Answer:
G.) 72°
Step-by-step explanation:
A regular pentagon has all it's sides equal.
And all it's internal angles = 108°
The sum of all it's internal angles= 540°
AEB = TRIANGLE
And sum of internal angles In a triangle= 180°
EBDC is quadrilateral and a quadrilateral has it's internal angles summed up to 360°
But DEB = CBE
Let DEB = X
x + x +108+108= 360
2x= 360-216
2x= 144
X= 144/2
X=72
DEB = 72°
Answer the questions attached about the given sequence: -33, -27, -21, -15, ...
Answer:
see below
Step-by-step explanation:
-33, -27, -21, -15,....
-33 +6 = -27
-27+6 = -21
-21+6 = -15
This is an arithmetic sequence
The common difference is +6
explicit formula
an=a1+(n-1)d where n is the term number and d is the common difference
an = -33 + ( n-1) 6
an = -33 +6n -6
an = -39+6n
recursive formula
an+1 = an +6
10th term
n =10
a10 = -39+6*10
= -39+60
=21
sum formula
see image
The sum will diverge since we are adding infinite numbers
3a-27=0
How to solve
Answer:
a = 9
Step-by-step explanation:
3a - 27 = 0
3a = 27
a = 27/3
a = 9
3*9 - 27 = 0
27 - 27 = 0
Answer:
a = 9
Step-by-step explanation:
3a-27=0
Add 27 to each side
3a = 27
Divide by 3
3a/3 = 27/3
a = 9
Which of the following is a solution for 5 - 2x ≤ -3?
Answer:
x≥4
Step-by-step explanation:
The required solution for the inequality 5 - 2x ≤ -3 is x ≥ 4 or x ∈ [4, ∞).
What is inequality?Inequality shows relation between two expression which are not equal to each others.
The given inequality is,
5 - 2x ≤ -3.
Solve the inequality,
Add 3 to both the sides,
5 - 2x + 3 ≤ -3 + 3
8 - 2x ≤ 0
-2x ≤ -8
Multiply -1 both the sides,
2x ≥ 8
x ≥ 4
The solution for the inequality is x ≥ 4 or x ∈ [4, ∞).
To know more about Inequality on:
https://brainly.com/question/20383699
#SPJ2
State the correct polar coordinate for the graph shown:
Answer:
Solution : ( - 8, - 5π/3 )
Step-by-step explanation:
There are four cases to consider here, the first two with respect to r > 0, the second two with respect to r < 0. For r < 0 we have the coordinates ( - 8, 60° ) and ( - 8, - 300° ) . - 300° in radians is - 5π/3, and hence our solution is option d. But let me expand on how to receive the coordinates. Again r is the directed distance from the pole, and theta is the directed angle from the positive x - axis.
So when r is either negative or positive, we can tell that this point is 8 units from the pole. Therefore - r = - 8 in both our second cases ( we are skipping the first two cases for simplicity ). For r < 0 the point will lay on the ray pointing in the opposite direction of the terminal side of theta.
Our first coordinate is ( - 8, 60° ). Theta will be 2 / 3rd of 90 degrees, or 60 degrees, for - r. Respectively the remaining degrees will be negative, 360 - 60 = 300, - 300. Our second point for - r will thus be ( - 8, - 300° ) . - 300° = - 5π/3 radians, and our coordinate will be ( - 8, - 5π/3 ).
The function g is defined as follows for the domain given.
g(x) = 2x+1,
domain = (-5, -1, 2, 3)
Write the range of g using set notation. Then graph g
Answer:
g(x): 2(-5)+1= -10+1=-9
2(-1)+1= -2+1=-1
2(2)+1= 4+1=5
2(3)+1=6+1= 7
Hence, the range of [tex]g[/tex] using the set notation is [tex](-9,-1,5,7)[/tex].
What is the function?
Functions are often defined by a formula that describes a combination of arithmetic operations and previously defined functions; such a formula allows computing the value of the function from the value of any element of the domain.
Here given that,
The function g is defined as follows for the domain given.
[tex]g(x) = 2x+1,[/tex] and domain [tex]= (-5, -1, 2, 3)[/tex]
So,
[tex]x=-5\\2(-5)+1\\= -10+1\\=-9\\\\x=-1\\2(-1)+1\\= -2+1\\=-1\\\\x=2\\2(2)+1\\= 4+1\\=5\\\\x=3\\2(3)+1\\=6+1\\= 7[/tex]
Hence, the range of [tex]g[/tex] using the set notation is [tex](-9,-1,5,7)[/tex].
