Answer:
Step-by-step explanation: distribute -3 to the parenthesis (-2y-4) to eliminate the parenthesis. you’ll be left with 6y +12 -5y-2. From there you combine like terms. do 6y-5y= 1y or just y and 12-2 = 10. your answer would be 10
A plan for a dog park has a grassy section and a sitting section as shown in the figure. Which equation can be used to find the area of the grassy section?
Answer:
length times width
Step-by-step explanation:
A number is chosen at random from 1 to 10. Find
the probability of selecting 4 or a factor of 6.
Step by step.
Answer:
1/2
Step-by-step explanation:
The possible outcomes are
1,2,3,4,5,6,7,8,9,10
Factors of 6 are 1,2,3,6
or a 4
1,2,3,4,6 are the outcomes we want
There are 5 "good" outcomes
P( 4 or a factor of 6) = "good" outcomes/ total
= 5/10
=1/2
Answer:
[tex]\boxed{\frac{1}{2} }[/tex]
Step-by-step explanation:
There are total 10 outcomes.
[tex]1,2,3,4,5,6,7,8,9,10[/tex]
The probability of selecting 4 is 1 outcome out of total 10 outcomes.
Factors of 6 are [tex]1,2,3,6[/tex].
These are 4 outcomes out of total 10 outcomes.
The probability of selecting 4 or a factor of 6 is:
[tex]\displaystyle \frac{1}{10} +\frac{4}{10} =\frac{5}{10} =\frac{1}{2}[/tex]
Fill in the following blanks to prove that n 2^1 n < 2^n n+1 < 2^(n+1) is Box 3 Options: True | False Next, assume that Box 4 Options: 1 < 2^1 k + 1 < 2^(k+1) k < 2^k as we attempt to prove Box 5 Options: k < 2^k k + 1 < 2^(k+1) 2 < 2^1 Therefore, we can conclude that Box 6 Options: k < 2^k k + 1 < 2^(k+1) 2^1 < 2^k k + 2 < 2^(k+2)
Answer:
see below
Step-by-step explanation:
n < 2^n
First let n=1
1 < 2^1
1 <2 This is true
Next, assume that
(k) < 2^(k)
as we attempt to prove that
(k+1) < 2^(k+1)
.
.
.
Therefore we can conclude that
k+1 < 2^(k+1)
Answer:
Step-by-step explanation:
Hello, please consider the following.
First, assume that n equals [tex]\boxed{1}[/tex]. Therefore, [tex]\boxed{1<2^1}[/tex] is [tex]\boxed{\text{True}}[/tex]
Next, assume that [tex]\boxed{k<2^k}[/tex], as we attempt to prove [tex]\boxed{k+1<2^{k+1}}[/tex]
Since .... Therefore, we can conclude that [tex]\boxed{k+1<2^{k+1}}[/tex]
The choice for the last box is confusing. Based on your feedback, we can assume that we are still in the step 2 though.
And the last step which is not included in your question is the conclusion where we can say that we prove that for any integer [tex]n\geq 1[/tex], we have [tex]n<2^n[/tex].
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
does x-2/x-6 simplify to 1/3 ?
explain why or why not
Answer:
no it is not 1/3
Step-by-step explanation:
(x-2) / (x-6)
This does not simplify
Rewriting x-2 as (x-6 +4)
(x-6 +4)/ ( x-6)
Replacing x-6 as m
( m+4) /m
Simplifying
m/m + 4/m
1 + 4/m
Replacing m with x-6
1 + 4/ ( x-6)
This is not 1/3
Find the limit. Use l'Hospital's Rule where appropriate. If there is a more elementary method, consider using it. lim x→9 x − 9 x2 − 81
Without resorting to L'Hopitâl's rule,
[tex]\displaystyle\lim_{x\to9}\frac{x-9}{x^2-81}=\lim_{x\to9}\frac{x-9}{(x-9)(x+9)}=\lim_{x\to9}\frac1{x+9}=\frac1{18}[/tex]
With the rule, we get the same result:
[tex]\displaystyle\lim_{x\to9}\frac{x-9}{x^2-81}=\lim_{x\to9}\frac1{2x}=\frac1{18}[/tex]
Translate the statements into a confidence interval for p. Approximate the level of confidence. In a survey of 8451 U.S. adults, 31.4% said they were taking vitamin E as a supplement. The survey's margin of error is plus or minus 1%.
