y = 5
The minimum value of the function = -21, at x = 3 and y = -3
Step-by-step explanation:
Given;
F = 4y - 3x
The function is subject to y ≤ 2x - 1,
y ≥ -2x + 3,
x ≤ 3
y ≤ 2x - 1
- ( y ≥ -2x + 3)
-------------------
0 ≤ 4x - 4
4 ≤ 4x
1 ≤ x
thus, 1 ≤ x ≤ 3
When x = 3
y ≤ 2x - 1 ⇒ y ≤ 2(3) - 1, ⇒ y ≤ 5
y ≥ -2x + 3, ⇒ y ≥ -2(3) + 3, ⇒ y ≥ - 3
thus, -3 ≤ y ≤ 5
When x = 1
y ≤ 2x - 1 ⇒ y ≤ 2(1) - 1, ⇒ y ≤ 1
y ≥ -2x + 3, ⇒ y ≥ -2(1) + 3, ⇒ y ≥ 1
when x = 1 and y = 1
F = 4(1) - 3(1)
F = 1
when y = -3, and x = 3
F = 4(-3) - 3(3)
F = -12 - 9
F = - 21
When y = 5 and x = 3
F = 4(5) - 3(3)
F = 20 - 9
F = 11
Therefore, the maximum value of the function = 11, at x = 3 and y = 5
The minimum value of the function = -21, at x = 3 and y = -3
Translate this sentence into an equation.
The difference of Malik's height and 11 is 44
Use the variable m to represent Malik's height.
Answer:
m - 11 = 44
Step-by-step explanation:
Breaking the phrase down...
"The difference of Malik's height and 11" - this indicates subtraction.
m - 11
"is 44" - this indicates that the value of the diffrence would be '44'.
'= 44'
The equation should be:
m - 11 = 44
Hope this helps.
A coin is tossed times and comes up heads times. Use the Empirical Method to approximate the probability that the coin comes up heads. Round your answer to four decimal places as necessary.
Answer:
[tex]P(head) = 0.5600[/tex]
Step-by-step explanation:
Given
[tex]n = 500[/tex] -- number of toss
[tex]head = 280[/tex] --- outcomes of head
See comment
Required
Empirical probability of head
This is calculated as:
[tex]P(head) = \frac{n(head)}{n}[/tex]
[tex]P(head) = \frac{280}{500}[/tex]
[tex]P(head) = 0.5600[/tex]
^ means to the power, / indicationg fraction.
PLEASE IF YOU CAN ANSWER AND EXPLAIN TYVM!
1. simplify. 32^2/5. 32 raised to the power of 2 over 3(fraction)
27. the function f is definded below
f(x) = x^2+x-30/ x^2-10x+21
find all variables that are NOT in the domain of f
13. factor the following expression
16vx^3y^4+28v^5x^6
8. simplify, write answer without parentheses
(w^2/-3v^4)^2
24. solve for x 8=3/x-2
11. solve the following ewuation for R
Q=i^2Rt/J
16. solve for v
5v^2=-21v-4
Answer:
udirkkdjdjdjehdhebhgwdxddrergghg
Laura lives 15 miles east of Kevin’s place. Kevin lives 8 miles south of Michelle’s place. How far does Michelle live from Laura’s place?
17 miles
24 miles
32 miles
36 miles
Answer:
17 miles.
Step-by-step explanation:
Let's define:
North as the positive y-axis
East as the positive x-axis.
We know that Laura lives 15 miles east of Kevin's place.
Kevin lives 8 miles south of Michelle's place.
So, if we define the origin, (0, 0) as Laura's place.
From:
"that Laura lives 15 miles east of Kevin's place."
We have that the location of Kevin's house is 15 miles west from Laura's place, then Kevin's house is at:
(0, 0) + (-15mi, 0) = (-15mi, 0)
From Kevin lives 8 miles south of Michelle's place, we know that Michelle's live 8 miles north of Kevin's place.
Then the location of Michele's house is the location of Kevin's plus (0, 8mi).
Michelle's house is located at:
(-15mi, 0) + (0, 8mi) =(-15mi, 8mi)
Now we want to find the distance between Michelle's house and Laura's house.
Michelle's house is at (-15mi, 8mi)
Laura's house is at (0mi, 0mi)
Remember that the distance between two points (a, b) and (c, d) is given by:
[tex]D = \sqrt{(a - c)^2 + (b - d)^2}[/tex]
Then the distance between (-15mi, 8mi) and (0mi, 0mi) is:
[tex]D = \sqrt{(-15mi - 0mi)^2 + (8mi - 0mi)^2} = 17mi[/tex]
The correct option is the first one, 17 miles.
what percentage of undergraduates students in Calculus 1 are required to do computer assignments in their classes
Full question:
Every 5 years the Conference Board of the Mathematical Sciences surveys college math departments. In 2000 the board reported that 51% of all undergraduates taking Calculus I were in classes that used graphing calculators and 31% were in classes that used computer assignments. Suppose that 16% used both calculators and computers. a) What percent used neither kind of technology? b) What percent used calculators but not computers? c) What percent of the calculator users had computer assignments? d) Based on this survey, do calculator and computer use appear to be independent events? Explain.
Answer:
a. 34%
b. 35%
c. 31.4%
d. Independent events
Explanation:
a. To calculate percentage that used neither kind of technology, we already know those that use the technologies and total taking calculus so:
100%-51%-31%-16%= 34%
b. Percentage that used calculators but not computers.
= 51%-16%=35%
c. Percentage of the calculator users that had computer assignments?
= 16/51×100=31.4% (there are 16 people using both so that as a percentage of 51 people using calculators)
d. Independent events are events that do not affect the other, such that occurrence of one does not define occurrence of the other. Since percentage of calculator and computer assignment users is close to those who are not using any, we can say they are independent events.