Answer:
Both are 77
Step-by-step explanation:
103 + 103 = 206
360 - 206 = 154
154/2 = 77
Type of triangle the has side measures of 6cm, 7cm and 12cm. And one angle with a measure of 120 degrees
Answer:
Obtuse triangle
Step-by-step explanation:
Given
Sides: 6cm, 7cm and 12cm
Angle: 120 degree
Required
Determine the type of triangle
Because the measure of an angle of the triangle was mentioned, we have to classify the triangle by its angle.
From the question, we understand that one of the angles is greater than 90 (i.e. 120 degrees). This type of triangle are referred to as obtuse triangles.
Peyton and her children went into a restaurant and where they sell drinks for $3 each
and tacos for $4 each. Peyton has $40 to spend and must buy at least 10 drinks and
tacos altogether. If Peyton decided to buy 4 drinks, determine all possible values for
the number of tacos that she could buy. Your answer should be a comma separated
list of values. If there are no possible solutions, submit an empty answer.
Answer:
7,6
Step-by-step explanation:
So in total Peyton must buy 10 items. Since she's already buying 4 drinks. We need to find the amount of tacos the max amount of tacos she can buy are 7 tacos and the minimum is 6 because if we bought less than 6 it wouldn't have met the criteria for 10 items minimum. And if we passed 7 tacos it would go past the limit of how much money Peyton has. I hope this helped:)
4(x+4) + 2x = 52 need answer
Answer:
x=6
Step-by-step explanation:
Find the circumference. Round to the nearest hundredth. Diameter= 16 feet
Step-by-step explanation:
[tex] = 2\pi \times r = 2\pi \times \frac{16}{2} = 2\pi \times 8 = 50.265 = 50.27[/tex]
The temperature in the morning is 18.6 C. By noon the temperature rises 8.5 C. What is the temperature at noon
Answer:27.1c
Step-by-step explanation:
18.6 + 8.5 =27.1
Answer:
27.1
Step-by-step explanation:
A game decreased in price by 1/6
After the reduction it was priced at £75.
What was the original price of the game?
What is the value of the expression pls help
Answer:
D. 27
Explanation:
First you solve parentheses by solving the exponent 2^3 and adding 4, and you will get 12. Then you'll solve the exponent 3^2 which will give you 9. Then you will multiply 9 by 12 to get 108. Then you will solve the exponent 2^2 which will get you 4. Finally divide 108 by 4 which will give you 27. Hope this helps!
Determine the relationship between the two triangles and whether or not they can be proven to be congruent
Answer:
The two triangles are related by AAS, so the triangles are congruent.
Step-by-step explanation:
Two angles and a non-included side of one triangle are congruent to corresponding two angles and an included side in the other triangle. Therefore, we can conclude that the two triangles are related by the AAS Congruence Criterion. Hence, both triangles congruent to each other.
To thank her five volunteers mai gave each of them the same number of stickers then she gave them each two more stickers altogether she gave them a total of 30 stickers
Answer: 4
Step-by-step explanation:
I got it right when i did my math
The equation which represents the given situation is 5(y + 2) = 30 and the value of y = 4.
What is an Equation?An equation is the statement of two expressions located on two sides connected with an equal to sign. The two sides of an equation is usually called as left hand side and right hand side.
Given that,
Total number of volunteers = 5
Mai gave each of them the same number of stickers.
Let y be the number of stickers she gave to each of them.
Then she gave 2 more stickers to each of them.
Then number of stickers each has = y + 2
Total number of stickers = 30
5(y + 2) = 30
5y + 10 = 30
5y = 20
y = 4
Hence the number of stickers each one has is 4.
Learn more about Equations here :
https://brainly.com/question/29657983
#SPJ2
help plz will give brainlyest
Answer:
A. Cendric is correct because he used the inverse of subtraction and added 4.5
Step-by-step explanation:
To solve for x, all we needed to do was to make x stand alone. To do this, we have to apply addition property of equality. This means we would add 4.5 to both sides for the equation to balance. Thus, we would have z standing alone which equals 3.
Therefore, Cendric was correct because he used the inverse of subtraction of -4.5, which is 4.5 that was later added to both sides of the equation.