Answer:
The confidence interval is [tex]0.304 < p < 0.324[/tex]
Step-by-step explanation:
From the question we are told
The sample proportion [tex]\r p = 0.314[/tex]
The margin of error is [tex]E = 0.01[/tex]
The confidence interval for p is mathematically represented as
[tex]\r p - E < p < \r p + E[/tex]
=> [tex]0.314 - 0.01 < p < 0.314 + 0.01[/tex]
=> [tex]0.304 < p < 0.324[/tex]
A mutual fund owns 20,000 shares in Company Y. Company Y has 2 million shares issued. In one particular year, Company Y announces annual profits of $6 million, and decides to pay dividends to its shareholders at a rate of 15% of its annual profits. How much will the mutual fund receive in the form of dividends from Company Y? Round your answer to the nearest dollar.
Answer: $9,000
Step-by-step explanation:
Step 1
Calculate the amount of dividends the company will pay to all its shareholders.
= 15% of profits
= 15% * 6,000,000
= $900,000
Step 2
Calculate how much dividends each share will get;
$900,000 to 2 million shares of Company Y.
= 900,000/2,000,000
= $0.45
Step 3
Calculate how much the Mutual fund will get for its 20,000 shares
= 20,000 * 0.45
= $9,000
GIVING OUT BRAINLIEST TO THE FIRST PERSON WHO ANSWERS!! I would appreciate if if you do answer though! <3
Also, include ALL work!
Answer:
The answer is option BStep-by-step explanation:
Total number of people = 800
To find the number of unemployed people we must first find the total percentage of the pie chart
That's
25 + 10 + 5 + 60 = 100%
5 % out of the 100% are unemployed
To find the number of unemployed people divide 5 % by the total percentage that's 100% and multiply them by the total number of people
That's
[tex] \frac{5}{100} \times 800[/tex]
5 × 8
We have the final answer as
40 peopleHope this helps you
4. Create your own scenario for the variable expression below. Then, suggest values for the variables and solve. 14x + 12y
Answer:
Cost of pencil = $20
Cost of copy = $6
Step-by-step explanation:
Statement.
Gill buys 14 copy and 12 pencils and pays a total $324, if the value of 1 copy and 1 pencil is $26, find cost of copy and pencil.
Computation:
Assume.
Cost of copy = x
Cost of pencil = y
So,
x + y = 26.......Eq1
And
14x + 12y = 324.........Eq2
From Eq1 ad Eq2
Cost of pencil = $20
So,
Cost of copy = $6
Niall and Zayn buy 14 concert tickets for them and their friends to go see 5sos and 12 concert tickets for them and their friends to go see Little Mix with a total cost of $648. If the value of 1 5sos ticket and 1 Little Mix ticket is $52, and the Little Mix ticket is $4 more than the 5sos ticket, find cost of both tickets.
5sos = x
Little Mix = y
52 / 2 = 26
26 - 2 = 24
26 + 2 = 26
x = 24
y = 28
5sos tickets = $24 each
Little Mix tickets = $26 each
Simple linear regression methods can be used for studying relationship among maximum five variables. True False
Answer:
False.
Step-by-step explanation:
In a data where two variables are observed simultaneously, such data is termed to be Bivariate Data. When this data are represented graphically, such a diagrammatic representation is called scatter diagram. In a scatter diagram, all the points lie on or near one particular line. This line is called the regression line.
Recall that the equation for a straight line in the gradient intercept form is y = ax+b .
As an approximation , one can fit the regression line by first computing x and y. The regression line should pass through (x,y) in such a way that the remaining scatter points are evenly distributed on both sides of the line. Therefore, Simple linear regression methods can be used for studying relationship among maximum five variables is a false statement.
What is the opposite of the opposite of negative 52?
Answer:
-52
Step-by-step explanation:
Think of it this way. Opposite means to take the negation. So we are taking the negation of the negation of negative 52. This means mathematically:
- ( - ( -52 ) ) == -52
Cheers.
