Answer:
Brainliest! Hope I helped!
Step-by-step explanation:
you know its greater than 1cm and less than 2cm,
1 and 7hundreths cm is = 1.07 cm
thats not right because you know it is greater than that for sure!
so the only answer left is 1.7 cm
You answer is 1.7 cm
another way...
read the ruler and see the answer
Answer:
1.7 cm.
Step-by-step explanation:
The midpoint of 1 - 2 is 5 so count the lines after 5 and you get .7 to add to one cm.
Hope this helps, have a good day :)
I'm not sure about this one please I need someone to help me.
Answer:
The corresponding graph is Graph A.
Step-by-step explanation:
Part 1: Rewriting the inequality and solving for d
To start, the inequality will need simplified.
[tex]9-4d\geq -3\\\\-4d\geq -12\\\\\frac{-4d}{-4} \geq \frac{-12}{-4} \\\\d \leq 3[/tex]
Because simplifying the inequality involved dividing by a negative number, the sign must be flipped.
Part 2: Determining the graph for the inequality
Now, refer to the rules for graphing inequalities.
If the sign is simply < or >, the graph will start at the number that it begins at and the circle will be open.If the sign is ≤ or ≥, the graph will start at the number that it begins at and the circle will be closed.Therefore, because [tex]d \leq 3[/tex], the graph will start at 3 as a closed dot. Then, it will go left because values must be equal to 3 or less than 3.
Therefore, the graph that represents this is Graph A.
Answer:
Graph A
I hope this helps!
��2222 is the diameter of a circle. The coordinates are �(−2, −3) and �(−12, −5). At what coordinate is the center of the circle located? A. (5, 1) B. (−5, −1) C. (−4, −7) D. (−7, −4)
Answer:
D ). (-7,-4)
Step-by-step explanation:
To locate the position or the location of the centre of the circle we have to bear in mind that the center of the circle is the midpoint of the diameter line.
Formula for midpoint of a line is given below
Midpoint= (X1+x2)/2 ,(y1+y2)/2
Where X1= -2,y1= -3
X2= -12, y2= -5
The midpoint= (-2+(-12))/2,(-3+(-5))/2
Midpoint= (-2-12)/2,(-3-5)/2
Midpoint= (-14)/2,(-8)/2
Midpoint=( -7,-4)
The center of the circle is located at the point (-7,-4)
Factor completely 6x - 18.
6(x + 3)
6(x-3)
6X (-18)
Prime
Answer:
6(x-3)
Step-by-step explanation:
the common number for 6 and 18 is 6 so if you extract that from the expression then it turns to 6(x-3) which cannot be factored further
Answer:
Option B: 6(x - 3)
Step-by-step explanation:
how do I write 1/2 in a from of a decimal?
Answer:
0.5
1 divide by 2 = 0.5
What is the midpoint of the segment below?
A.
(0, 0)
B.
(-1, 1)
C.
(0.5, 0.5)
D.
(0.5, -0.5)
Answer:
Step-by-step explanation:
(5+(-4))/2 = 1/2 or 0.5
(-7 + 6)/2 = -1/2 or -0.5
the solution is D
(0.5, -0.5)
Which function below has the following domain and range?
Domain: { -6, -5,1,2,6}
Range: {2,3,8)
{(2,3), (-5,2), (1,8), (6,3), (-6, 2)
{(-6,2), (-5,3), (1,8), (2,5), (6,9)}
{(2,-5), (8, 1), (3,6), (2, - 6), (3, 2)}
{(-6,6), (2,8)}
Answer:
{(2,3), (-5,2), (1,8), (6,3), (-6, 2)
Step-by-step explanation:
The domain is the input and the range is the output
We need inputs of -6 -5 1 2 6
and outputs of 2 3 and 8
During the 2014 season, the Los Angeles Dodgers won 58% of their games. Assuming that the outcomes of the baseball games are independent and that the percentage of wins this season will be the same as in 2014: What is the probability that the Dodgers will win at least one of their next seven games
Answer: 0.98
Step-by-step explanation:
given data:
probability they won a game = 58% = 0.58
since outcome of games are independent, and percentage would remain same as 2014.
