Answer:
Divide the mass of the solute by the total volume of the solution. Write out the equation C = m/V, where m is the mass of the solute and V is the total volume of the solution. Plug in the values you found for the mass and volume, and divide them to find the concentration of your solution.
In a hospital, bags of saline solution are used to rehydrate patients. They are made by dissolving a specific amount of salt in water. What is the solvent in the saline solution?
A. Bag
B. Patient
C. Saline
D. Water
Water is the solvent in the saline solution. Hence, option D is correct.
What is the solute?A solute is something being dissolved, a solvent is a thing dissolving the item, and the solution is the mixture of the two items.
In a hospital, bags of saline solution are used to rehydrate patients. They are made by dissolving a specific amount of salt in water. Water is the solvent in the saline solution.
Hence, option D is correct.
Learn more about the solution here:
https://brainly.com/question/7932885
#SPJ5
1 atm is equal to
O 1 mmHg
• 14.7 mmHg
• 76 mmHg
© 760 mmHg
Answer:
C 760 mm of hg
because this is the atmospheric pressure at sea level
How many atoms of hydrogen are there in 36 g of NH4?
Answer:
hope it helps you
Explanation:
please like and mark me brainlist
Write the relation of M3 with its multiples
Explanation:
HI friends good morning
A sample of gas has a volume of 20 cm³.The pressure is changed to 90 kPa at constant temperature,while the volume increases to 75 cm³.What was the original pressure of the gas?
Answer:
337.5kPa ~ 338kPa
Explanation:
Using the ideal gas law PV=nRT we have the following definitions from the problem:
V(initial) = 20cm³
P(initial) = ?kPa
V(final) = 75cm³
P(final) = 90kPa
Since we know that the number of moles of the sample did not change, nor did the temperature, nor does the ideal gas constant (R) we can rewrite this equation to state:
P(initial)V(initial) = nRT =P(final)V(final) ~ P(initial)V(initial) = P(final)V(final)
Rearranging this equation as we are solving for the initial pressure we find that:
P(initial) = (P(final)V(final))/V(initial)
P(initial) = ((90kPa)(75cm³))/20cm³
P(initial) = 337.5kPa ~ 338kPA