You are an urban planner assessing the growth of a city. Ten years ago, the city's population was 250,823. Its current population is 325,823. By about what percentage has the city grown over the past ten years? Round to the nearest percent.
Answer:
Here is the answer i got-
Step-by-step explanation:
325823-250823=75000
325823’s 244367250percent is 75000
You need a shelf for a small space in your house, so you make a measurement with your meter stick and head to the store. Once there, you find that the dimension of the shelves you want is given in cm. If your space measured 0.8 m, and the shelves at the store measure 30 cm, answer the following questions: 1) How many meters wide is the shelf you want to buy? 2) Will it fit in your house? yes no
Answer:
1. 0.3 m
2. yes
Step-by-step explanation:
The computation is shown below:
Given that
Measurement of space = 0.8m
measurement of the shelves = 30 cm = 0.3 m as 1 m = 100 cm
So for 30 cm it would be
= 0.30 ÷ 100
= 0.3 m
Based on the above information,
1. The number of meters wide for the shelf to buy is 0.3 m
2 And yes it is fitted in the house
Using the required conversion metrics, the width of the shelf at the stis 0.3 meters and will not fit in the house.
Given the Parameters :
Measured width = 0.8 mStore width = 30 cmUsing the appropriate metric conversion values :
100 cm = 1 m
Converting the store measurement into meters :
30 cm ÷ 100 = 0.3 meters
Hence, the shelf you want to purchase measures 0.3 meters.
Since, the measured width and the width of the shelf at the store are different, then the shelf will not fit in.
Learn more : https://brainly.com/question/16867858
Common ratio 2/3, -2, 6
Answer:
The common ratio is - 3Step-by-step explanation:
To find the common ratio between the terms of the sequence divide the previous term by the next term.
That's
[tex] - 2 \div \frac{2}{3} = - 2 \times \frac{3}{2} = - 3[/tex]Or
[tex] \frac{6}{ - 2} = - 3[/tex]Therefore the common ratio of the sequence is - 3
Hope this helps you
Answer:
-3
Step-by-step explanation:
Find the interest on a Principal Balance of $10,000 over the course of eight years with an interest rate of 5.5%. Do this for: Simple Interest.
Answer:
Simple Interest : $ 4400
Step-by-step explanation:
We want to calculate the interest on $ 10,000, at 5.5% interest rate per year, over a course of 8 years.
We can use the simple interest formula here, or :
I = P × r × t,
Where P is the principle amount, $ 10,000, r is the interest rate, 5.5% each year, or in decimal form 5.5 / 100 = 0.055. t is the time, 8 years.
Simple Interest : 10000 × 0.055 × 8 = $4400.00
Then again the interest can be added to the principal amount ( $10,000 ) to receive some new amount after 8 years, which is $ 14,000. However the simple interest earned in 8 years at a rate of 5.5% should be $4400.
The simple interest earned on the amount is $4,400
Interest is the total amount that would be paid or earned from making an investment or taking a loan over a period of time.
Simple Interest = principal x time x interest rate
principal = amount borrowed = $10,000
time = 8 years
Interest rate = 5.5%
10,000 x 0.055 x 8 = $4,400
To learn more about simple interest, please check: https://brainly.com/question/9352088?referrer=searchResults
Jessica is at a charity fundraiser and has a chance of receiving a gift. The odds in favor of receiving a gift are 5/12. Find the probability of Jessica receiving a gift.
Answer:
5/17
Step-by-step explanation:
This is a question to calculate probability from odds. The formula is given as:
A formula for calculating probability from odds is P = Odds / (Odds + 1)
From the question , we are told that the odds of receiving a gift is
= 5:12
The probability of Jessica receiving a gift =
Probability = Odds / (Odds + 1)
P = 5/12 / ( 5/12 + 1)
P = (5/12)/ (17/12)
P = 5/12 × 12/17
= 5/17
Therefore, the probability of Jessica. receiving a gift is 5/17.
PLEASE HELP!!!!!!
Look at the triangle ABC.
A (4.5)
5
4
3
2
1
C (4.1)
B (2.1)
1 2 3
4 5
--5 -4 -3 -2 -1 0
-1
-2
-3
-4
-5
What is the length of the side AB of the triangle?
