Find the starting pressure of CCl4 at this temperature that produces a total pressure of 1.1 atm at equilibrium. Express the pressure in atmospheres to three significant figures.
The complete question is as follows: At 700 K, [tex]CCl_{4}[/tex] decomposes to carbon and chlorine. The Kp for the decomposition is 0.76.
Find the starting pressure of [tex]CCl_{4}[/tex] at this temperature that will produce a total pressure of 1.1 atm at equilibrium.
Answer: The starting pressure of [tex]CCl_{4}[/tex] is 0.79 atm.
Explanation:
The equation for decomposition of [tex]CCl_{4}[/tex] is as follows.
[tex]CCl_{4}(g) \rightleftharpoons C(s) + 2Cl_{2}(g)[/tex]
Let us assume that initial concentration of [tex]CCl_{4}[/tex] is 'a'. Hence, the initial and equilibrium concentrations will be as follows.
[tex]CCl_{4}(g) \rightleftharpoons C(s) + 2Cl_{2}(g)[/tex]
Initial: a 0 0
Equilibrium: (a - x) 0 2x
Total pressure = (a - x) + 2x = a + x
As it is given that the total pressure is 1.1 atm.
So, a + x = 1.1
a = 1.1 - x
Now, expression for equilibrium constant for this equation is as follows.
[tex]K_{p} = \frac{P^{2}_{Cl_{2}}}{P_{CCl_{4}}}\\0.76 = \frac{(2x)^{2}}{(a - x)}\\0.76 = \frac{4x^{2}}{1.1 - x - x}\\0.76 = \frac{4x^{2}}{1.1 - 2x}\\x = 0.31 atm[/tex]
Hence, the value of 'a' is calculated as follows.
a + x = 1.1 atm
a = 1.1 atm - x
= 1.1 atm - 0.31 atm
= 0.79 atm
Thus, we can conclude that starting pressure of [tex]CCl_{4}[/tex] is 0.79 atm.
What is significant about the primary colors of pigments?
They can be mixed together to make almost any other color.
Any two primary colors of pigments combine to make white pigment.
Each primary color of pigment absorbs all other colors.
Any two primary colors of pigments combine to make black pigment.
Answer:
They can be mixed together to make almost any other color.
Explanation:
All the three primary colors can mix to form white color.
Blue and red mix to form a black color.
recognizing forms of energy
Answer:
hi the question isn't obvious and need a photo I guess
what is the average velocity if the initial velocity is at rest and the final velocity is 16 m/s
Answer:
8m/s
Explanation:
Vavg= 16-0/2=8m/s
A 12.5-m fire truck ladder is leaning against a wall. Find the distance d the ladder goes up the wall (above the fire truck) if the ladder makes an angle of with the horizontal
Complete Question
A 12.5-m fire truck ladder is leaning against a wall. Find the distance d the ladder goes up the wall (above the fire truck) if the ladder makes an angle of
40° 16' with the horizontal.
Answer:
[tex]d=8.01m[/tex]
Explanation:
From the question we are told that:
Length of ladder [tex]l=12.5m[/tex]
Angle [tex]\theta=40° 16'=20.26 \textdegree[/tex]
Generally the Trigonometric equation for distance d it goes up the wall is mathematically given by
[tex]d=l sin \theta[/tex]
[tex]d=12.5 sin 40.26[/tex]
[tex]d=8.01m[/tex]
Why is the force of attraction between the Earth and ourselves so huge compared to the attraction between two apples?
Answer:
Answer in explanation
Explanation:
The force of attraction between two bodies is governed by Newton's Law of Gravitation:
[tex]F = \frac{Gm_1m_2}{r^2}[/tex]
where,
G = Universal Gravitational Constant
m₁ = mass of the first body
m₂ = mass of the second body
r = distance between the two bodies
F = Force
Hence, it is clear from the formula that the magnitude of the force is directly proportional to the product of the masses of the objects. So in the case of the earth and ourselves, the mass of the earth is very large in order of 10²⁴ kg. Due to this huge mass, the attraction between the earth and ourselves is so huge as compared to the attraction between two apples. Because the masses of the apple are very small in grams.
