Answer:
Step-by-step explanation:
Given that
sin(2θ)+sinθ=0
We know that
sin(2θ)=2 sinθ x cosθ
Therefore
2 sinθ x cosθ + sinθ=0
sinθ(2 cosθ+1)=0
sinθ= 0
θ=0
2 cosθ+1=0
cosθ= - 1/2
θ=120°
_______________________________________________________
[tex]sin 2\theta=\sqrt{3cos\theta}[/tex]
By squaring both sides
[tex]sin^2 2\theta={3cos\theta}[/tex]
4 sin²θ x cos²θ=3 cosθ
4 sin²θ x cos²θ - 3 cosθ=0
cos θ = 0
θ= 90°
4 sin²θ=3
θ=60°
A rectangular vegetable garden will have a width that is 2 feet less than the length, and an area of 48 square feet. If x represents the length, then the length can be found by solving the equation: x(x-2)=48 What is the length, x, of the garden?
Answer:
[tex]x {}^{2} - 2x = 48[/tex]
[tex]x { }^{2} - 2x - 48 = 0[/tex]
using quadratic formula,
[tex] - b \frac{ + }{ - } \sqrt{b {}^{2} - 4ac} \div 2a[/tex]
[tex]2 + \sqrt{196} \div 2[/tex]
[tex]2 + 14 \div 2[/tex]
[tex]x = 8[/tex]
or
[tex]x = - 6[/tex]
What does "C" represent and how do you evaluate this?
[tex]_9C_7=\dfrac{9!}{7!2!}=\dfrac{8\cdot9}{2}=36[/tex]
If In (x) = 3.53, what is the value of x ?
On a class trip with 40 students, 14 are male. What percentage of the class is female?
66%
60%
65%
58%
Answer:
65%
Step-by-step explanation:
If 14 are male, then 26 are female.
To find the percent female, divide the number of females by the total.
26/40 = 0.65
So, the percentage of the class that is female is 65%
Answer:
C. 65%
Step-by-step explanation:
We know that of the 40 total students, 14 are male, which means the remaining students are female.
To find how many are female, we subtract 14 from 40:
40 - 14 = 26 females
Percentage is simply a part divided by a whole, multiplied by 100. Here, the "part" is the number of females, which is 26. The "whole" is the total number of students, which is 40. So, we have:
(26 / 40) * 100 = 65
The answer is thus C, 65%.
~ an aesthetics lover
An online polling site posed this question: "How much stock do you put in long-range weather forecasts?" Among its Web site users, 38, 528 chose to respond Complete parts (a) through (c) below.
a. Among the responses received, 3% answered with "a lot". What is the actual number of responses consisting of "a lot"?
b. Among the responses received, 18, 566 consisted of "very little or none". What percentage of responses consisted of "very little or none"?
c. Because the sample size of 38, 528 is so large, can we conclude that about 3% of the general population puts "a lot" of stock in long-range weather forecasts? Why or why not?
A. No, because the sample is a voluntary response sample, so the sample is not likely to be representative of the population.
B. Yes, because the sample is so large, the margin of error is negligible.
C. No, because even though the sample size is so large, there is still a margin of error.
D. Yes, because the sample size is large enough so that the sample is representative of the population.
Answer:
(a) 1155.84
(b) 48.2%
(c) D
Step-by-step explanation:
The number of total responses is, N = 38,528.
(a)
It is provided that 3% answered with "a lot".
Compute the actual number of responses consisting of "a lot" as follows:
n (a lot) = N × P (a lot)
= 38528 × 0.03
= 1155.84
Thus, the actual number of responses consisting of "a lot" is 1155.84.
(b)
The number of responses consisting of "very little or none" is,
n (very little or none) = 18,566
Compute the percentage of responses consisted of "very little or none" as follows:
[tex]P(\text{very little or none})=\frac{n(\text{very little or none})}{N}[/tex]
[tex]=\frac{18566}{38528}\\\\=0.481883\\\\\approx 0.482[/tex]
The percentage is: 0.482 × 100% = 48.2%.
Thus, the percentage of responses consisted of "very little or none" is 48.2%.
(c)
As the sample size increases the sample statistic value gets closer and closer to the actual population parameter value.
Thus, making the sample statistic an unbiased estimator of the population parameter.
And proving that the sample is a true representative of the population.
Thus, the correct option is (D).