Jessica cuts a ribbon with a length of 12 inches into three pieces such that the length of
one piece is 3 1/2 inches and the lengths of the other two are the same. What is the length of each of the other two pieces?
A. 2 1/2 inches
B. 4 1/4 inches
C. 7 3/4 inches
D. 8 1/2 inches
Answer:
B 4 1/4
Step-by-step explanation:
Answer:
Its B. 4 1/4
Step-by-step explanation:
How it helps!
Please help!! Will make brainliest
UmmmmAnswer:
Step-by-step explanation:
The cylinder has a surface area of 972cm. Find x. Round to the nearest whole number.
diameter: 2x
height: 5x
Answer:
A= 2pirh +2pir^2
972=2 x pi x x x 5x + 2 x pi x x^2
972= 31.4x^2 + 6.28x^2
972=37.68x^2
x^2= 972/37.68
x^2=25.796
x= 25.796 square root
x= 5
The value of x is 5 cm.
What is a cylinder?A cylinder is a three-dimensional figure that has a radius and a height.
The volume of a cylinder is given as
Example:
The volume of a cup with a height of 5 cm and a radius of 2 cm is
Volume = 3.14 x 2 x 2 x 5 = 62.8 cubic cm
We have,
The surface area of a cylinder = 972 cm²
The surface area of a cylinder.
= 2πrh + 2πr²
Diameter = 2x
Radius = x
Height = 5x
Now,
2πrh + 2πr² = 972
2π (rh + r²) = 972
2π (5x² + x²) = 972
2π x 6x² = 972
6x² = 972/(2 x 3.14)
6x² = 154.78
x² = 25.79
x = √25.79
x = 5.08
x = 5
Thus,
x value is 5.
Learn more about cylinder here:
https://brainly.com/question/15891031
#SPJ2
5 (2x+1) +4 (x+1)=12(x+2)
Answer:
x=–/-4
Step-by-step explanation:
Let's solve your equation step-by-step.
5(2)(1)+4(x+1)=x+2
Step 1: Simplify both sides of the equation.
5(2)(1)+4(x+1)=x+2
5(2)(1)+(4)(x)+(4)(1)=x+2(Distribute)
10+4x+4=x+2
(4x)+(10+4)=x+2(Combine Like Terms)
4x+14=x+2
4x+14=x+2
Step 2: Subtract x from both sides.
4x+14−x=x+2−x
3x+14=2
Step 3: Subtract 14 from both sides.
3x+14−14=2−14
3x=−12
Step 4: Divide both sides by 3.
3x
3
=
−12
3
x=−4
Answer:
x=−4
Please help I’ll mark you as brainliest if correct
Answer:
72 cm³ (see below)
Step-by-step explanation:
First, refer to the volume formula:
V = l · w · h
If you plug in all of your values and simplify, you'll get the volume:
l = 6 cm
w = 3 cm
h = 4 cm
V = (6) (3) (4)
V = 18 (4)
V = 72 cm³
Because this is volume, the measurements are units cubed, meaning it's cm³.
Need help ASAP
Will mark you brainlist
Answer:
Step-by-step explanation:
Brayden's car travels 37.1 miles per gallon.
Dylan's car travels 48.4 miles/(2 gallons) = 24.2 miles per gallon.
37.1 - 24.2 = 12.9
Dylan's car gets 12.9 miles per gallon less than Brayden's car.
Someone please help me with this thank you
"Out of" is used when you want too divide . True or false ?
Answer:
I think it's true
Step-by-step explanation:
Answer: this is true
Step-by-step explanation:
The term out of is express as a fraction
Example:
1/2
This is 1 out of 2
Hope this helps ;)
Installation of a certain hardware takes a random amount of time with a standard deviation of 5 minutes. A computer technician installs this hardware on 64 different computers, with the average installation time of 42 minutes. Compute a 95% confidence interval for the mean installation time. Explain your interval in context.
Answer:
The 95% confidence interval for the mean installation time is between 40.775 minutes and 43.225 minutes. This means that for all instalations, in different computers, we are 95% sure that the mean time for installation will be in this interval.
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1-0.95}{2} = 0.025[/tex]
Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].