probablility that Dodgers wins atleast 1 of their next 7 games
= 1 - p
= 1 - ( 0.58 )^ 7
= 1 - 0.02208
= 0.98
probabikotun that Dodgers would win one of their next seven games is 0.98
Which one is correct? in need of large help
Answer:
Option C. x + 12 ≤ 2(x – 3)
Step-by-step explanation:
From the question, we obtained the following information:
x + 12 ≤ 5 – y .......(1)
5 – y ≤ 2(x – 3) ....... (2)
To know which option is correct, do the following:
From equation 2,
5 – y ≤ 2(x – 3)
Thus, we can say
5 – y = 2(x – 3)
Now, we shall substitute the value of 5 – y into equation 1 as shown below:
x + 12 ≤ 5 – y
5 – y = 2(x – 3)
x + 12 ≤ 2(x – 3)
From the above illustration, we can see that if x + 12 ≤ 5 – y and 5 – y ≤ 2(x – 3), then x + 12 ≤ 2(x – 3) must be true.
Option C gives the correct answer.
Decide whether the pair of ratios form a proportion 15/12=4.5/3.6
Answer: Yes they form a proportion. The given equation is a true equation.
==========================================
Explanation:
The idea is that if we have
a/b = c/d
then that it is the same as
a*d = b*c
This is known as cross multiplication. We'll use this rule to get
15/12 = 4.5/3.6
15*3.6 = 12*4.5
54 = 54
We got the same value on both sides, meaning that the last equation is true. Consequently, it means the first equation is true as well (all three equations are true).
--------
You could also use your calculator to see that
15/12 = 1.25
4.5/3.6 = 1.25
showing that 15/12 = 4.5/3.6 is a true equation and the ratios form a proportion.
Answer:
15/12=4.5/3.6 = True
Step-by-step explanation:
Simplify the following: Left-hand
15/12
Hint: | Reduce 15/12 to lowest terms. Start by finding the GCD of 15 and 12.
The gcd of 15 and 12 is 3, so 15/12 = (3×5)/(3×4) = 3/3×5/4 = 5/4:
Answer: 5/4
______________________________
Approximate the following:
4.5/3.6
Hint: | Express 4.5/3.6 in decimal form.
4.5/3.6 = 1.25:
Answer: 1.25 = 5/4
Find the indicated area under the curve of the standard normal distribution, then convert it to a percentage and fill in the blank.
About_____% of the area is between z = 2.2 and z = 2.2 (or within 2.2 standard deviations of the mean).
About_____% of the area is between z = 2.2 and z = 2.2 (or within 2.2 standard deviations of the mean).
Complete Question
Find the indicated area under the curve of the standard normal distribution, then convert it to a percentage and fill in the blank.
About_____% of the area is between z = - 2.2 and z = 2.2 (or within 2.2 standard deviations of the mean).
About_____% of the area is between z = - 2.2 and z = 2.2 (or within 2.2 standard deviations of the mean).
Answer:
About 97.219% of the area is between z = - 2.2 and z = 2.2 (or within 2.2 standard deviations of the mean).
Step-by-step explanation:
From the question given we can see that they both are the same so 1 will just solve one
Now the area under this given range can be represented mathematically as
[tex]P ( -2.2 < z < 2.2) = P(z < 2.2 ) - P(z < -2.2 )[/tex]
Now from the z-table
[tex]p(z < 2.2 ) = 0.9861[/tex]
and
[tex]p(z < - 2.2 ) = 0.013903[/tex]
So
[tex]P ( -2.2 < z < 2.2) = 0.9861 - 0.013903[/tex]
[tex]P ( -2.2 < z < 2.2) = 0.97219[/tex]
So converting to percentage
[tex]P ( -2.2 < z < 2.2) = 0.97219 * 100[/tex]
[tex]P ( -2.2 < z < 2.2) = 97.219 \%[/tex]
solve the equation
Answer:
x = 10
Step-by-step explanation:
2x/3 + 1 = 7x/15 + 3
(times everything in the equation by 3 to get rid of the first fraction)
2x + 3 = 21x/15 + 9
(times everything in the equation by 15 to get rid of the second fraction)
30x+ 45 = 21x + 135
(subtract 21x from 30x; subtract 45 from 135)
9x = 90
(divide 90 by 9)
x = 10
Another solution:
2x/3 + 1 = 7x/15 + 3
(find the LCM of 3 and 15 = 15)
(multiply everything in the equation by 15, then simplify)
10x + 15 = 7x + 45
(subtract 7x from 10x; subtract 15 from 45)
3x = 30
(divide 30 by 3)
x = 10
nick used 1 3/4 kg of salt to melt the ice on his sidewalk. He then used another 3 4/5 kg on the driveway. How much salt did he use in all?