To know more about the function
https://brainly.com/question/10500042
#SPJ2
Marking as brainyest PLEASE HELP
How does f(x) = 9x change over the interval from x = 3 to x = 4? A) f(x) increases by 100% B) f(x) increases by 800% C) f(x) increases by 900% D) f(x) increases by 1000%
Answer:
C) f(x) increases by 900%
Step-by-step explanation:
The rate of change is
f(4) - f(3)
---------------
4-3
f(4) = 9*4 = 36
f(3) = 9*3 = 27
36 -27
---------------
4-3
9
-----
1
The rate of change is 9
To change to a percent, multiply by 100%
9*100% = 900%
Answer:
Increases by 900%
Step-by-step explanation:
● f(x) = 9x
The rate of change is:
● r = (36-27)/(4-3) = 9
So the function increses nine times wich is equivalent to 900%
Find the work W done by a force of 7pounds acting in the direction 30 degreesto the horizontal in moving an object 7feet from (0 comma 0 )to (7 comma 0 ).
Answer:
The work done by the force is 42.4 Joules
Step-by-step explanation:
The force F = 7 pounds
angle to the horizontal that the force acts ∅ = 30°
The object is moved a distance d = 7 feet
The coordinate (0 comma 0 )to (7 comma 0 ), indicates that the movement started from the origin, and is along the x-axis.
The work done by this force = F cos ∅ x d
==> 7 cos 30° x 7
==> 7 x 0.866 x 7 = 42.4 Joules
Which expression is equivalent to 8 square root 6 ?
Answer:
(2.13982638787^3) x 2
Following are the notations for the three sums of squares. State the name of each sum of squares and the source of variation each sum of squares represents.
a. SSE
b. SSTR
c. SST
Answer:
As in explanation.
Step-by-step explanation:
A) SSE means "Error Sum of Squares". The source of it is the sum of squared deviations within groups.
B) SSTR means "Treatment Sum of Squares". It's source is the weighted sum of squared deviations of group means from grand mean. It's the sum of squares between groups.
C) SST means "Total Sum of Squares''. It's source is total sum of squared deviations from the grand mean. It is a sum of SSE and SSTR.
A) SSE means "Error Sum of Squares". The source of it is the sum of squared deviations that lies within groups.
B) SSTR means "Treatment Sum of Squares". It's source that represents the weighted sum of squared deviations of group means from the grand mean. It's the sum of squares between groups.
C) SST means "Total Sum of Squares''. It's source that represents total sum of squared deviations from the grand mean. It is a sum of SSE and SSTR.
learn more about sum here: https://brainly.com/question/6463206
-10 + 7x + 24 - 2x
Your answer
What percent of the area underneath
this normal curve is shaded?
Answer:
The area shaded is 95%
Step-by-step explanation:
The total area under the curve is 100 percent
1 standard deviation away from the mean is 68 percent
2 standard deviations away is 95 percent
The area shaded is 95%
The percentage of the shaded area underneath this normal curve is 95% because it lie within two (2) standard deviations of the mean.
What is the 68-95-99.7 rule?The 68-95-99.7 rule is also referred to as the empirical rule or the three-sigma rule and it can be defined as a shorthand which is used in statistics to determine the percentage of a population parameter that lie within an interval estimate in a normal distribution curve.
Basically, the 68-95-99.7 rule states that 68%, 95%, and 99.7% of the population parameter lie within one (1), two (2), and three (3) standard deviations of the mean respectively.
This ultimately implies that, the percentage of the shaded area underneath this normal curve is 95% because it lie within two (2) standard deviations of the mean.
Read more on 68-95-99.7 rule here: https://brainly.com/question/24768583
#SPJ2
Scott start his banking account with 150 and is spending $7 per day on lunch . How would one describe the graph of this model?
Answer:
So this is giving us the slope the slope is y=-7x+150
Step-by-step explanation:
It is giving us the Y intercept which is $150 because thats how much he starts out with
It is giving us the slope -7 dollars because he is spending that everyday
Find the probability.
Two dice are rolled. Find the probability that the score on the dice is either 5 or
10.
Answer:
7/36
Step-by-step explanation:
1 die has 6 faces
When two dice are rolled, the total number of outcomes
= 6 × 6 = 36
The Probability of having(5) =
(1 & 4), (2 & 3) , ( 3 & 2), (4 & 1)
= 4
The probability of having (10) =
(5 & 5), (4 & 6) , ( 6 & 4)
= 3
The probability that the score on the dice is either 5 or 10.