So it is z with a pvalue of [tex]1-0.025 = 0.975[/tex], so [tex]z = 1.96[/tex]
Now, find the margin of error M as such
[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
[tex]M = 1.96*\frac{5}{\sqrt{64}} = 1.225[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 42 - 1.225 = 40.775 minutes
The upper end of the interval is the sample mean added to M. So it is 42 + 1.225 = 43.225 minutes
The 95% confidence interval for the mean installation time is between 40.775 minutes and 43.225 minutes. This means that for all instalations, in different computers, we are 95% sure that the mean time for installation will be in this interval.
The 95% confidence interval for the mean installation time is (40.775, 43.225) and this can be determined by using the formula of margin of error.
Given :
Standard deviation is 5 minutes. Sample size is 64.Mean is 42 minutes.95% confidence interval.The following steps can be used in order to determine the 95% confidence interval for the mean installation time:
Step 1 - The formula of margin of error can be used in order to determine the 95% confidence interval.
[tex]M = z \times \dfrac{\sigma}{\sqrt{n} }[/tex]
where z is the z-score, [tex]\sigma[/tex] is the standard deviation, and the sample size is n.
Step 2 - Now, substitute the values of z, [tex]\sigma[/tex], and n in the above formula.
[tex]M = 1.96 \times \dfrac{5}{\sqrt{64} }[/tex]
[tex]M = 1.225[/tex]
Step 3 - So, the 95% confidence interval is given by (M - [tex]\mu[/tex], M + [tex]\mu[/tex]) that is (40.775, 43.225).
The 95% confidence interval for the mean installation time is (40.775, 43.225).
For more information, refer to the link given below:
https://brainly.com/question/6979326
A cell phone company offers two plans to its subscribers. At the time new subscribers sign up, they are asked to provide some demographic information. The mean yearly income for a sample of 39 subscribers to Plan A is $55,575 with a standard deviation of $8,970. For a sample of 29 subscribers to Plan B, the mean income is $59,475 with a standard deviation of $6,942.
At the .025 significance level, is it reasonable to conclude the mean income of those selecting Plan B is larger? Hint: For the calculations, assume the Plan A as the first sample.
The test statistic is ______. (Negative amount should be indicated by a minus sign. Round your answer to 2 decimal places.)
The decision is _______
the null hypothesis that the mean of Plan B is larger.
The p-value is ______
(Round your answer to 2 decimal places.)
Answer:HI
Step-by-step explanation:HI
9-3 divided by 1/3 + 1
Answer:
1
Step-by-step explanation:
Describe how to plot the point (-1, -2)
Where do you start? How many units do you go to the left or right? How many units it’s do you go up or down?
Which fraction is equal to 35%?
O A.
100
350
O B.
100
35
C.
3.5
100
D.
35
100
Answer: D 35/100
Step-by-step explanation: if you divide 35/100, the answer would be .35, which is the decimal form of 35%.
A mathematical phrase represented by numbers, variables, and operations is a(n)
pls help:)
Answer:
Expression
Step-by-step explanation:
Answer: Expression
Got this right!!!
Hope this helps!!!
Which table represents the statement "Brian rides a bicycle at a rate of 12 meters per second"?
seconds (S)
1
2
3
meters (m)
12
18
24
seconds (S)
1
2
3
meters (m)
12
24
48
seconds (S)
2
3
meters (m)
12
13
14
seconds (S)
1
2.
meters (m)
12
24
Mark this and return
Save and
Answer: D
Step-by-step explanation: Because
1 x 12 = 12
2 x 12 = 24
3 x 12 = 36
Answer:
D
Step-by-step explanation:
Got 100 on test on Edg
Every day a kindergarten class chooses randomly one of the 50 state flags to hang on the wall, without regard to previous choices. We are interested in the flags that are chosen on Monday, Tuesday and Wednesday of next week. 30 Experiments with random outcomes (a) Describe a sample space ± and a probability measure P to model this experiment. (b) What is the probability that the class hangs Wisconsin’s flag on Monday, Michigan’s flag on Tuesday, and California’s flag on Wednesday? (c) What is the probability that Wisconsin’s flag will be hung at least two of the three days?