2
20
38
=========================================
Explanation:
Count out the spaces, or use subtraction, to find the horizontal side BC is 2 units long. Similarly, you'll find the vertical side AC is 4 units long.
Use the pythagorean theorem to find the length of segment AB.
a^2 + b^2 = c^2
2^2 + 4^2 = c^2
4 + 16 = c^2
20 = c^2
c^2 = 20
c = sqrt(20)
We stop here since it matches with choice B.
-----------------
Optionally, we can simplify like so
sqrt(20) = sqrt(4*5)
sqrt(20) = sqrt(4)*sqrt(5)
sqrt(20) = 2*sqrt(5)
Answer:
The answer is [tex]\sqrt{20}[/tex].
Step-by-step explanation:
Use the Pythagorean Theorem.
[tex]2^{2} + 4^{2} = c^{2} \\4+16 = c^{2} \\\sqrt{20} = c[/tex]
What value of x makes this equation true?
17 5 - 7 = -4
x=
y Su
What value of x makes this equation true? X/6-7=-4
Answer:
x=18
Step-by-step explanation:
x/6 - 7 = -4
x/6 = 3
(x/ 6) * 6 = 3*6
x = 18
These girts stasts jogging from the same point around
acircular track and they complete one round in 24
Seconds 36 seconds and 48 seconds respectively,
After.
how much time will they meet atone point?
Answer:
2hrs 24mins
Step-by-step explanation:
Very simple the time they will meet again at the point will be the LCM of their various time taken to complete a cycle.
Ans LCM(24, 36, 48) = 144 mins
= 2hrs 24mins
Answer:
The answer is 2 hours and 24 minutes
Step-by-step explanation:
Hope you get this right:)
(4x2y3)2=? thank you for the help
Answer:
Step-by-step explanation:
2 3x2y3
Solve for x: 5x + 2 = 4x - 9
Answer:
x = - 11
Step-by-step explanation:
Given
5x + 2 = 4x - 9 ( subtract 4x from both sides )
x + 2 = - 9 ( subtract 2 from both sides )
x = - 11
Answer: x = -11
Step-by-step explanation:
Move all terms containing x to the left side of the equation.
A mathematical statement that says two expressions have the same value; any number sentence with an = .
Please help . I’ll mark you as brainliest if correct!
Answer:
Stocks = $15,500
Bonds = $107,250
CD's = $47,250
Step-by-step explanation:
S + B + C = 170000
.0325S + .038B .067C = 7745
60,000 + C = b
S = $15,500
B = $107,250
C = $47,250
A 160-lb man carries a 5-lb can of paint up a helical staircase that encircles a silo with radius 20 ft. If the silo is 90 ft high and the man makes exactly three complete revolutions, how much work is done by the man against gravity in climbing to the top
Weight of man and paint = 160 + 5 = 165 total pounds.
Gravitational force is independent of the path taken so we can ignore the radius of the silo.
Work done = total weight x height
The problem says he climbs to the top so overall height is 90 feet
Work = 165 lbs x 90 ft = 14,850 ft-lbs
Two friends are standing at opposite corners of a rectangular courtyard. The dimensions of the courtyard are 12 ft. by 25 ft. How far apart are the friends?
Answer:
27.73 feet
Step-by-step explanation:
Use the Pythagorean theorem. It easiest to think of the distance between the two friends as a triangle in the rectangle. One side is 12ft and the other is 25ft.
12^2+25ft^2=769
The square root of 769 is 27.73
Answer:
27.73 Ft
Step-by-step explanation:I took the test
Determine that 4/16 and 5/20 forms as proportional relationship.
Answer:
Those two are 0.25
4/16 = 1/4
5/20 = 1/4
Answer: Please Give Me Brainliest, Thank You!