Three 30 g metal balls, one of aluminum, copper and lead, are placed in a large beaker of hot water for a few minutes. [The specific heats of aluminum, copper, and lead are 903, 385, and 130 J / (kg ° C), respectively].
to. Which of the balls, if any, will reach the highest temperature? Explain.
b. Which of the balls, if any, will have the most heat energy? Explain.
Answer:
The answer is below
Explanation:
Specific heat capacity is an intensive property of a material. The specific heat of a material is the amount of energy required to raise the temperature of one unit mass m of material by one unit of temperature.
a) Temperature is inversely proportional to specific heat capacity. If the same amount of heat is applied to all three balls, the ball that will reach the highest temperature is the ball with the least specific heat capacity.
Hence lead will have the highest temperature since it has the least specific heat capacity.
b) The quantity of heat is directly proportional to the specific heat capacity. Hence if all balls experience the same temperature change, the ball that have the most energy will be that with the highest specific heat capacity.
Hence aluminum will have the most heat since it has the highest specific heat capacity.
how much amount of heat energy is required to convert 5 kg of ice at - 5° c into 100°c steam?
Assuming no heat lost to the surrounding,
-5⁰C ice → 0⁰C ice
Specific heat capacity of ice = 2.0 x 10³ J/kg/⁰C
Q = mc∆θ
Q = 5(2.0 x 10³) x (0-(-5))
Q = 50000J
0⁰C ice → 0⁰C water
Specific latent heat of fusion of ice = 3.34 x 10⁵J/kg
Q = mLf
Q = 5(3.34 x 10⁵)
Q = 1670000J
0⁰C water → 100⁰C water
Specific heat capacity of water = 4.2 x 10³ J/kg/⁰C
Q = mc∆θ
Q = 5(4.2 x 10³) x (100-0)
Q = 2100000J
100⁰C water → 100⁰C steam
Specific latent heat of vaporization of water = 2.26 x 10⁶ J/kg
Q = mLv
Q = 5(2.26 x 10⁶)
Q = 11300000J
Total amount of heat required
= 50000 + 1670000 + 2100000 + 11300000
= 15120000J
A body of mass 4kg is moving with a velocity of 108km/h . find the kenetic energy of the body.
Answer:
KE = 2800 J
Explanation:
Usually a velocity is expressed as m/s. Then the energy units are joules.
[tex]\frac{108 km}{hr} * \frac{1000m}{1 km} * \frac{1 hour}{3600 seconds} =\frac{108*1000 m}{3600sec}[/tex]
v = 30 m / sec
KE = 1/2 * 4 * (30)^2
KE =2800 kg m^2/sec^2
KE = 2800 Joules
A particle of mass 1.2 mg is projected vertically upward from the ground with a velocity of 1.62 x 10 cm/h. Use the above information to answer the following four questions: 7. The kinetic energy of the particle at time t = 0 s is A. 1.215 x 10-3 J B. 2.430 J C. 1215 J D. 9.72 x 106 J E. OJ (2)
Answer:
K = 0 J
Explanation:
Given that,
The mass of the particle, m = 1.2 mg
The speed of the particle, [tex]v=1.62\times 10\ cm/h[/tex]
We need to find the kinetic energy of the particle at time t = 0 s.
At t = 0 s, the particle is at rest, v = 0
So,
[tex]K=\dfrac{1}{2}mv^2[/tex]
If v = 0,
[tex]K=0\ J[/tex]
So, the kinetic energy of the particle at time t = 0 s is 0 J.
A system is acted on by its surroundings in such a way that it receives 50 J of heat while simultaneously doing 20 J of work. What is its net change in internal energy
Answer:
30J
Explanation:
Given data
The total quantity of heat recieved= 50J
Quantity of heat used to do work= 20J
Hence the net change is
ΔU= Total Heat - Net work
ΔU= 50-20
ΔU= 30J
Hence the change in the internal energy is 30J
PLEASE HELP ME WITH THIS ONE QUESTION
The half-life of Barium-139 is 4.96 x 10^3 seconds. A sample contains 3.21 x 10^17 nuclei. How much of the sample is left after 1.98 x 10^4 seconds?