P(5) + P(10)
= 4/36 + 3/36
= 7/36
Answer: 7/36
Step-by-step explanation:
36 outcomes
4 chances of getting 5 (1+4, 2+3, 4+1, 3+2)
3 chances of getting 10 (4+6, 5+5, 6+4)
4+3=7
so 7/36 chance
Solve for x. 2x+3≤x−5 x≤−8 x≤2 x≤8 x≤−2
Answer:
x≤−8
Step-by-step explanation:
2x+3≤x−5
Subtract x from each side
2x-x+3≤x-x−5
x+3≤−5
Subtract 3 from each side
x+3-3≤−5-3
x≤−8
Answer:
[tex]\huge \boxed{x \leq -8}[/tex]
Step-by-step explanation:
[tex]2x+3 \leq x-5[/tex]
[tex]\sf Subtract \ x \ from \ both \ parts.[/tex]
[tex]2x+3 -x\leq x-5-x[/tex]
[tex]\sf Simplify \ the \ inequality.[/tex]
[tex]x+3 \leq -5[/tex]
[tex]\sf Subtract \ 3 \ from \ both \ parts.[/tex]
[tex]x+3-3 \leq -5-3[/tex]
[tex]\sf Simplify \ the \ inequality.[/tex]
[tex]x \leq -8[/tex]
Help me please thank y’all
Answer: x=60°
Step-by-step explanation:
The sum of the angles of a triangle is 180°. With this, we can find x°.
33+87+x=180 [combine like terms]
120+x=180 [subtact both sides by 120]
x=60°
Answer:
60 degrees
Step-by-step explanation:
All the angles in a triangle add up to 180 degrees.
We know two angles, 33 degrees and 87 degrees.
Now we have to find the last one.
So we make an equation to solve this.
33 + 87 + x = 180
120 + x = 180
Subtracting 120 fr0m both sides get us,
120 - 120 + x = 180 -120
x = 60
60 degrees
We can check by adding all three angles by substituting 60 for x,
33 + 87 + 60 = 120 + 60 = 180 degrees
A patio 20 feet wide has a slanted roof, as shown in the figure. Find the length of the roof if there is an 8-inch overhang. Show all work and round the answer to the nearest foot. Be sure to label your answer appropriately. Then write a sentence explaining your answer in the context of the problem.
Answer:
[tex]Slanted\ Roof = 20.77\ ft[/tex]
Step-by-step explanation:
The question has missing attachment (See attachment 1 for complete figure)
Given
Width, W = 20ft
Let the taller height be represented with H and the shorter height with h
H = 10ft
h = 8ft
Overhang = 8 inch
Required
Determine the length of the slanted roof
FIrst, we have to determine the distance between the tip of the roof and the shorter height;
Represent this with
This is calculated by
[tex]D = H - h[/tex]
Substitute 10 for H and 8 for h
[tex]D = 10 - 8[/tex]
[tex]D = 2ft[/tex]
Next, is to calculate the length of the slant height before the overhang;
See Attachment 2
Distance L can be calculated using Pythagoras theorem
[tex]L^2 = 2^2 + 20^2[/tex]
[tex]L^2 = 4 + 400[/tex]
[tex]L^2 = 404[/tex]
Take Square root of both sides
[tex]\sqrt{L^2} = \sqrt{404}[/tex]
[tex]L = \sqrt{404}[/tex]
[tex]L = 20.0997512422[/tex]
[tex]L = 20.10\ ft[/tex] -------Approximated
The full length of the slanted roof is the sum of L (calculated above) and the overhang
[tex]Slanted\ Roof = L + 8\ inch[/tex]
Substitute 20.10 ft for L
[tex]Slanted\ Roof = 20.10\ ft + 8\ inch[/tex]
Convert inch to feet to get the slanted roof in feet
[tex]Slanted\ Roof = 20.1\ ft + 8/12\ ft[/tex]
[tex]Slanted\ Roof = 20.10\ ft + 0.67\ ft[/tex]
[tex]Slanted\ Roof = 20.77\ ft[/tex]
Hence, the total length of the slanted roof in feet is approximately 20.77 feet
How many 4 digit palidromes are there?
Determine the number of degrees of freedom for the two-sample t test or CI in each of the following situations. (Round your answers down to the nearest whole number.)