Answer:
5 11/20
Step-by-step explanation:
1 3/4 + 3 4/5
Get a common denominator of 20
1 3/4 * 5/5 + 3 4/5 *4/4
1 15/20 + 3 16/20
4 31/20
Rewriting
4 + 20/20 + 11/ 20
4+1 + 11/20
5 11/20
Tonya and Leo each bought a cell phone at the same time. The trade-in values, in dollars, of the cell phones are modeled by the given functions, where x is the number of months that each person has owned the phone.
Answer:
The answer is: Leo's phone had the greater initial trade-in value. Tonya's phone decreases at an average rate slower than the trade in value of Leo's phone.
Step-by-step explanation:
I got it right. Hope this helps.
The initial trade-in value of Tonia's phone is greater when compared with Leo's
There is a decrease in the trade-in value of Leo's phone at an average slower rate
[tex]f(x) = 490\times 0.88[/tex]
[tex](x)[/tex] ⇒ [tex]g(x)[/tex]
[tex]0[/tex] ⇒ [tex]480[/tex]
[tex]2[/tex] ⇒ [tex]360[/tex]
[tex]4[/tex] ⇒ [tex]470[/tex]
Now we will solve with the greater initial value
The initial value is when x = 0. So, we have
[tex]f(x) = 490 \times o.88^x\\\ f(o) = 490 \times 0.88 ^0\\f(0 =490 \times 1 \\f(o) = 490[/tex]
From leos table
[tex]g(0) = 480\\f(0) > g(o)\\i.e \\490 > 480[/tex]
So Tonia had a greater initial value
Solving (b): The phone with a lesser rate
y [tex]y = a b ^ x[/tex]
An exponential function is:
where [tex]b \rightarrow rate[/tex]
For Tonia
[tex]b = o.88[/tex]
For Leo we have
[tex](x_{1} , y_{1} )= (0,480)\\(x_{1}, y_{1} ) = (2, 360)[/tex]
So the equation becomes
[tex]y = ab ^x \\480 = ab ^0 \\and \\360 = ab ^2[/tex]
On solving
[tex]480 = a \times 1\\a = 480[/tex]
[tex]360 = ab ^ 2[/tex]
so it becomes
[tex]480 = 360 \times b ^2 \\[/tex]
On dividing both sides by [tex]480[/tex] we get
[tex]b ^ 2 = 0.87[/tex]
[tex]b ^ 2 = 0.75[/tex]
On taking square root we get
[tex]b = 0.87[/tex]
In comparison, we get Leo's rate is slower.
Learn more about Equation here:
https://brainly.com/question/14686792
# SPJ2
What is the error in this problem
Answer:
The error is the use of wrong trigonometric ratio formula.
Sine was used instead of tangent.
It should be: [tex] tan(A) = \frac{36}{84} [/tex]
Step-by-step explanation:
Side length, 36, is opposite to <A. Side length, 84, is the adjacent side. Therefore, the right trigonometric ratio formula to use is:
[tex] tan(A) = \frac{opposite}{adjacent} [/tex]
[tex] tan(A) = \frac{36}{84} [/tex]
[tex] A = tan^{-1}(\frac{36}{84}) [/tex]
m<A ≈ 23°
The error made was the use of wrong trigonometric ratio formula.
Given the sequence 38, 32, 26, 20, 14, ..., find the explicit formula. A. an=44−6n B. an=41−6n C. an=35−6n D. an=43−6n
Answer:
The answer is option AStep-by-step explanation:
The sequence above is an arithmetic sequence
For an nth term in an arithmetic sequence
A(n) = a + ( n - 1)d
where a is the first term
n is the number of terms
d is the common difference
From the question
a = 38
d = 32 - 38 = - 6 or 20 - 26 = - 6
Substitute the values into the above formula
A(n) = 38 + (n - 1)-6
= 38 - 6n + 6
We have the final answer as
A(n) = 44 - 6nHope this helps you
Answer:
a
Step-by-step explanation:
you're welcome!
Please help 1-7 questions
Answer:
25= q+20
25 - 20 =q
5 = q
Hi there! Hopefully this helps!
-------------------------------------------------------------------------------------------
Answer: q = 5.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[tex]25 = q + 20[/tex]
Swap sides so that all variable terms are on the left hand side.
[tex]q + 20 = 25[/tex]
Subtract 20 from both sides.