Answer:
a) [tex]S=50[/tex]
[tex]P(X)=0.02[/tex]
b) [tex]P(W,M,C)=8*10^-^6[/tex]
c) [tex]P(W_2_3)=1.18*10^-^3[/tex]
Step-by-step explanation:
From the question we are told that
Sample space S=50
Sample size n=30
a)Generally the sample space S is
[tex]S=50[/tex]
The probability measure is given as
[tex]P(X)=\frac{1}{50}[/tex]
[tex]P(X)=0.02[/tex]
b)
Generally the probability that the class hangs Wisconsin’s flag on Monday, Michigan’s flag on Tuesday, and California’s flag on Wednesday is mathematically given as
Probability of each one being hanged is
[tex]P(X)=\frac{1}{50}[/tex]
Therefore
[tex]P(W,M,C)=\frac{1}{50} *\frac{1}{50}* \frac{1}{50}[/tex]
[tex]P(W,M,C)=\frac{1}{125000}[/tex]
[tex]P(W,M,C)=8*10^-^6[/tex]
c)Generally the probability that Wisconsin’s flag will be hung at least two of the three days is mathematically given as
Probability of two days hung +Probability of three days hung
Therefore
[tex]P(W_2_3)=^3C_2 (1/50) * (1/50) * (49/50) +^3C_3 (1/50) * (1/50) *(1/50)[/tex]
[tex]P(W_2_3)=148 / 125000[/tex]
[tex]P(W_2_3)=1.18*10^-^3[/tex]
I really need help on this question
Answer:
[tex]r = 107 \\ q + s = 180 - 107 \\ = 73 \\ q = 73 \div 2 \\ = 36.5[/tex]
را آزرا
What is the value of x in the proportion?
Answer:
Step-by-step explanation:
Cross multiply on both sides
= (x + 1) (21) = 15(x + 3)
= 21x + 21 = 15x + 45
Bringing like terms on one side
21x - 15x = 45 - 21
= 6x = 24
x = 24/6 = 4
Option A is the correct answer
[tex] =\tt (a) \: 4[/tex]
Steps to derive correct option :[tex] = \frac{x + 1}{x + 3} = \frac{15}{21} [/tex]
[tex] =( x + 1 )\times 21 = (x + 3 )\times 15[/tex]
[tex] = 21x + 21 = 15x + 45[/tex]
[tex] = 21x + 21 - 15x = 45[/tex]
[tex] = 6x + 21 = 45[/tex]
[tex] = 6x = 45 - 21[/tex]
[tex] = 6x = 24[/tex]
[tex] = x = \frac{24}{6} [/tex]
[tex] =\color{plum} \bold{x = 4}[/tex]
Let us now place 4 in the place of x and see if the substitution is equivalent to [tex] \frac{15}{21} [/tex] :
[tex] = \frac{4 + 1}{4 + 3} = \frac{15}{21} [/tex]
[tex] = \frac{5}{7} = \frac{15}{21} [/tex]
[tex] = \frac{5}{7} = \frac{15÷3}{21÷3} [/tex]
[tex] = \frac{5}{7} = \frac{5}{7} [/tex]
Therefore, the value of x in this proportion = 4
The amount of time workers spend commuting to their jobs each day in a large metropolitan city has a mean of 70 minutes and a standard deviation of 20 minutes. Assuming nothing is known about the shape of the distribution of commuting times, what percentage of these commuting times are between 30 and 110 minutes
Answer:
At least 75% of these commuting times are between 30 and 110 minutes
Step-by-step explanation:
Chebyshev Theorem
The Chebyshev Theorem can also be applied to non-normal distribution. It states that:
At least 75% of the measures are within 2 standard deviations of the mean.
At least 89% of the measures are within 3 standard deviations of the mean.
An in general terms, the percentage of measures within k standard deviations of the mean is given by [tex]100(1 - \frac{1}{k^{2}})[/tex].
In this question:
Mean of 70 minutes, standard deviation of 20 minutes.
Since nothing is known about the distribution, we use Chebyshev's Theorem.
What percentage of these commuting times are between 30 and 110 minutes
30 = 70 - 2*20
110 = 70 + 2*20
THis means that 30 and 110 minutes is within 2 standard deviations of the mean, which means that at least 75% of these commuting times are between 30 and 110 minutes
Solve the system of equations