(a) m = 12, n = 15, s1 = 4.0, s2 = 6.0
(b) m = 12, n = 21, s1 = 4.0, s2 = 6.0
(c) m = 12, n = 21, s1 = 3.0, s2 = 6.0
(d) m = 10, n = 24, s1 = 4.0, s2 = 6.0
Answer:
a
[tex]df = 24.32[/tex]
b
[tex]df = 30.10[/tex]
c
[tex]df = 30.7[/tex]
d
[tex]df = 25.5[/tex]
Step-by-step explanation:
Generally degree of freedom is mathematically represented as
[tex]df = \frac{ [\frac{ s^2_i }{m} + \frac{ s^2_j }{n} ]^2 }{ \frac{ [ \frac{s^2_i}{m} ]^2 }{m-1 } +\frac{ [ \frac{s^2_j}{n} ]^2 }{n-1 } }[/tex]
Considering a
a) m = 12, n = 15, s1 = 4.0, s2 = 6.0
[tex]df = \frac{ [\frac{ 4^2 }{12} + \frac{ 6^2 }{15} ]^2 }{ \frac{ [ \frac{4^2}{12} ]^2 }{12-1 } +\frac{ [ \frac{6^2}{15} ]^2 }{15-1 } }[/tex]
[tex]df = 24.32[/tex]
Considering b
(b) m = 12, n = 21, s1 = 4.0, s2 = 6.0
[tex]df = \frac{ [\frac{ 4^2 }{12} + \frac{ 6^2 }{21} ]^2 }{ \frac{ [ \frac{4^4}{12} ]^2 }{12-1 } +\frac{ [ \frac{6^2}{21} ]^2 }{21-1 } }[/tex]
[tex]df = 30.10[/tex]
Considering c
(c) m = 12, n = 21, s1 = 3.0, s2 = 6.0
[tex]df = \frac{ [\frac{ 3^2 }{12} + \frac{ 6^2 }{21} ]^2 }{ \frac{ [ \frac{3^4}{12} ]^2 }{12-1 } +\frac{ [ \frac{6^2}{21} ]^2 }{21-1 } }[/tex]
[tex]df = 30.7[/tex]
Considering c
(d) m = 10, n = 24, s1 = 4.0, s2 = 6.0
[tex]df = \frac{ [\frac{ 4^2 }{10} + \frac{ 6^2 }{24} ]^2 }{ \frac{ [ \frac{4^2}{10} ]^2 }{10-1 } +\frac{ [ \frac{6^2}{24} ]^2 }{24-1 } }[/tex]
[tex]df = 25.5[/tex]
(a) A survey of the adults in a town shows that 8% have liver problems. Of these, it is also found that 25% are heavy drinkers, 35% are social drinkers and 40% are non-drinkers. Of those that did not suffer from liver problems, 5% are heavy drinkers, 65% are social drinkers and 30% do not drink at all. An adult is chosen at random, what is the probability that this person i. Has a liver problems? (3 Marks) ii. Is a heavy drinker (2 Marks) iii. If a person is found to be a heavy drinker, what is the probability that this person has liver problem? (2 Marks) iv. If a person is found to have liver problems, what is the probability that this person is a heavy drinker? (2 Marks) v. If a person is found to be a non –drinker, what is the probability that this person has liver problems. (2 Marks)
Answer:
i. Has a liver problems?
= 0.08
ii. Is a heavy drinker ?
= 0.066
iii. If a person is found to be a heavy drinker, what is the probability that this person has liver problem?
= 0.303
iv. If a person is found to have liver problems, what is the probability that this person is a heavy drinker?
= 0.25
v. If a person is found to be a non –drinker, what is the probability that this person has liver problems?
= 0.104
Step-by-step explanation:
We have 2 Events in this question
Event A: People with liver problems
Event B : People without liver problems
Event A: People with liver problems
Let us represent people with liver problems as = (L)
a)8% have liver problems. = P(L)
Under liver problems we have:
b) 25% are heavy drinkers = P( L & H)
c) 35% are social drinkers = P( L & S)
d) 40% are non-drinkers. = P( L & N)
Event B( no liver problem)
Let us represent no liver problem as NL
We are not given in the question but Probability of having no liver problem = 100 - Probability of having liver problem
= 100 - 8% = 92 %
P(NL ) = 92%
From the question, For people without liver problems, we have:
a) 5% are heavy drinkers = P(NL & H)
b) 65% are social drinkers = P( NL & S)
c) 30% do not drink at all = P( NL & N)
An adult is chosen at random, what is the probability that this person
i. Has a liver problems?
P(L) = 8% or 0.08
ii. Is a heavy drinker ?