[tex]A=2.01×10^{16}\:\text{nuclei}[/tex]
Explanation:
Given:
[tex]\lambda = 4.96×10^3 s[/tex]
[tex]A_0 = 3.21x10^{17}[/tex] nuclei
t = 1.98×10^4 s
[tex]A=A_02^{-\frac{t}{\lambda}}[/tex]
[tex]A=(3.21×10^{17}\:\text{nuclei}) \left(2^{-\frac{1.98×10^4}{4.96×10^3}} \right)[/tex]
[tex]\:\:\:\:\:\:\:=2.01×10^{16}\:\text{nuclei}[/tex]
There are two beakers of water on the table. We can compare the average kinetic energy of the water molecules in the two beakers by measuring their
A temperatures.
B volumes.
C densities.
D masses.
Answer: masses
Explanation:
Trust me
What are stepdown transformers used for
Answer:
Step down transformers are used in power adaptors and rectifiers to efficiently decrease the voltage. They are also used in electronic SMPS.
Explanation:
pls mark me as brainlist
Thanks a lot
write down the following units in the ascending of their value A) mm nm cm um B) 1m 1cm 1km 1mm. convert the following units into SI without changing their values? A)3500g B)2.5km C)2h
Answer:
A) nm, um, mm, cm
B) 1mm, 1cm, 1m, 1km
A) 3500g, B) 2500m, C) 7200 seconds
An unwary football player collides with a padded goalpost while running at a velocity of 7.50 m/s and comes to a full stop after compressing the padding and his body 0.350 m. (a) What is his deceleration
Answer:
a= -80.357 m/s
Explanation:
use the formula
vf^2=vi^2+2a(xf-xi)
Plug in givens
0=(7.50)^2+2a(0.350m)
solve for acceleration
a= -80.357 m/s
A TV satellite dish is designed to receive radio waves of wavelength
0.0644 meters. What is the frequency of the waves it receives? _______GHz
Give your answer in gigahertz (GHz). 1 GHz = 10^9 Hz.
Give your answer to the nearest tenth of a GHz (one place after the decimal). Just enter the number; do NOT use scientific notation.
Answer:
4.7 GHz
Explanation:
Applying,
v = λf................. Equation 1
Where v = velocity of the radio wave, λ = wavelength, f = frequency
make f the subject of the equation
f = v/λ.............. Equation 2
Note: A radio wave is an electromagnetic wave, as such it moves with a velocity of 3.00 x 10⁸ m/s
From the question,
Given: λ = 0.0644 meters
Constant: v = 3.00 x 10⁸ m/s
Substitute these values into equation 2
f = (3.00 x 10⁸)/0.0644
f = 4.66×10⁹ Hz
f = 4.7 GHz
One hazard of space travel is the debris left by previous missions. There are several thousand objects orbiting Earth that are large enough to be detected by radar, but there are far greater numbers of very small objects, such as flakes of paint. Calculate the force exerted by a 0.100-mg chip of paint that strikes a spacecraft window at a relative speed of 4.00×10^3 m/s, given the collision lasts 6.00×10^8s.
Answer:
F = 6666.7 N
Explanation:
Given that,
Mass of a chip, m = 0.1 mg
Initial speed, u = 0
Final speed,[tex]v=4\times 10^{3}\ m/s[/tex]
Time of collision,[tex]t=6\times 10^{-8}\ s[/tex]
We know that,
Force, F = ma
Put all the values,
[tex]F=\dfrac{m(v-u)}{t}\\\\F=\dfrac{0.1\times 10^{-6}\times (4\times 10^3-0)}{6\times 10^{-8}}\\\\F=6666.7\ N[/tex]
So, the required force is 6666.7 N.
12) If, after viewing a specimen at low power, you switch to high-dry power and, after using fine focus, cannot find the specimen, what things could you do to help yourself (before calling me over to assist you?)
Answer:
See the answer below
Explanation:
After seeing an object on a slide at the low-power objective of the microscope and it disappears on changing to high power, the following can be done to resolve the problem
1. Drop a few drops of immersion oil on the slide and view again under high the power objective.
2. If the object is still not visible after the action above, return the microscope to the low-power objective and make sure the object is refocused and centered. Then carefully change back to the high power objective and use the fine adjustment to bring it into focus.
What word chemical equation describes this chemical reaction?
Answer : sodium + chlorine → sodium chloride
A block of mass M is connected by a string and pulley to a hanging mass m. The coefficient of kinetic friction between block M and the table is 0.2, and also, M = 20 kg, m = 10 kg. How far will block m drop in the first seconds after the system is released?