1.Write 32 1/2 in radical form
Answer:
√32
Step-by-step explanation:
a data set includes 110 body temperatures of healthy adult humans having a mean of 98.1F and a standard deviation of 0.64F. Construct a 99% confidence interval estimate of the mean body temperature of all healthy humans
Answer:
The 99% confidence interval is [tex]97.94 < \mu < 98.26[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is n = 110
The sample mean is [tex]\= x = 98.1 \ F[/tex]
The standard deviation is [tex]\sigma = 0.64 \ F[/tex]
Given that the confidence level is 99% the level of significance i mathematically evaluated as
[tex]\alpha = 100 - 99[/tex]
[tex]\alpha = 1\%[/tex]
[tex]\alpha = 0.01[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution, the values is
[tex]Z_{\frac{\alpha }{2} } = Z_{\frac{0.01 }{2} } = 2.58[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma}{\sqrt{n} }[/tex]
substituting values
[tex]E = 2.58 * \frac{ 0.64}{\sqrt{110} }[/tex]
[tex]E = 0.1574[/tex]
Generally the 99% confidence interval is mathematically represented as
[tex]\= x - E < \mu < \= x + E[/tex]
substituting values
[tex]98.1 - 0.1574 < \mu < 98.1 + 0.1574[/tex]
[tex]97.94 < \mu < 98.26[/tex]
Answer:
Step-by-step explanation:
A market survey shows that 50% of the population used Brand Z computers last year, 4% of the population quit their jobs last year, and 2% of the population used Brand Z computers and then quit their jobs. Are the events of using Brand Z computers and quitting your job independent
Answer:
the events of using Brand Z computers and quitting your job are independent.
Step-by-step explanation:
Let A be the event that the population used Brand Z computers and let B be the event that the population quit their jobs.
We are told that 50% of the population used Brand Z computers last year. Thus, the probability of event A is;
P(A) = 50% = 0.5
Also, we are told that 4% of the population quit their jobs last year. Thus the probability of event B is;
P(B) = 4% = 0.04
Since 2% of the population used Brand Z computers and then quit their jobs. Then the probability of the population used Brand Z computers and then quit their jobs is;
P(A ∩ B) = 2% = 0.02
From the law of independent events, if A and B are to be independent events, then;
P(A ∩ B) = P(A) × P(B)
Thus;
P(A ∩ B) = 0.5 × 0.04 = 0.02
This is same value as what was given in the question, thus the events of using Brand Z computers and quitting your job are independent.
Which of the following is an arithmetic sequence? A.-2, 4, -6, 8, ... B.2, 4, 8, 16, ... C.-8, -6, -4, -2, ...
Answer:
C. -8, -6, -4, -2, ...
Step-by-step explanation:
An arithmetic sequence increases by the same amount every time through addition or subtraction. There is a common difference.
A: -2, 4, -6, 8, ... If there were a common difference, the numbers would not switch between being positive and back to negative. The numbers would either keep going positive or keep going negative.
B: 2, 4, 8, 16, ... The common difference between 16 and 8 is 16 - 8 = 8. The difference between 8 and 4 is 8 - 4 = 4. Since the difference changes between the numbers, this is not an arithmetic sequence.
C. -8, -6, -4, -2, ... The common difference between -2 and -4 is -2 - (-4) = -2 + 4 = 2. The difference between -4 and -6 is -4 - (-6) = -4 + 6 = 2. The difference between -6 and -8 is -6 - (-8) = -6 + 8 = 2. Since the common difference is always two, this is an arithmetic sequence.
Hope this helps!
Which statements about the sum of the interior angle measures of a triangle in Euclidean and non-Euclidean geometries are true? A. In Euclidian geometry the sum of the interior angle measures of a triangle is 180 degrees, but in elliptical or spherical geometry the sum is less than 180 degrees. B. In Euclidian geometry the sum of the interior angle measures of a triangle is 180 degrees, but in elliptical or spherical geometry the sum is greater than 180 degrees. C. In Euclidian geometry the sum of the interior angle measures of a triangle is less than 180 degrees, but in hyperbolic geometry the sum is equal to 180 degrees. D. In Euclidian geometry the sum of the interior angle measures of a triangle is greater than 180 degrees, but in hyperbolic geometry the sum is less than 180 degrees. E. In Euclidian geometry the sum of the interior angle measures of a triangle is 180 degrees, but in hyperbolic geometry the sum is less than 180 degrees.
Answer:
its b and e
Step-by-step explanation:
The statements given in options B and E are true so options B and E are right options.
Given some statements we have to determine that which of the following statements are true
The given statements are as follows
A. In Euclidean geometry the sum of the interior angle measures of a triangle is 180 degrees, but in elliptical or spherical geometry the sum is less than 180 degrees.