From the question, we have:
Probability of people that have liver problems and are heavy drinkers P(L & H) = 25% = 0.25
Probability of people that have do not have liver problems and are heavy drinkers P(NL & H) = 5% = 0.05
Probability ( Heavy drinker) =
P(L) × P(L & H) + P(NL) × P(NL & H)
= 0.25 × 0.08 + 0.05 × 0.92
= 0.066
iii. If a person is found to be a heavy drinker, what is the probability that this person has liver problem?
Probability (Heavy drinker and has liver problem) = [P(L) × P(L & H)] ÷ [P(L) × P(L & H)] + [P(NL) × P(NL & H) ]
= [0.25 × 0.08] ÷ [0.25 × 0.08] + [0.05 × 0.92]
= 0.303030303
Approximately = 0.303
iv. If a person is found to have liver problems, what is the probability that this person is a heavy drinker?
P(L & H) = 25% = 0.25
v. If a person is found to be a non –drinker, what is the probability that this person has liver problems.?
People with liver problems are non-drinkers. = P( L & N) = 40% = 0.4
People without liver problems and do not drink at all = P( NL & N) = 30% = 0.3
Probability (non drinker and has liver problem) = [P( L & N) × P(L & H)] ÷ [P( L & N) × P(L & H)] + [ P( NL & N) × P(NL & H) ]
= [0.4× 0.08] ÷ [0.4 × 0.08] + [0.3 × 0.92]
= 0.1038961039
Approximately ≈ 0.104
NEED HELP ASAP PLEASE!! The graph of F(x), shown below, resembles the graph of G(x) = x2, but it has
been stretched and shifted. Which of the following could be the equation of
Fx)?
10
G(X) = x2
10
Fx) = ?
Answer:
D. F(x) = ( (1/5)x)^2 - 4
Step-by-step explanation:
The standard transformation with a stretch and a shift is
F(x) = f(x/b) + k
The red curve has a vertex at (0,-4), and cuts the x-axis at (10,0)
That means that before the vertical shift (of k=-4), the vertex was at (0,0), and the curves passes through (10,4).
Substituting in the equation
F(10) = (10/b)^2 -4 = 0
solve for b
(10/b)^2-4 = 0
(10/b)= sqrt(4) = 2
b = 10/2 = 5
Therefore the transformation equation is
F(x) = (x/5)^2-4
The answer is
F(x) = ( (1/5)x)^2 - 4
help please precalc will give brainliest
In part (D), we found
[tex]2\sin(4\pi t)+5\cos(4\pi t)=\sqrt{29}\sin\left(4\pi t+\tan^{-1}\left(\dfrac52\right)\right)[/tex]
so the phase [tex]\phi[/tex] is [tex]\tan^{-1}\left(\frac52\right)\approx1.19\,\rm rad[/tex], which falls between 0 and [tex]\frac\pi2[/tex]. This means the weight is somewhere between the maximum positive position (where [tex]\phi[/tex] would be 0) and the equilibrium position (where [tex]\phi[/tex] would be [tex]\frac\pi2[/tex]), and would be traveling in the negative direction.
What is the domain of h?
Answer:
{-2, -1, 1, 5, 6}
Step-by-step explanation:
The domain includes the five x-values (inputs): {-2, -1, 1, 5, 6}
Answer:
The x-values -2, -1,1,5 and 6
Step-by-step explanation:
Mark is buying supplies for his students. He is buying a notebook (n) and a pack of pencils for each of his 25 students. Each pack of pencils costs $1.25. If Mark's total cost is $156.25, which of the following equations can be used to find how much each notebook cost? Select TWO that apply.
Answer:
$5
Step-by-step explanation:
Note. There are no options to select.Let the notebook cost x, then Mark spent:
25x + 25*1.25 = 156.2525x + 31.25 = 156.2525x = 156.25 - 31.2525x = 125x= 125/25x= 5Notebook costs $5
If 2^x =30 find 2^(x+3) A)8 B)5 C)240 D)200 E)250 (Good Luck! Plz solve fast!)
Answer:
C
Step-by-step explanation:
So we already know that:
[tex]2^x=30[/tex]
And we want to find the value of:
[tex]2^{x+3}[/tex]
So, what you want to do here is to separate the exponents. Recall the properties of exponents, where:
[tex]x^2\cdot x^3=x^{2+3}=x^5[/tex]
We can do the reverse of this. In other words:
[tex]2^{x+3}=2^x\cdot 2^3[/tex]
If we multiply it back together, we can check that this statement is true.