How long will block M move during above time?
At the time, calculate the velocity of block M
Find out the deceleration of the block M, if the connected string is
removal by cutting after the first second. Then, calculate the time
taken to contact block M and pulley.
Answer:
a) y = 0.98 t², t=1s y= 0.98 m,
b) he two blocks must move the same distance
c) v = 1.96 m / s, d) a = -1.96 m / s², e) x = 0.98 m
Explanation:
For this exercise we can use Newton's second law
Big Block
Y axis
N-W = 0
N = M g
X axis
T- fr = Ma
the friction force has the expression
fr = μ N
fr = μ Mg
small block
w- T = m a
we write the system of equations
T - fr = M a
mg - T = m a
we add and resolved
mg- μ Mg = (M + m) a
a = [tex]g \ \frac{m - \mu M}{m+M}[/tex]
a = [tex]9.8 \ \frac{10- 0.2 \ 20}{ 10 \ +\ 20}[/tex]
a = 9.8 (6/30)
a = 1.96 m / s²
a) now we can use the kinematic relations
y = v₀ t + ½ a t²
the blocks come out of rest so their initial velocity is zero
y = ½ a t²
y = ½ 1.96 t²
y = 0.98 t²
for t = 1s y = 0.98 m
t = 2s y = 1.96 m
b) Time is a scale that is the same for the entire system, the question should be oriented to how far the big block will move.
As the curda is in tension the two blocks must move the same distance
c) the velocity of the block M
v = vo + a t
v = 0 + 1.96 t
for t = 1 s v = 1.96 m / s
t = 2 s v = 3.92 m / s
d) the deceleration if the chain is cut
when removing the chain the tension becomes zero
-fr = M a
- μ M g = M a
a = - μ g
a = - 0.2 9.8
a = -1.96 m / s²
e) the distance to stop the block is
v² = vo² - 2 a x
0 = vo² - 2a x
x = vo² / 2a
x = 1.96² / 2 1.96
x = 0.98 m
the time to travel this distance is
v = vo - a t
t = vo / a
t = 1.96 /1.96
t = 1 s
Every object around you is attracted to you. In fact, every object in the galaxy is attracted to every other object in the galaxy.
a. True
b. False
Answer:
True
Explanation:
With the gravitational pull that our planets have, we are able to remain in orbit. This demonstrates how every object in the galaxy is attracted to every other object. Every object in the universe that has mass exerts a gravitational pull on every other mass. We as humans do it too, but since our force isn't strong, we don't have much of an effect. I hope this helped and please don't hesitate to reach out with more questions!
What is (a) the x component and (b) the y component of the net electric field at the square's center
Answer:
What is (a) the x component and (b) the y component of the net electric field at the square's center
A uniform 1500-kg beam, 20.0 m long, supports a 15,000-kg printing press
5.0 m from the right support column (Figure slide 8). Calculate the force
on each of the vertical support columns.
Answer:
[tex]\mathbf{F_1=4.41*10^4\ N}[/tex]
[tex]\mathbf{F_2 = 1.176*10^5 \ N}[/tex]
Explanation:
The missing image of the figure slide is attached in below.
However, from the model, it is obvious that it is in equilibrium.
As a result, the relation of the force and the torque is said to be zero.
i.e.
[tex]\sum F = 0[/tex] and [tex]\sum \tau = 0[/tex]
From the image, expressing the forces through the y-axis, we have:
[tex]F_1+F_2 = W_B + W_P \\ \\ \implies 9.8(1500+15000) \\ \\ \implies \mathtt{1.617\times 10^5 \ N}[/tex]
Also, let the force [tex]F_1[/tex] be the pivot and computing the torque to determine [tex]F_2[/tex]:
Then:
[tex]F_1(0)+F_2(20.0) = 10.0W_B + 15.0W_P[/tex]
[tex]F_2 = \dfrac{((10*1500)+(15*15000))*9.8}{20.0}[/tex]
[tex]F_2 = 117600 \ N[/tex]
[tex]\mathbf{F_2 = 1.176*10^5 \ N}[/tex]
For the force equation:
[tex]F_1+F_2=1.617*10^5 \ N;[/tex]
where:
[tex]F_2 = 1.176*10^5 \ N[/tex]
Then:
[tex]F_1+1.176*10^5 \ N=1.617*10^5 \ N[/tex]
[tex]F_1=1.617*10^5 \ N-1.176*10^5 \ N[/tex]
[tex]F_1=44100\ N[/tex]
[tex]\mathbf{F_1=4.41*10^4\ N}[/tex]
A 64-ka base runner begins his slide into second base when he is moving at a speed of 3.2 m/s. The coefficient of friction between his clothes and Earth is 0.70. He slides so that his speed is zero just as he reaches the base.