[tex]q = 25 - 20[/tex]
Subtract 20 from 25 to get, you guessed it, 5!An escalator moves at the rate of 2 feet per second. At what rate does the escalator move in miles per hour? 5280 feet=1 mile
Answer:
7200ft/per Hour divide it by mile ( 5280) makes 1.363 so maybe 1.4 Miles
Step-by-step explanation:
Work Shown:
1 mile = 5280 feet
1 hour = 3600 seconds (since 60*60 = 3600)
[tex]2 \text{ ft per sec} = \frac{2 \text{ ft}}{1 \text{ sec}}\\\\2 \text{ ft per sec} = \frac{2 \text{ ft}}{1 \text{ sec}}*\frac{1 \text{ mi}}{5280 \text{ ft}}*\frac{3600 \text{ sec}}{1 \text{ hr}}\\\\2 \text{ ft per sec} = \frac{2*1*3600}{1*5280*1} \text{ mph}\\\\2 \text{ ft per sec} = \frac{7200}{5280} \text{ mph}\\\\2 \text{ ft per sec} \approx 1.363636 \text{ mph}\\\\[/tex]
The result is approximate and the "36" portion repeats forever.
a=5,and 5+z=14,so a+z=14
Answer:
Z=9
Step-by-step explanation:
Insert A into A+Z=14
5+z=14
Subtract 5 on both sides, to find Z.
-5 -5
z=9
A Markov chain has 3 possible states: A, B, and C. Every hour, it makes a transition to a different state. From state A, transitions to states B and C are equally likely. From state B, transitions to states A and C are equally likely. From state C, it always makes a transition to state A.
(a) If the initial distribution for states A, B, and C is P0 = ( 1/3 , 1/3 , 1/3 ), find the distribution of X2
(b) Find the steady state distribution by solving πP = π.
Answer:
A) distribution of x2 = ( 0.4167 0.25 0.3333 )
B) steady state distribution = [tex]\pi a \frac{4}{9} , \pi b \frac{2}{9} , \pi c \frac{3}{9}[/tex]
Step-by-step explanation:
Hello attached is the detailed solution for problems A and B
A) distribution states for A ,B, C:
Po = ( 1/3, 1/3, 1/3 ) we have to find the distribution of x2 as attached below
after solving the distribution
x 2 = ( 0.4167, 0.25, 0.3333 )
B ) finding the steady state distribution solving
[tex]\pi p = \pi[/tex]
below is the detailed solution and answers
Need Help
Please Show Work
Answer:
-36
Step-by-step explanation:
3*12=36
she is going down (negative) so, it is -36
not sure if this is what you are asking for, if not try this
0-12-12-12=-36
According to the local union president, the mean gross income of plumbers in the Salt Lake City area follows a normal distribution with a mean of $48,000 and a population standard deviation of $2,000. A recent investigative reporter for KYAK TV found, for a sample of 49 plumbers, the mean gross income was $47,600. At the 0.05 significance level, is it reasonable to conclude that the mean income is not equal to $47,600? Determine the p value. State the Null and Alternate hypothesis: State the test statistic: State the Decision Rule: Show the calculation: What is the interpretation of the sample data? Show the P value
Answer:
Step-by-step explanation:
Given that:
population mean [tex]\mu[/tex] = 47600
population standard deviation [tex]\sigma[/tex] = 2000
sample size n = 49
Sample mean [tex]\over\ x[/tex] = 48000
Level of significance = 0.05
The null and the alternative hypothesis can be computed as follows;
[tex]H_0 : \mu = 47600 \\ \\ H_1 : \mu \neq 47600[/tex]
Using the table of standard normal distribution, the value of z that corresponds to the two-tailed probability 0.05 is 1.96. Thus, we will reject the null hypothesis if the value of the test statistics is less than -1.96 or more than 1.96.