B. In Euclidean geometry the sum of the interior angle measures of a triangle is 180 degrees, but in elliptical or spherical geometry the sum is greater than 180 degrees.
C. In Euclidean geometry the sum of the interior angle measures of a triangle is less than 180 degrees, but in hyperbolic geometry the sum is equal to 180 degrees.
D. In Euclidean geometry the sum of the interior angle measures of a triangle is greater than 180 degrees, but in hyperbolic geometry the sum is less than 180 degrees.
E. In Euclidean geometry the sum of the interior angle measures of a triangle is 180 degrees, but in hyperbolic geometry the sum is less than 180 degrees.
We know some facts about each type of geometry
In Euclidean geometry plane is used to plot the points and line.
In spherical geometry uses the sphere to plot the points and circles
Elliptical geometry is such a geometry where no parallel lines exists.
The sum of interior angles of a triangle is dependent on the type of geometry we are dealing with and they can be written down in the following points
In Euclidean geometry the sum of interior angles of a triangle is 180° In spherical or elliptical geometry the sum of interior angles of a triangle is more than 180° In hyperbolic geometry the sum of interior angles of a triangle is less than 180°So from the above observations we can conclude that statements given in options B and E are true so options B and E are right options.
For more information please refer to the link given below
https://brainly.com/question/4637858
F(x)=2x+6,g(x)=4x^2 find (f+g)(x)
Work Shown:
(f+g)(x) = f(x) + g(x)
(f+g)(x) = 2x+6 + 4x^2
(f+g)(x) = 4x^2+2x+6
PLEASE HELP!!!
Evaluate the expression when b=4 and y= -3
-b+2y
Answer: -10
Step-by-step explanation: All you have to do is plug the values into the equation. -4+2(-3). Then you solve the equation using PEDMAS.
1. -4+2(-3)
2. -4+(-6)
3.-4-6
4.-10
Answer:
8
Step-by-step explanation:
-b + 2y
if
b = 4
and
y = 3
then:
-b + 2y = -4 + 2*6 = -4 + 12
= 8
PLEASE FAST 40 POINTS
A box contains four tiles, numbered 1,4.5, and 8 as shown.
Kelly randomly chooses one tile, places it back in the box, then chooses a second tile.
What is the probability that the sum of the two chosen tiles is greater than 7?
A. 1/4
B. 5/16
C. 2/3
D. 11/16
Answer:
[tex]\bold{\dfrac{11}{16}}[/tex]
Step-by-step explanation:
Given four tiles with numbers:
1, 4, 5 and 8
Tile chosen once and then replaced, after that another tile chosen:
All possibilities are:
{(1, 1) ,(1, 4) ,(1, 5) ,(1, 8)
(4, 1) ,(4, 4) ,(4, 5) ,(4, 8)
(5, 1) ,(5, 4) ,(5, 5) ,(5, 8)
(8, 1) ,(8, 4) ,(8, 5) ,(8, 8) }
Total number of possibilities = 16
When the sum is greater than 7, the possibilities are:
{(1, 8)
(4, 4) ,(4, 5) ,(4, 8)
(5, 4) ,(5, 5) ,(5, 8)
(8, 1) ,(8, 4) ,(8, 5) ,(8, 8) }
Number of favorable cases = 11
Formula for probability of an event E is:
[tex]P(E) = \dfrac{\text{Number of favorable cases}}{\text {Total number of cases}}[/tex]
Hence, the required probability is:
[tex]\Rightarrow \bold{\dfrac{11}{16}}[/tex]
Answer:11/16
Step-by-step explanation:i took the test
The length of a rectangle is a inches. Its width is 5 inches less than the length. Find the area and the perimeter of the rectangle.