Required:
a. How much mechanical energy is tout due to friction acting on the runner?
b, How far does he slide?
Answer:
Explanation:
From the given information:
mass = 64 kg
speed = 3.2 m/s
coefficient of friction [tex]\mu =[/tex] 0.70
The mechanical energy touted relates to the loss of energy in the system as a result of friction and this can be computed as:
[tex]W = \Delta K.E[/tex]
[tex]\implies \dfrac{1}{2}m(v^2 -u^2)[/tex]
[tex]= \dfrac{1}{2}(64.0 \kg) (0 - (3.2 \ m/s^2))[/tex]
Thus, the mechanical energy touted = 327.68 J
According to the formula used in calculating the frictional force
[tex]F_r = \mu mg[/tex]
= 0.70 × 64 kg× 9.8 m/s²
= 439.04 N
The distance covered now can be determined as follows:
d = W/F
d = 327.68 J/ 439.04 N
d = 0.746 m
The north pole of magnet A will __?____ the south pole of magnet B
Answer:
A will attract
B will repare
A hot air balloon is a sphere of volume 2210 m3. The density of the hot air inside is 1.13 kg/m3, while the air outside has a density of 1.29 kg/m3. The balloon itself has a mass of 240 kg. What is the TOTAL NET force acting on the balloon?
[?]N
The total net force acting on the balloon will be 24498 Newtons
Given that
Volume of the balloon = 2210 cubic meter
Density of the air inside the balloon = 1.13 kg/m3
What will be the net force exerted on the balloon ?Here force on the balloon will be equal to the weight of the air displaced by balloon
[tex]F= mass of air displaced\times gravity[/tex]
[tex]F= Density \times volume \times gravity[/tex]
[tex]F=1.13 \times 2210 \times 9.81[/tex]
[tex]F=24498 N[/tex]
The total net force acting on the balloon will be 24498 Newtons
To know more about buoyancy force follow
https://brainly.com/question/117714
Explain what a circuit breaker is and how it helps protect your house?
Explanation:
A circuit breaker is an electrical switch designed to protect an electrical circuit from damage caused by overcurrent/overload or short circuit. Its basic function is to interrupt current flow after protective relays detect a fault.
Circuit breakers have been designed to detect when there is a fault in the electricity, so it will “trip” and shut down electrical flow. ... This detection is key to preventing surges of electricity that travel to appliances or other outlets, which can cause them to break down
The velocity-time graph of a body is given. What quantities are represented by (a) slope of the graph and (b) area under the graph?
Answer:
a) acceleration
b) displacement
Explanation:
The velocity-time graph is a graph of velocity versus time. The velocity (m/s) would be on the Y-axis while time (s) would be on the X-axis.
a) The slope of a graph is given by: change in Y-axis/change in X-axis = ΔY/ΔX
In a velocity-time graph, ΔY = change in velocity and ΔX = change in time.
Hence, the slope of a velocity-time graph becomes: change in velocity/change in time.
Also, acceleration = change in velocity/change in time.
Hence, the slope of a velocity-time graph = acceleration.
b) Assuming that the area under a velocity-time graph is a rectangle, the area is given as:
Area of a rectangle = length x breadth
= velocity x time (m/s x s)
Also, displacement = velocity x time (m)
Hence, the area under a velocity-time graph of a body would give the displacement of the body.
a vehicle start moving at 15m/s. How long will it take to stop at a distance of 15m?
Answer:
Explanation:
Speed= distance/time
Or time = distance/speed
According to your question
Speed=15m/s
and. Distance=1.2km. ,we must change kilometer in meter because given speed is in m/s
D= 1.2km = 1.2×1000m =1200meter
Time = distance/ speed
1200/15 =80second
Or. 1min and 20 sec will be your answer.