The test statistics can be calculated by using the formula:
[tex]z= \dfrac{\overline X - \mu }{\dfrac{\sigma}{ \sqrt{n}}}[/tex]
[tex]z= \dfrac{ 48000-47600 }{\dfrac{2000}{ \sqrt{49}}}[/tex]
[tex]z= \dfrac{400 }{\dfrac{2000}{ 7}}[/tex]
[tex]z= 1.4[/tex]
Conclusion:
Since 1.4 is lesser than 1.96 , we fail to reject the null hypothesis and that there is insufficient information to conclude that the mean gross income is not equal to $47600
The P-value is being calculate as follows:
P -value = 2P(Z>1.4)
P -value = 2 (1 - P(Z< 1.4)
P-value = 2 ( 1 - 0.91924)
P -value = 2 (0.08076 )
P -value = 0.16152
Please please help :((((
Answer:
y = x-4
Step-by-step explanation:
The y intercept is -4
We have 2 points so we can find the slope
( 0,-4) and(4,0)
m = ( y2-y1)/(x2-x1)
= ( 0- -4)/ (4-0)
= 4/4
=1
The slope intercept form is
y = mx+b
y = 1x-4
y = x-4
Two fraction have the same denominator, 8.the some of two fraction is 1/2.if one of the fraction is added to five times the order, the result is 2,find the number.
Answer:
1/8, 3/8
Step-by-step explanation:
Let x and y represent the two fractions. Then we are given ...
x + y = 1/2
x + 5y = 2
Subtracting the first equation from the second, we get ...
(x +5y) -(x +y) = (2) -(1/2)
4y = 3/2 . . . . . simplify
y = 3/8 . . . . . . divide by 4
x = 1/2 -3/8 = 1/8
The two numbers are 1/8 and 3/8.
Pamela drove her car 99 kilometers and used 9 liters of fuel. She wants to know how many kilometers (k)left parenthesis, k, right parenthesis she can drive with 12 liters of fuel. She assumes the relationship between kilometers and fuel is proportional.
How many kilometers can Pamela drive with 12 liters of fuel?
Answer:
132 kilo meters
Step-by-step explanation:
Pro por tions:
9 lite rs ⇒ 99 km
12 lite rs ⇒ P km
P = 99*12/9
P = 132 km
Answer:
132
Step-by-step explanation:
give person above brainliest :))
Find the value of 18÷9•3
Answer:
6
Step-by-step explanation:
18 : 9 · 3 = 2 · 3 = 6
Brainliest! Jared uses the greatest common factor and the distributive property to rewrite this sum: 100 + 75 Drag one number into each box to show Jared's expression. Brainliest!
Answer:
25(4 + 3)
Step-by-step explanation:
100 = 2^2 + 5^2
75 = 3 * 5^2
GCF = 5^2 = 25
100 + 75 =
= 25 * 4 + 25 * 3
= 25(4 + 3)
What are the polar coordinates of the rectangular coordinates
(V3,-1)?
o (2,5)
O (2,11)
(4, 15)
Answer:
1)
[tex] \sqrt{( \sqrt{} 3 {}^{2} } + 1 {}^{2} )[/tex]
[tex] \sqrt{4} = 2[/tex]
then the angle,
[tex] \tan( \alpha ) = - 1 \div \sqrt{3} = 330[/tex]
in radians,
[tex]11\pi \div 6[/tex]
hope this helps for the next questions
NEED ASAP! Given: AB = 12 AC = 6 Prove: C is the midpoint of AB. A line has points A, C, B. Proof: We are given that AB = 12 and AC = 6. Applying the segment addition property, we get AC + CB = AB. Applying the substitution property, we get 6 + CB = 12. The subtraction property can be used to find CB = 6. The symmetric property shows that 6 = AC. Since CB = 6 and 6 = AC, AC = CB by the property. So, AC ≅ CB by the definition of congruent segments. Finally, C is the midpoint of AB because it divides AB into two congruent segments. Answer choices: Congruence Symmetric Reflexive Transitive
Answer:
It’s symmetric property
Answer:
Symmetry
Step-by-step explanation:
The guy above me
The expression (x - 4)2 is equivalent to which expression
Answer:
8-2x
Step-by-step explanation:
2 distributed over the entire expression equals 8-2x
Answer:
the answer is b
Step-by-step explanation:
Researchers recorded that a certain bacteria population declined from 450,000 to 900 in 30 hours at this rate of decay how many bacteria will there be in 13 hours
Answer:
30,455
Step-by-step explanation:
Exponential decay
y = a(1 - b)^x
y = final amount
a = initial amount
b = rate of decay
x = time
We are looking for the rate of decay, b.
900 = 450000(1 - b)^30
1 = 500(1 - b)^30
(1 - b)^30 = 0.002
1 - b = 0.002^(1/30)
1 - b = 0.81289
b = 0.1871
The equation for our case is
y = 450000(1 - 0.1871)^x
We are looking for the amount in 13 hours, so x = 13.
y = 450000(1 - 0.1871)^13
y = 30,455