4/16 = 5/20 = 1/4
Step-by-step explanation:
Because If you divide 4 and 16 by 4 you get 1/4 and if you divide 5 and 20 with 5 you get 1/4
Simplify -2x^3 y x xy^2
Answer:
(4,4)⋅(4,4)
Step-by-step explanation:
the volume of a cube is 3375 cubic inches. what is the measure of each side of the cube
Answer:
The measure of each side of the cube is
15 inchesStep-by-step explanation:
Since it's a cube all it's sides are equal
To find the length of each side we use the formula
Volume of a cube = l³
where l is the measure of one side
From the question
Volume = 3375 cubic inches
Substitute this value into the formula and solve for l
That's
[tex] {l}^{3} = 3375[/tex]Find the cube root of both sides
That's
[tex] \sqrt[3]{ {l}^{3} } = \sqrt[3]{3375} [/tex]We have the final answer as
l = 15 inchesHope this helps you
i need help asap please
Answer:
[tex]x = -\frac{3}{2}[/tex] or [tex]x = 1[/tex]
Step-by-step explanation:
Using the zero product property, first step is to set the given equation, [tex] 2x^2 + x - 1 = 2 [/tex] , to zero. Then factorise the left side.
Thus,
[tex] 2x^2 + x - 1 = 2 [/tex]
Subtract 2 from both sides
[tex] 2x^2 + x - 1 - 2 = 2 - 2 [/tex]
[tex] 2x^2 + x - 3 = 0 [/tex]
Factorise the left side
[tex] 2x^2 + 3x - 2x - 3 = 0 [/tex]
[tex] x(2x + 3) - 1(2x + 3) = 0 [/tex]
[tex] (x - 1)(2x + 3) = 0 [/tex]
Find the solution
[tex] x - 1 = 0 [/tex]
Or
[tex]2x + 3 = 0[/tex]
[tex] x = 1 [/tex]
Or
[tex]2x + 3 = 0[/tex]
[tex]2x = -3[/tex]
[tex]x = -\frac{3}{2}[/tex]
The answer is: [tex] x = 1 [/tex] or [tex]x = -\frac{3}{2}[/tex]
(SAT Prep) Find the value of x.
Answer:
The value of x is 30°
Step-by-step explanation:
We are given that the outer angle of the parallelogram is 60 degrees. Therefore it's respective inner angle will be 180 - 60 = 120 degrees. And, by properties of a parallelogram, the angle opposite to this angle will be 120 degrees as well.
If we draw extend the line creating angle 2x, then we will make ( 1 ) a vertical angle to 2x, ( 2 ) a 90 degree angle, and ( 3 ) and angle that we can let be y. Therefore, 2x + y = 90, and 3x + y = 120.
[tex]\begin{bmatrix}2x+y=90\\ 3x+y=120\end{bmatrix}[/tex] ,
[tex]\begin{bmatrix}6x+3y=270\\ 6x+2y=240\end{bmatrix}[/tex] ,
[tex]6x+2y=240\\-\\\underline{6x+3y=270}\\y=30[/tex],
[tex]2x + (30) = 90,\\2x = 60,\\x = 30[/tex]
Solution : x = 30°
Answer:
x = 30
Step-by-step explanation:
a+ 60 = 180
a = 120
3x+b = 120 because opposite angles in a parallelogram are equal
2x+90+b = 180 since it forms a line
2x+b = 90
We have 2 equations and 2 unknowns
3x+b = 120
2x+b = 90
Subtracting
3x+b = 120
-2x-b = -90
---------------------
x = 30
The research group asked the following question of individuals who earned in excess of $100,000 per year and those who earned less than $100,000 per year: "Do you believe that it is morally wrong for unwed women to have children?" Of the individuals who earned in excess of $100,000 per year, said yes; of the individuals who earned less than $100,000 per year, said yes. Construct a 95% confidence interval to determine if there is a difference in the proportion of individuals who believe it is morally wrong for unwed women to have children.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The lower bound is [tex]0.0234[/tex]
The upper bound is [tex]0.100[/tex]
So from the value obtained the solution to the question are
1 Does not include
2 sufficient
3 not different
Step-by-step explanation:
From the question we are told that
The sample size of individuals who earned in excess of $100,000 per year is [tex]n_ 1 = 1205[/tex]
The number of individuals who earned in excess of $100,000 per year that said yes is
[tex]w = 712[/tex]