Answer:
[tex]Area = 5a - a^2[/tex] [tex]inches\²[/tex]
[tex]Perimeter = 10\ inches[/tex]
Step-by-step explanation:
Given
Length = a
Width = 5 - a
Required
Determine the Area and Perimeter;
Calculating Area
Area is calculated as thus;
[tex]Area = Length * Width[/tex]
Substitute values for Length and Width
[tex]Area = a * 5 - a[/tex]
[tex]Area = a * (5 - a)[/tex]
Open Bracket
[tex]Area = 5a - a^2[/tex]
Calculating Perimeter
Perimeter is calculated as thus;
[tex]Perimeter = 2 (Length + Width)[/tex]
Substitute values for Length and Width
[tex]Perimeter = 2 (a + 5 - a)[/tex]
Collect Like Terms
[tex]Perimeter = 2 (5 + a- a)[/tex]
[tex]Perimeter = 2 (5)[/tex]
Open Bracket
[tex]Perimeter = 10\ inches[/tex]
is -54 rational number whole number or integersis
Answer:
-54 is a integer and rational number
Step-by-step explanation:
can you please help me with this
Answer:
[tex]\displaystyle A=\dfrac{1}{2}\int_\pi^{\frac{7\pi}{6}}{(\cos{\theta}+\sin{2\theta})^2}\,d\theta[/tex]
Step-by-step explanation:
The shaded area is the area of the curve bounded by θ = π and θ = 7π/6.* A differential of area in polar coordinates is ...
dA = (1/2)r^2·dθ
So, the shaded area is ...
[tex]\displaystyle\boxed{A=\dfrac{1}{2}\int_\pi^{\frac{7\pi}{6}}{(\cos{\theta}+\sin{2\theta})^2}\,d\theta}[/tex]
_____
* We found these bounds by trial and error using a graphing calculator to plot portions of the curve.
PLEASE HELP!!!!!! TIMED QUESTION!!!! FIRST CORRECT ANSWER WILL GET BRAINLIEST....PLEASE ANSWER NOW!!!!
The bar graph shows the number of students who earned each letter grade on an
exam, which statement about the graph is true?
1)
1/5 of the students earned a C
2)
3% more students earned an A then B
3)
20% of the students earned a D
4)
1/4 of the class earned a B
Answer:
Option (3)
Step-by-step explanation:
From the picture attached,
Bar graph sketched shows the grades earned by the students in an exam.
Number of students who achieved the grade A = 17
Number of students who achieved grade B = 14
Number of students with grade C = 5
Number of students with grade D = 9
Total students who took the exam = 17 + 14 + 5 + 9 = 45
Option (1)
"[tex]\frac{1}{5}[/tex] of the students earned a C"
Fraction of students who earned C = [tex]\frac{\text{Students who earned C}}{\text{Total students}}[/tex]
= [tex]\frac{5}{45}[/tex]
= [tex]\frac{1}{9}[/tex]
Therefore, this option is incorrect.
Option (2)
"3% more students earned an A then B"
Percentage of students who earned A = [tex]\frac{\text{Students got A}}{\text{Total students who took the exam}}\times 100[/tex]
= [tex]\frac{17}{45}\times 100[/tex]
= 37.78%
Percentage of students who earned B = [tex]\frac{\text{Students got B}}{\text{Total students who took the exam}}\times 100[/tex]
= [tex]\frac{14}{45}\times 100[/tex]
= 31.11%
Difference in percentage = 37.78 - 31.11
= 6.67%
Therefore, this option is not correct.
Option (3)
"20% of the students earned a D"
Percentage of students who earned D = [tex]\frac{\text{Students got D}}{\text{Total students who took the exam}}\times 100[/tex]
= [tex]\frac{9}{45}\times 100[/tex]
= 20%
Option (3) is the correct option.
Option (4)
" [tex]\frac{1}{4}[/tex] of the class earned a B"
Fraction of class who earned B = [tex]\frac{\text{Students got B}}{\text{Total students who took the exam}}[/tex]
= [tex]\frac{14}{45}[/tex]
Therefore, Option (4) is not correct.
Reduce the following fraction to lowest terms: 8/14
Answer:
4/7
Step-by-step explanation:
divide both by two for its simplest form
Answer:4/7
Step-by-step explanation
Divide both the numerator and denominator by 2
The result for the numerator is 8/2=4
that of the denominator is 14/2=7
Therefore the resultant answer is 4/7
All human blood can be "ABO-typed" as O, A, B, or AB, but the distribution of the types varies a bit among groups of people. Here are the distributions of blood types for a randomly chosen person in China and in the United States:The probability O A B ABChinese 0.35 0.27 0.26 0.12American 0.45 0.4 0.11 0.04Suppose we randomly select an American and a Chinese, independently of each other, apply multiplication and addition probability rules, compute:a. Pr(They both have type O)b. Pr( they both have the same blood type)c. Pr( at least one person has type O)
Answer:
a. Pr(They both have type O)
= Pr(They both have type O)
= 0.35 x 0.45
= 0.1575 = 15.75%
b. Pr( they both have the same blood type)
= Pr( they both have the same blood type)
= 2/8
= 0.25 = 25%
c. Pr( at least one person has type O)
= Pr (at least one person has type O)
= 1 - 0.3575
= 0.6425 = 64.25%
Step-by-step explanation:
a) Data:
O A B AB
Chinese 0.35 0.27 0.26 0.12
American 0.45 0.4 0.11 0.04
b) Calculations:
i. Pr(They both have type O)
= Probability of Chinese with O multiplied by Probability of American with O
= 0.35 * 0.45
= 0.1575 = 15.75%
ii. Pr( they both have the same blood type)
= Probability of two out of 8 outcomes
= 2/8
= 0.25 = 25%
iii. Pr( at least one person has type O)
= Probability of (1 – p(none) )
The probability of none = p(none O blood type)
= p(none)
for Chinese = (0.27 + 0.26 + 0.12) * for American ( 0.4 + 0.11 + 0.04)
= 0.65 * 0.55 = 0.3575
Pr (at least one person has type O) = 1 - 0.3575
= 0.6425
IM GIVING BRAINLIEST TO THE FIRST PERSON TO ANSWER!