Thus, go back to the original equation and multiply both sides by 2^3:
[tex]2^x(2^3)=30(2^3)\\[/tex]
Combine the left and multiply out the right. 2^3 is 8:
[tex]2^{x+3}=30(8)\\2^{x+3}=240[/tex]
The answer is C.
Answer:
the answer is c
Step-by-step explanation:
explain why the APR does not compare loans for different lengths of time
Answer:
APR does not tell you how long your rate is locked for. A 15-year loan may have a lower interest rate, but could have a higher APR, since the loan fees are amortized over a shorter period of time. It is not wise to compare a 30-year loan with a 15-year loan using their respective APRs.
Step-by-step explanation:
if the current time is 10:35 how long until it turns 3:15
Answer:
10:35-3:15
5 hoursIn terms of the trigonometric ratios for ΔABD, what is the length of line segment BD?
In terms of the trigonometric ratios for ΔABD, what is the length of line segment BD?
Answer:
[tex] BD = c*sin(A) [/tex]
[tex] BD = c*cos(B) [/tex]
[tex] BD = b*tan(A) [/tex]
Step-by-step explanation:
∆ABD is a right triangle.
Recall: trigonometric ratios of any right triangle can easily be understood or remembered with the acronym, SOHCAHTOA.
SOH => sin(θ) = opposite/hypotenuse
CAH => Cos(θ) = adjacent/hypotenuse
TOA = tan(θ) = opposite/adjacent
Thus, the length of segment BD, in terms of trigonometric ratios for ∆ABD can be done as follows:
Let BD = x
AB = c
AD = b
=>The sine ratio for the length of line segment BD = x, using SOH.
θ = A
Opposite = DB = x
hypotenuse = AB = c
[tex] sin(A) = \frac{x}{c} [/tex]
Make x the subject of formula.
[tex] c*sin(A) = x [/tex]
[tex] BD = x = c*sin(A) [/tex]
=>The Cosine ratio for the length of line segment BD = x, using CAH
θ = B
Adjacent = DB = x
hypotenuse = AB = c
[tex] cos(B) = \frac{x}{c} [/tex]
Make x the subject of formula.
[tex] c*cos(B) = x [/tex]
[tex] BD = x = c*cos(B) [/tex]
=>The Tangent ratio for the length of line segment BD = x, using TOA
θ = A
Adjacent = DB = x
hypotenuse = AD = b
[tex] tan(A) = \frac{x}{b} [/tex]
Make x the subject of formula.
[tex] b*tan(A) = x [/tex]
[tex] BD = x = b*tan(A) [/tex]
Choose the situation that represents a function.
A) The number of raisins in an oatmeal raisin cookie is a function of the diameter of the cookie.
B) The inches of rainfall is a function of the day’s average temperature.
C) The time it takes to cook a turkey is a function of the turkey’s weight.
D) The number of sit-ups a student can do in a minute is a function of the student’s age.
Answer:c
Step-by-step explanation:
Answer: The answer is C.
Hope this helps you!
In the last 10 years, the population of Indonesia has grown at a rate of 1.12% per year to 258,316,051. If this rate continues, what will be the population in 10 more years? Round your answer to the nearest whole number.
Answer:
Final population after 10 years
= 288911718
Step-by-step explanation:
Present population p = 258,316,051
Rate of growth R%= 1.12%
Number of years t= 10 years
Number of times calculated n = 10
Final population A
= P(1+r/n)^(nt)
A= 258,316,051(1+0.0112/10)^(10*10)
A= 258,316,051(1+0.00112)^(100)
A= 258,316,051(1.00112)^100
A= 258,316,051(1.118442762)
A= 288911717.6
Approximately A= 288911718
Final population after 10 years
= 288911718
Which of the following best defines the midpoint of a segment? A. The point that splits a line segment into two equal parts. B. Any point on a line segment in between the two endpoints. C. When a line segment is split into equal thirds, a midpoint is any point in the middle third. D. Any point that is closer to one endpoint of the segment than the other.
Answer:
A. The point that splits a line segment into two equal parts.
Step-by-step explanation:
A. The point that splits a line segment into two equal parts.
Midpoint, as the word suggests, means the point which lies in the middle of something. The correct option is A.
What does a midpoint mean?Midpoint, as the word suggests, means the point which lies in the middle of something. The midpoint of a line segment means a point which lies in the mid of the given line segment.
The statement that best describes the midpoint of a segment is the point that splits a line segment into two equal parts.
Learn more about Midpoint:
https://brainly.com/question/5127660
#SPJ5