The sample size individuals who earned less than $100,000 per year is [tex]n_2 = 1310[/tex]
The number of individuals who earned less than $100,000 per year that said yes is
[tex]v= 693[/tex]
The sample proportion of individuals who earned in excess of $100,000 per year that said yes is
[tex]\r p _ 1 = \frac{w}{n_1 }[/tex]
substituting values
[tex]\r p _ 1 = \frac{712}{1205}[/tex]
[tex]\r p _ 1 =0.5909[/tex]
The sample proportion of individuals who earned less than $100,000 per year that said yes is
[tex]\r p _ 1 = \frac{v}{n_2 }[/tex]
substituting values
[tex]\r p _ 1 = \frac{693 }{1310}[/tex]
[tex]\r p _ 1 = 0.529[/tex]
Given that the confidence level is 95% then the level of significance is mathematically represented as
[tex]\alpha = 1 -0.95[/tex]
[tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table the value is [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
Generally the margin of error is
[tex]E = Z_{\frac{\alpha }{2} } * \sqrt{ \frac{ \r p _1 (1- \r p_1 )}{n_1} + \frac{ \r p _2 (1- \r p_2 )}{n_2} } }[/tex]
substituting values
[tex]E = 1.96 * \sqrt{ \frac{ 0.5909 (1- 0.5909 )}{1205} + \frac{ 0.592 (1- 0.6592 )}{1310} } }[/tex]
[tex]E =0.03846[/tex]
Generally the 95% confidence interval is
[tex](\r p_1 - \r p_2) - E < p_1 - p_2 <( \r p_1 - \r p_2 ) + E[/tex]
substituting values
[tex](0.5909 - 0.529 ) - 0.03846 < p_1 - p_2 < (0.5909 - 0.529 ) + 0.03846[/tex]
[tex]0.02344 < p_1 - p_2 < 0.10036[/tex]
The lower bound is [tex]0.0234[/tex]
The upper bound is [tex]0.100[/tex]
So from the value obtained the solution to the question are
1 Does not include
2 sufficient
3 not different
The lower bound is 0.0234 and the upper bound is 0.100. Then the 95% confidence interval is (0.0234, 0.100)
What is the margin of error?The probability or the chances of error while choosing or calculating a sample in a survey is called the margin of error.
The research group asked the following question of individuals who earned in excess of $100,000 per year and those who earned less than $100,000 per year.
The sample size of individuals who earned in excess of $100,000 per year will be
[tex]\rm n_1 =1205[/tex]
The sample size of individuals who earned less than $100,000 per year will be
[tex]\rm n_1 =1205[/tex]
The number of individuals who earn an excess of $100,000 per year that said yes will be
[tex]\rm w = 712[/tex]
The number of individuals who earn less than $100,000 per year that said yes will be
[tex]\rm v= 693[/tex]
Then the sample proportion of individuals who earned in excess of $100,000 per year that said yes will be
[tex]\rm \hat{p}_1=\dfrac{w}{n_1}\\\\\hat{p}_1=\dfrac{712}{1205}\\\\\hat{p}_1= 0.5909[/tex]
Then the sample proportion of individuals who earned less than $100,000 per year that said yes will be
[tex]\rm \hat{p}_2=\dfrac{v}{n_2}\\\\\hat{p}_2=\dfrac{693}{1310}\\\\\hat{p}_2= 0.529[/tex]
The confidence level is 95% then the level of significance is mathematically represented as
[tex]\alpha =1-0.95\\\\\alpha =0.05[/tex]
Then the critical value of α/2 from the normal distribution table. Then the value of z is 1.96, then the error of margin will be
[tex]E = z_{\alpha /2} \times \sqrt{\dfrac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \dfrac{\hat{p}_2(1-\hat{p}_2)}{n_2}}\\\\E = 1.96 \times \sqrt{\dfrac{05909(1-0.5909)}{1205} + \dfrac{0.529(1-0529)}{1310}}\\\\E = 0.03846[/tex]
The 95% confidence interval will be
[tex]\begin{aligned} (\hat{p}_1-\hat{p}_2)-E & < p_1-p_2 < (\hat{p}_1-\hat{p}_2) + E\\\\(0.5909 - 0.529) - 0.03846 & < p_1-p_2 < (0.5909 - 0.529) + 0.03846\\\\0.02344 & < p_1-p_2 < 0.10036 \end{aligned}[/tex]
More about the margin of error link is given below.
https://brainly.com/question/6979326