Show ALL work please! <3
Answer:
B
Step-by-step explanation:
What work is there to show? you basically isolate x. add 2 to both sides. and you get x is greater than or equal to 5. So the answer is B.
x-2[tex]\geq[/tex]3
+2 +2
x[tex]\geq[/tex]5
What is the solution to the following system of equations? 3x-2y=12 6x - 4y = 24
Answer:
D question,somewhat confusing, itsit's like simultaneous equation,but values are different
Answer:
x = 4 + 2y/3
Step-by-step explanation:
Which values of x are point(s) of discontinuity for this function? Function x = –4 x = –2 x = 0 x = 2 x = 4
Answer:
x=0 and x=2
Step-by-step explanation:
We need to check at each point where the function changes definition
At x= -2
On the left side -4 on the right side = -( -2)^2 = -4 continuous
At x=0
The point is not defined since neither side has an equals sign
discontinuous
x =2
on the left side 2^2 =4 on the right side 2
It is discontinuous
Answer:
x = 0
x = 2
Step-by-step explanation:
Edge 2020
~theLocoCoco
I need help ASAP THANK YOU
Answer:
174 cm²
Step-by-step explanation:
The figure given is a prism with isosceles trapezoid as base.
Its surface area can be calculating the area of each face that makes up the prism, and summing all together.
There are 6 faces. Their dimensions and areas can be calculated as follows:
2 isosceles trapezium:
It has 2 parallel bases, (a and b), of 4cm and 6cm,
Height (h) = 2.8cm
Area = ½(a+b)*h
Area = ½(4+6)*2.8
Area = ½(10)*2.8 = 5*2.8 = 14 cm²
4 rectangles of different dimensions:
Rectangle 1 (down face): l = 10cm, b = 4cm
Area = 10*4 = 40 cm²
Rectangle 2 and 3 (side faces): l = 10cm, b = 3cm
Area = 2(l*b) = 2(10*3) = 60cm²
Rectangle 4 (top face) = l = 10cm, b = 6cm
Area = 10*6 = 60cm²
Surface area of the figure = 14 + 40 + 60 + 60 = 174 cm²
A rectangle has an area of 81 square centimeters. Which of the following would be the rectangle's length and width? (Area = equals length×times width)
Answer:
length: 9cm
width: 9cm
Step-by-step explanation:
9×9=81
Help me and I will for real give u brainleist
should be 2 3 andd 5
think of the - (- as a plus sign (this is what i was always taught) to add them so it would in turn be (-5) + 12 which equals 7 and choice 3 and 5 also equal this
Find the interquartile range of the data in the dot plot below. players blob:mo-extension://5f64da0e-f444-4fa8-b754-95
Answer:
[tex]IQR=Q_{3}-Q_{1}[/tex]
Step-by-step explanation:
The inter-quartile range is a measure of dispersion of a data set.
It is the difference between the third and the first quartile.
[tex]IQR=Q_{3}-Q_{1}[/tex]
The 1st quartile (Q₁) is well defined as the mid-value amid the minimum figure and the median of the data set. The 2nd quartile (Q₂) is the median of the data. The 3rd quartile (Q₃) is the mid-value amid the median and the maximum figure of the data set.
Find the rectangular coordinates of the point with the given polar coordinates.
Answer:
[tex]( - \sqrt{3} \: an d \: 1)[/tex]
Find the area of the shaded regions:
area of Arc subtending [tex]360^{\circ}[/tex] (i.e. the whole circle) is $\pi r^2$
so area of Arc subtending $\theta^{\circ}$ is, $\frac{ \pi r^2}{360^{\circ}}\times \theta^{\circ}$
$\theta =72^{\circ}$ so the area enclosed by one such arc is $\frac{\pi (10)^272}{360}$
abd there are 2 such arcs, so double the area.
[tex] \LARGE{ \underline{ \boxed{ \rm{ \purple{Solution}}}}}[/tex]
Given:-Radius of the circle = 10 inchesAngle of each sector = 72°Number of sectors = 2To FinD:-Find the area of the shaded regions....?How to solve?For solving this question, Let's know how to find the area of a sector in a circle?
[tex] \large{ \boxed{ \rm{area \: of \: sector = \frac{\theta}{360} \times \pi {r}^{2} }}}[/tex]
Here, Θ is the angle of sector and r is the radius of the circle. So, let's solve this question.
Solution:-We have,
No. of sectors = 2Angle of sector = 72°By using formula,
⇛ Area of shaded region = 2 × Area of each sector
⇛ Area of shaded region = 2 × Θ/360° × πr²
⇛ Area of shaded region = 2 × 72°/360° × 22/7 × 10²
⇛ Area of shaded region = 2/5 × 100 × 22/7
⇛ Area of shaded region = 40 × 22/7
⇛ Area of shaded region = 880/7 inch. sq.
⇛ Area of shaded region = 125.71 inch. sq.
☄ Your Required answer is 125.71 inch. sq(approx.)
━━━━━━━━━━━━━━━━━━━━
Consider the following. x = t2 − 2t, y = t5, 1 ≤ t ≤ 4 Set up an integral that represents the length of the curve. 4 1 dt Use your calculator to find the length correct to four decimal places.
Answer:
L ≈ 1023.0562
Step-by-step explanation:
We are given;
x = t² - 2t
dx/dt = 2t - 2
Also, y = t^(5)
dy/dt = 5t⁴
The arc length formula is;
L = (α,β)∫√[(dx/dt)² + (dy/dt)²]dt
Where α and β are the boundary points. Thus, applying this to our question, we have;
L = (1,4)∫√[(2t - 2)² + (5t⁴)²]dt
L = (1,4)∫√[4t² - 8t + 4 + 25t^(8)]dt
L = (1,4)∫√[25t^(8) + 4t² - 8t + 4]dt
Using online integral calculator, we have;
L ≈ 1023.0562
The length of the curve is 1023.0562 and this can be determined by doing the integration using the calculator.
Given :
[tex]\rm x = t^2-2t[/tex][tex]\rm y=t^5[/tex][tex]\rm 1\leq t\leq 4[/tex]First, differentiate x and y with respect to 't'.
[tex]\rm \dfrac{dx}{dt}=2t-2[/tex]
[tex]\rm \dfrac{dy}{dt}=5t^4[/tex]
Now, determine the length of the curve using the below formula:
[tex]\rm L = \int^b_a\sqrt{\left(\dfrac{dx}{dt}\right)^2+\left(\dfrac{dy}{dt}\right)^2} dt[/tex]
Now, substitute the value of the known terms in the above formula and then integrate it.
[tex]\rm L = \int^4_1\sqrt{(2t-2)^2+(5t^4)^2} dt[/tex]
[tex]\rm L = \int^4_1\sqrt{25t^8+4t^2-8t+4} \;dt[/tex]
Now, simplify the above integration using the calculator.
L = 1023.0562
For more information, refer to the link given below:
https://brainly.com/question/18651211
Shawna finds a study of American men that has an equation to predict weight (in pounds) from
height (in inches): y = -210 + 5.6x. Shawna's dad's height is 72 inches and he weighs 182 pounds.
What is the residual of weight and height for Shawna's dad?
a. 11.2 pounds
b. -11.2 pounds
c. 193.2 pounds
d. 809.2 pounds
Answer:
-11.2 pounds
Step-by-step explanation:
It is given that,
Shawna finds a study of American men that has an equation to predict weight (in pounds) from height (in inches):
y = -210 + 5.6x
Height of Shawna's dad is 72 inches
Weight is 182 pounds
We need to find the residual of weight and height for Shawna's dad.
Predicted weight of 72 inches men,
y' = -210 + 5.6(72)
y' = 193.2 pounds
So, residual is :
Y = 182 - 193.2
Y = -11.2 pounds
So, the residual of weight and height for Shawna's dad is -11.2 pounds.
Answer:
-11.2 pounds
Step-by-step explanation:
Got it right on the test.